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ABSTRACT To mitigate the negative effects of the sensor measurement biases for the maneuvering target,
a novel incremental center differential Kalman filter (ICDKF) algorithm is proposed. Based on the principle
of independent incremental random process, the incremental measurement equation is modeled to preprocess
the sensor measurement biases. Then, a general ICDKF algorithm is proposed by augmenting the process
and measurement noises into the state vector to mitigate the negative effects of the sensor biases. For
the system with additive noises, an additive ICDKF algorithm is derived by introducing the incremental
measurement equation to reduce the measurement biases. Numerical simulations for four types of sensor
biases are designed to demonstrate that the proposed ICDKF can effectively mitigate the measurement biases
compared to the CDKF.

INDEX TERMS Center differential Kalman filter, incremental measurement equation, target tracking,
systematic bias, offset bias.

I. INTRODUCTION
The classic Kalman filter (KF) is optimal when the dis-
turbances of the process and measurement systems can be
modeled as Gaussian white noises. Any colored noises or
biases in the systems may degrade the filtering performance,
especially the sensor measurement biases in the target track-
ing system [1], [2]. To improve the tracking performance,
the sensor measurement biases in the tracking system should
be mitigated or compensated.

Many methodologies are proposed to mitigate the neg-
ative effects of the measurement biases. The first idea
is augmenting the biases into the state vector to esti-
mate them and then compensating the measurements. But,
implementing this augmented strategy may load infeasible
computation or even diverge for ill-conditioned systems.
Haessig and Friedland [3] proposed a paralleling reduced-
order filtering to separate the bias estimates, and demon-
strated that it is equivalent to the above augmenting strategy.
Lin et al. [4] estimated the biases by using the local unas-
sociated track estimates at a single time. Schmidt presented
a consider Kalman filter to solve the systematic biases,

which considers the cross-covariance between the biases and
the states, but not estimates them [5]–[7]. Based on the
sensitivity of the model uncertainties (including biases) and
desensitized optimal control methodology, the desensitized
Kalman filter is proposed to reduce these sensitivities [8], [9].
Kai et al. [10] devised a robust extended Kalman filter with
stochastic uncertainties in the non-linear discrete-time system
models. Xie et al. [11] designed a H∞ filtering for linear
discrete-time systems with norm-bounded parameter uncer-
tainties in both state and output matrices. Habibi [12] devel-
oped a smooth variable structure filter to guarantee stability
given an upper bound for uncertainties and noise levels.
Ben Hmida et al. [13] presented a robust three-stage Kalman
filter for linear stochastic discrete-time varying systems with
unknown inputs to give an unbiased minimum-variance esti-
mation. Based on the principle of independent incremental
random process [14], Fu et al. proposed an incremental fil-
tering concept to mitigate the systematic biases in original
measurement equation by reconstructing the measurement
equation [15], [16]. In addition, multiple model adaptive
estimation [17], set-valued estimation [18] and so on,
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are proposed to reduce the negative effects of the systematic
biases.

Estimating unknown sensor measurement biases is an
important problem for the target tracking system. Uncor-
rected biases can lead to large tracking errors and multiple
unknown formations for the same target [1]. Zhang et al. [19]
used the consider Kalman filter (also called Schmidt-Kalman
filter) algorithm to solve the combined problem of ‘‘out-of-
sequence’’ measurement with residual biases from multiple
sensors. Lin et al. [2] provided an exact method for the mul-
tiple sensor bias estimation problem based on local tracks.
Xiaoquan et al. [20] designed a new unbiased conversion
approach to compensate the biases for target tracking by
obtaining the covariance of the conversion. Bar-Shalom [21]
used static-rotator targets of opportunity to estimate the posi-
tion biases of the airborne ground in moving target indicator
radars.

The center differential Kalman filter (CDKF) is a state
estimation methodology to solve nonlinear system problems.
The CDKF is obtained by using the multivariable extension
of the Stirling interpolation principle to approximate the
nonlinear function [9], [22].To deal with the biases in the
ranging and azimuth measurements for the target tracking,
an incremental nonlinear measurement equation is introduced
into the CDKF, and a new incremental center differential
Kalman filter (ICDKF) is proposed to mitigate the negative
effects of the measurement biases for the nonlinear system.

The structure of this paper is as follows. Section II analyzes
the biases of the target tacking measurement equation, and
sets up the incremental measurement equation. In Section III
derives the proposed ICDKF algorithm for general discrete
dynamic system and measurement model. The ICDKF algo-
rithm for system with additive noises is derived in Section IV.
Four numerical simulations with different biases are run
to demonstrate the performance of the proposed ICDKF
comparing with the CDKF algorithm. The conclusion is
summarized in Section V.

II. TARGET TRACKING MODEL WITH BIASES
Consider a target (aircraft, missile, etc.) that moves in a
two-dimensional plane XOY . The motion states of the tar-
get in the horizontal direction (X -axis direction) and the
vertical direction (Y -axis direction), which includes posi-
tion, velocity and acceleration, are represented by vector
xk= [xk , yk , ẋk , ẏk , ẍk , ÿk ]T at time tk .The discrete dynamic
model of the target is defined by

xk = f (xk−1, uk−1,wk−1) (1)

where uk is the control input vector, and wk is the zero mean
Gaussian white noises with covariance Qk .
The discrete-time target dynamic model may be constant

velocity (CV) model, constant acceleration (CA) model,
Singer model, ‘‘Current’’ model, or constant turn model (CT)
with known turn rate and unknown turn rate [23]. In this
work, the sensor, which measures the range and azimuth of
the target, is a radar sensor or an imaging sensor. The sensor

is fixed in a certain position or in a moving air vehicle. The
measurement model with biases of the target in the polar
coordinates at time tk is denoted by [1], [2], [24]

zk = h (xk , bk , vk) =
[
(1+ srk )rk + o

r
k + v

r
k

(1+ sφk )φk + o
φ
k + v

φ
k

]
(2)

where rk and φk are the true range and azimuth; bk =[
srk , s

φ
k , o

r
k , o

φ
k

]T
is the bias vector, in which srk and sφk are

the scale biases for the range and azimuth, and ork and oφk
are the offset biases (also called systematic errors) of the
range and azimuth; the measure noises vrk and v

φ
k of the range

and azimuth are the zero mean Gaussian white noises with
covariance σ 2

r and σ
2
φ , respectively, and are assumedmutually

independent with wk .
Here, the biases bk of the sensor can be modeled as a con-

stant variable, a suddenly-change variable or a Gauss-Markov
random variable [1], [24]. Then, Eq.(2) can be re-writed as

zk =
[
rk
φk

]
+ 0kbk +

[
vrk
vφk

]
(3)

where

0k =

[
rk 0 1 0
0 φk 0 1

]
(4)

When the sampling time of the system is small, the differ-
ence of the bias value for two adjacent measurement vectors
zk and zk−1 is relatively small, that is to say, 1bk = 0kbk −
0k−1bk−1 is small. This difference 1bk in the measurement
vector 1zk = zk − zk−1 can be modeled as zero mean Gaus-
sian white noises or even neglected. Moreover, from the prin-
ciple of independent incremental random process [14], it can
be seen that 1zk and 1zk−1 meet the independent require-
ment of measurement data in filter processing, respected to
the direct measurement values zk and zk−1. Then, based on
the above discussion, the incremental measurement for the
sensor is modeled as

1zk = h
(
xk , bk , xk−1, bk−1, v∗k

)
= h (xk , bk , vk)− h (xk−1, bk−1, vk−1)

=

[
rk − rk−1 + v∗rk
φk − φk−1 + v

∗φ
k

]
(5)

where v∗rk = vrk − vrk−1 and v∗φk = vφk − vφk−1 are zero
mean Gaussian white noises with covariance 2σ 2

r and 2σ 2
φ ,

respectively, and are also independent with wk .

III. INCREMENTAL CENTER DIFFERENCE KALMAN FILTER
In this work, two cases with different form of the noises for
the process and measurement models. One is the above gen-
eral discrete-time dynamic equation and incremental mea-
surement equation, which is denoted as

xk = f (xk−1, uk−1,wk−1) (6)

1zk = h
(
xk , bk , xk−1, bk−1, v∗k

)
(7)
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Another one is the discrete dynamic equation and incremental
measurement equationwith additive noises, which ismodeled
by

xk = f (xk−1, uk−1)+ wk−1 (8)

1zk = h(xk , bk )− h(xk−1, bk−1)+ v∗k (9)

where the direct measurement equation with additive noises
is given by

zk = h(xk , bk )+ vk (10)

A. GENERAL ICDKF ALGORITHMS
For discrete model Eqs.(6) and (7), the process and measure-
ment noises are augmented into the state vector to estimate
together with the state. Based on the center differential
transformation [22], the state distribution including the mean
and covariance is represented by a Gaussian random vari-
able with sigma-points. The sequential incremental measure-
ment vectors with unnegligible biases are introduced into
the CDKF, and the ICDKF is presented to enhance the
estimation accuracies. The general ICDKF for incremental
measurement equation is derived as follow.

Firstly, initializing the state and covariance

x̂0 = E[x0] (11)

P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (12)

Secondly, based on the posteriori state x̂+k−1 and covariance
P+k−1 at time tk−1, augmenting the process noise wk−1 into
the state vector and the process covariance Qk−1 into the
covariance matrix

x̂+αk−1 = [x̂+Tk−1,w
T
k−1]

T (13)

P+αk−1 =
[
P+k−1 0
0 Qk−1

]
(14)

and then evaluating time-updated sigma-points

χαk−1 = [x̂+αk−1, x̂
+α
k−1 ± λ

√
P+αk−1] (15)

Evaluating the propagated sigma-points

χxk/k−1 = f (χαxk−1, χ
αw
k−1, uk−1) (16)

Estimating the priori state and covariance

x̂−k =
2n∑
i=0

w(m)
i χxi,k/k−1 (17)

P−k =
n∑
i=1

[w(c1)
i (χxi,k/k−1 − χ

x
n+1,k/k−1)

× (χxi,k/k−1 − χ
x
n+1,k/k−1)

T

+w(c2)
i (χxi,k/k−1 + χ

x
n+i,k/k−1 − 2χx0,k/k−1)

× (χxi,k/k−1 + χ
x
n+i,k/k−1 − 2χx0,k/k−1)

T ] (18)

Thirdly, augmenting the process noise v∗k into the state
vector and the process covariance 2Rk into the covariance
matrix, and resampling the sigma-points

x̂βk/k−1 = [x̂−k , v
∗
k ] (19)

P+βk/k−1 =
[
P−k
0

0
2Rk

]
(20)

χ
β

k/k−1 = [x̂+βk/k−1, x̂
+β

k/k−1 ± λ

√
P+βk/k−1] (21)

Evaluating the propagated sigma-points for the measurement
equation, and estimating the priori measurement

1Zk/k−1 = h(χβxk/k−1, b̂k , x̂
+x
k−1, b̂k−1, χ

βv
k/k−1) (22)

1ẑ−k =
2n∑
i=0

w(m)
i 1Zi,k/k−1 (23)

where, b̂k is the pre-estimate of the biases at time tk .
Estimating the innovation covariance matrix

Pzz,k7 =
n∑
i=1

[w(c1)
i (1Zi,k/k−1 −1Zn+i,k/k−1)

× (1Zi,k/k−1 −1Zn+i,k/k−1)T

+w(c2)
i (1Zi,k/k−1 +1Zn+i,k/k−1 − 21Z0,k/k−1)

× (1Zi,k/k−1 +1Zn+i,k/k−1 − 21Z0,k/k−1)T ]

(24)

Estimating the cross-covariance matrix

Pxz,k =
√
w(c1)
1 P−k (1Z1:n,k/k−1 −1Zn+1:2n,k/k−1)

T (25)

Fourthly, the gain matrix is obtained by

Kk = Pxz,kP
−1
zz,k (26)

Lastly, estimating the posterior state and the posterior
covariance matrix

x̂+k = x̂−k + Kk (1zk −1ẑ
−

k ) (27)

P+k = P−k − KkPzz,kK
T
k (28)

where the weights of the sigma-points are given by
(L = 2n+ 1)

w(m)
0 =

λ2 − L
λ2

, w(m)
i =

1
2λ2

(29)

w(c1)
i =

1
4λ2

(30)

w(c2)
i =

λ2 − 1
4λ2

(31)

where λ denotes the half-step length in the center differen-
tial principle, and it’s optimal value is the Kurtosis of the
distribution. For the Gaussian distribution, it’s optimal value
is
√
3 [9].
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B. ICDKF ALGORITHMS WITH ADDITIVE NOISES
To reduce the computation cost, the additive noises for
Eqs.(8) and (9) are not incorporated into the state to generate
the sigma-points, and its covariance are compensated into
the priori covariance and the innovation covariance [25]. The
formulations of the ICDKF algorithmwith additive noises are
given in the next.

Firstly, initializing the state x̂0 = E[x0] and covariance
P0 = E[(x0 − x̂0)(x0 − x̂0)T ].
Secondly, based on the posteriori state x̂+k−1 and covariance

P+k−1 at time tk−1, evaluating time-update sigma-points

χk−1 = [x̂+k−1, x̂
+

k−1 ± λ

√
P+k−1] (32)

Evaluating the propagated sigma-points

χ∗k/k−1 = f (χk−1, uk−1) (33)

Estimating the priori state and covariance

x̂−k =
2n∑
i=0

w(m)
i χ∗i,k/k−1 (34)

P−k =
n∑
i=1

[w(čc1)č
i (χ∗i,k/k−1 − χ

∗

n+i,k/k−1)

× (χ∗i,k/k−1 − χ
∗

n+i,k/k−1)
T

+w(c2)č
i (χ∗i,k/k−1 + χ

∗

n+i,k/k−1 − 2χ∗0,k/k−1)

× (χ∗i,k/k−1 + χ
∗

n+i,k/k−1 − 2χ∗0,k/k−1)
T ]+ Qk−1

(35)

Thirdly, resampling the sigma-points

χ rk/k−1 = [x̂−k , x̂
−

k ± λ

√
P−k ] (36)

Evaluating the propagated sigma-points for the measurement
equation, and estimating the priori measurement

1Zk/k−1 = h(χ rk/k−1, b̂k )− h(x̂
+

k−1, b̂k−1) (37)

1ẑ−k =
2n∑
i=0

w(m)
i 1Zi,k/k−1 (38)

Estimating the innovation covariance matrix

Pzz,k =
n∑
i=1

[w(c1)
i (1Zi,k/k−1 −1Zn+i,k/k−1)

× (1Zi,k/k−1 −1Zn+i,k/k−1)T

+w(c2)
i (1Zi,k/k−1 +1Zn+i,k/k−1 − 21Z0,k/k−1)

×(1Zi,k/k−1 +1Zn+i,k/k−1 − 21Z0,k/k−1)T ]+2Rk
(39)

Estimating the cross-covariance matrix

Pxz,k =
√
w(c1)
1 P−k (1Z1:n,k/k−1 −1Zn+1:2n,k/k−1)

T (40)

Fourthly, obtaining the gain matrix

Kk = Pxz,kP
−1
zz,k (41)

Lastly, estimating the posterior state and the posterior
covariance matrix

x̂+k = x̂−k + Kk (1zk −1ẑ
−

k ) (42)

P+k = P−k − KkPzz,kK
T
k (43)

IV. NUMERICAL SIMULATION
To evaluate the performance of the proposed ICDKF, con-
sider a target moves with a nearly constant velocity in a
two-dimensional plane. The dynamic model in Cartesian
coordinate system is given by [26]

xk = 8xk−1 + wk−1 (44)

where

8 =



1 0 T 0
T 2

2
0

0 1 0 T 0
T 2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


(45)

An unmanned aerial vehicle (UAV), which carries an air-
borne radar, moves with a nearly constant velocity in the
same plane to track the target. The radar on the UAV, which
position is (xUAVk , yUAVk ) at time tk , provides the distance rk
and the azimuth φk between the UAV and the target, and the
measurement equation with offset biases is

1zk =
[
rk − rk−1
φk − φk−1

]
+

[
v∗rk
v∗φk

]
(46)

where

rk =
√
(xk − xUAVk )2 + (yk − yUAVk )2 + ork (47)

φk = arctan

(
yk − yUAVk

xk − xUAVk

)
+ oφk (48)

In simulations, the initial state of the target is x0 =
[1000, 5000, 10, 50, 2,−4]T , and the corresponding covari-
ance is P0 = diag [100, 100, 1, 1, 0.1, 0.1]; the process noise
covariance is Qk = diag

[
1, 1, 0.12, 0.12, 0.012, 0.912

]
, and

themeasurement noise covariance isRk=diag
[
102, 0.0012

]
;

the initial state of the UAV is xUAV0 = [900, 4900, 1, 15, 0, 0]T ,
and the process noises of the CV model for the UAV is
QUAVk = 0.1Qk . The simulation lasts 25s, and the sampling
time is T = 0.5s. The trajectories of the UAV and the target
are plotted in Fig.1. Five hundred Monte Carlo simulations
are run to evaluate the performance of the ICDKF and the
CDKF. The root mean squared errors (RMSE) of position and
velocity for 500 times simulation are calculated, respectively,
as

PRMSEk =

√√√√ 1
500

500∑
i=1

[
(x ik,1 − x̂

i
k,1)

2 + (x ik,2 − x̂
i
k,2)

2
]
(49)
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FIGURE 1. UAV target crossing scenario.

FIGURE 2. Values of the systematic biases.

VRMSEk =

√√√√ 1
500

500∑
i=1

[
(x ik,3 − x̂

i
k,3)

2 + (x ik,4 − x̂
i
k,4)

2
]
(50)

where x ik is the true state, and x̂ ik is the state estimate of the
ith Monte Carlo run.

For the systematic errors ork and o
φ
k , four cases are consid-

ered in the simulations, which include zero mean, constant
bias, suddenly-change bias and stationary first-order Markov
process.
Case 1: Zero mean. The biases in this case are zero mean,

that is to say, there is no biases in the measurement model.
Case 2: Random constant bias. The biases of the radar

are the random constant values, which are distributed to the
normal distribution with mean b̄ = [20m, 0.002rad]T and
covariance Qbk = diag

[
12, 0.00052

]
.

Case 3: Suddenly-change bias. The biases of the radar
suddenly increase, last sometimes, and then decrease slowly.
The values of the biases are plotted in Fig. 2.
Case 4: Stationary first-order Markov process. The sta-

tionary first-order Markov process is driven by zero-mean
Gaussian white noises, and its state transition equation is

FIGURE 3. Position RMSEs of the CDKF and ICDKF for case 1.

FIGURE 4. Velocity RMSEs of the CDKF and ICDKF for case 1.

given by

bk = Mk−1bk−1 + wbk−1 (51)

where the state transition matrix isMk−1 = diag [0.99, 0.99],
the initial bias is b0 = [8m, 0.001rad]T , the process noises
wbk are zero-mean white noises with covariance Qbk .

The RMSEs for position and velocity of the CDKF and the
ICDKF for four cases are shown in Figs.3-10, respectively.
The means of the four RMSEs are listed in Table 1.

From Figs.3 and 4, it can be seen that the RMSEs of the
position and velocity for the proposed ICDKF are all slightly
less than those of the CDKF, because the CDKF is optimal
when the measurements have no biases.

Figs.5 and 6 show the RMSEs of position and velocity
for two filters when the measurements have random constant
biases in case 2. The performance of the proposed ICDKF is
much better than the CDKF, which is disturbed by the random
constant biases.

Figs.7 and 8 clearly show the RMSEs for two filters in
case 3. Because the biases suddenly change from zero to
non-zero, slowly vary and steady at constant values, and
then slowly decrease to zero, the CDKF is disturbed by
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FIGURE 5. Position RMSEs of the CDKF and ICDKF for case 2.

FIGURE 6. Velocity RMSEs of the CDKF and ICDKF for case 2.

FIGURE 7. Position RMSEs of the CDKF and ICDKF for case 3.

the emergent biases, and has a worse performance than the
ICDKF when the biases emerge.

For case 4, the RMSEs of position and velocity for the
two filters are shown in Figs.9 and 10. The biases of the
stationary first-order Markov process with initial bias b0 are
less than b̄. Under this sort of case, the two RMSEs of the
proposed ICDKF are also all smaller than those of the CDKF.

FIGURE 8. Velocity RMSEs of the CDKF and ICDKF for case 3.

FIGURE 9. Position RMSEs of the CDKF and ICDKF for case 4.

FIGURE 10. Velocity RMSEs of the CDKF and ICDKF for case 4.

Finally, from Figs.5-10, it can be seen that the proposed
ICDKF is superior to that of the CDKF in most cases, and
has smaller state estimate errors for all three cases (random
constant biases, suddenly-change biases and time-varying
biases). For Table 1, it has the same results as the results
from the Figs.5-10. That is to say, the proposed ICDKF can
mitigate the negative effects of the biases in the measurement
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TABLE 1. The RMSEs of the position and velocity.

information and has a better estimate accuracy comparedwith
the CDKF.

V. CONCLUSION
In this paper, the ICDKF algorithm is proposed to mitigate
the negative effects of the systematic biases in measurement
information for target tracking by using mobile airborne
radar. Firstly, the target trackingmodel with systematic biases
is discussed and the incremental measurement equation is
modeled based on the principle of independent incremental
random process. Secondly, the general ICDKF algorithm is
proposed by augmenting the process and measurement noises
into the state vector. Thirdly, to reduce the computation cost
and the negative biases, the additive ICDKF algorithm is
derived by introducing the additive noises and incremental
equation. Lastly, numerical simulations for four cases are
run to demonstrate the effective of the proposed ICDKF
algorithm tomitigate themeasurement biases comparingwith
the CDKF algorithm.
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