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ABSTRACT Raman spectroscopy is a rapid and non-destructive technique for detecting unique spectral fin-
gerprints from biological samples. Raw Raman spectra often come with strong fluorescence background that
makes spectral interpretation challenging. Although fluorescence background can be suppressed experimen-
tally, this approach requires sophisticated and costly instruments. For convenience and cost-effectiveness,
numerical methods have been used frequently to remove fluorescence background. Unfortunately, many
of such methods suffer from long computation time. Therefore, a fast numerical method for fluorescence
suppression is highly desirable especially in Raman spectroscopic imaging where Raman measurements
from many pixels need to be processed rapidly. In response to this demand, we propose a fast numerical
method for fluorescence background suppression based on the strategy of stepwise spectral reconstruction
that we previously developed. Compared with traditional computational methods, including polynomial
fitting, wavelet transform, Fourier transform, and peak detection, our results consistently show significant
advantages in both accuracy and computational efficiency when tested on Raman spectra measured from
phantoms and cells as well as surfaced enhanced Raman spectra from blood serum samples. In particular,
our method yields clean Raman spectra closest to the reference results generated by polynomial fitting while
several orders of magnitude faster than others. Therefore, the proposed fast fluorescence suppression method
is promising in Raman spectroscopic imaging or related application in which high-computation efficiency
is critical and a calibration dataset is available.

INDEX TERMS Biomedical signal processing, Raman spectroscopy, fluorescence suppression, Raman

imaging.

I. INTRODUCTION

Raman spectroscopy is a powerful technique for analyzing
bio-molecular structure and composition of biological sam-
ples based on the detection of vibrational, rotational and
other low-frequency information about molecules [1], [2].
As Raman measurements can be carried out rapidly and
non-destructively with minimal sample preparation, Raman
spectroscopy has shown great potential in biomedical appli-
cations [3], [4], such as cell classification, cancer diagnosis
and dentistry. However, the intrinsic fluorescence of biolog-
ical samples forms strong background on which the Raman
signal is superimposed, which makes the weak Raman signal

difficult to be distinguished and post-processed [5], [6].
The presence of fluorescence background severely restricts
the usage of Raman techniques in biomedical applications.
Therefore, it is necessary to suppress fluorescence back-
ground before a Raman spectrum is further analyzed.

Over the past few decades, various approaches have
been developed to suppress fluorescent background in mea-
sured Raman spectra, which can be mainly categorized as
experimental methods and computational method [7]. Exper-
imental methods, including shift-excitation Raman difference
spectroscopy [8], time-gated Raman spectroscopy [9],
phase-resolved modulation Raman spectroscopy [10], et al.,
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often require costly and sophisticated instrument. Although
computational methods, such as polynomial fitting [11], [12],
wavelet transform [13], [14], Fourier transform [15], deriva-
tive [16], and peak detection [17], [18], only rely on numer-
ical calculation thus additional equipment is non-essential,
such methods are limited by low fluorescence suppression
efficiency or long computation time when a large number of
Raman measurements need to be processed in a short time
especially in Raman spectroscopic imaging. Therefore, a fast,
efficient and cost-effective fluorescence background suppres-
sion method is desirable in the field of Raman spectroscopic
imaging.

In this paper, an ultrafast suppression method based on
the stepwise spectral reconstruction was demonstrated to
overcome the limitations of the traditional computational
methods in fluorescence suppression performance and com-
putation efficiency. The proposed method was tested on spon-
taneous Raman measurements from phantoms and leukemia
cells samples as well as the surface-enhanced Raman spec-
troscopy (SERS) measurements from blood serum samples.
For comparison, four commonly used computational methods
for fluorescence suppression, e.g. polynomial fitting, wavelet
transform, Fourier transform, and peak detection, was tested
on the same dataset. With the method of polynomial fitting
as the golden standard, the results from the proposed method
are closest to the reference, and the computation time is
the shortest among all the above methods. Therefore, the
ultrafast fluorescence suppression method based on the step-
wise spectral reconstruction not only significantly improves
fluorescence suppression performance but also shorten the
computation time significantly, which is expected to be useful
in Raman spectroscopic imaging.

Il. MATERIALS AND METHODS

A. RAMAN SPECTRA MEASUREMENTS

Spontaneous Raman spectra measurements were taken from
phantoms and leukemia cells, while SERS measurements
were taken from blood serum samples.

1) PHANTOM

25 agar phantoms were made from the mixture of potas-
sium formate (294454, Sigma-Aldrich, US) and urea (V3171,
Promega corporation, US), in which the concentration for
both potassium formate and urea included 0.25 M, 0.5 M,
1 M, 1.5 M, and 2 M. The spontaneous Raman spectra were
measured by a micro-Raman system (innoRam-785S, B&W
TEK, US) with 785nm laser excitation and the exposure time
was 10 s accumulated with 30 times. The Raman measure-
ments were taken from 600 cm™! to 1800 cm~! and the
spectral resolution was 4cm™!.

2) LEUKEMIA CELL

30 spontaneous Raman spectra were collected from live,
apoptotic and necrotic leukemia cells under a confocal Raman
microscope (inVia, Renishaw, UK), in which the number
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TABLE 1. Parameters of the fluorescence background methods and the
ranges of parameters.

Method Parameter Parameter range

Polynomial fitting Order 5-th

dbl, db2, ..., db25
sym2, sym3, ..., sym§,
coifl, coif2, ..., coif?,
biorl.3, bior2.2,
bior2.6, bior3.1,
bior3.5, bior3.9, bior5.5

2,3,...,15

Sort threshold: 0, 1000,
..., 4000000 or
Hard threshold: 0,
1000, ..., 4000000

Wavelet basis

Wavelet transform

Decomposition number

Threshold

Fourier transform Cut-off frequency 0,0.1,...,20
Smooth window size 2,3,...,100
Peak detection Peak elimination window 2, 3, ..., number of
size wavenumbers
Stepwise spectral  Number of non-negative 2.3,...15

reconstruction PCs based filters

of cells in each group is 10. The excitation wavelength
was 785 nm and the exposure time was 10 s accumulated
with 6 times. The Raman measurements were taken from
600 cm™! to 1800 cm™! and the spectral resolution is 2cm™!.

3) BLOOD SERUM SAMPLE

50 SERS spectra were measured from blood serum samples
of 50 nasopharyngeal cancer patients in Fujian Tumor Hospi-
tal in Fuzhou, China, in which the measurements were taken
by a confocal Raman microscope (inVia, Renishaw, UK). The
excitation wavelength was 785 nm and the exposure time was
10 s. The Raman measurements were taken from 600 cm™!

to 1800 cm~! and the spectral resolution is 2 cm™!.

B. DATA PROCESSING

All the measured Raman spectra were first preprocessed
by sequential five-point smoothing in order to reduce the
shot noise, which is named as de-noised Raman spectra in
the following paragraphs, before the Raman spectra were
further processed by the following fluorescence suppression
algorithms. The methods used in this study and their corre-
sponding parameter ranges are shown in Table 1, in which
the polynomial fitting method serves as the gold standard
during the evaluation of the fluorescence suppression effi-
ciency in this study. The relative root mean square error
(RMSE) [19] is used as the metric in the evaluation. All fluo-
rescence background removal methods, including polynomial
fitting, wavelet transform, Fourier transform, peak detection
and stepwise spectral reconstruction were coded and run
in Matlab (MATLAB R2012b, MathWorks, Natick, MA,
USA).
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1) POLYNOMIAL FITTING

The Raman spectra generally consist of Raman peaks and
noise superimposed on fluorescence background, in which
the fluorescence background varies slower with wavelength
compared with the Raman spectrum. Thus, the polynomial
model can be used to represent a wide class of fluorescence
backgrounds. In this study, the fluorescence background is
estimated by fitting the spectrum to a 5-th order polyno-
mial in the least square sense and then subtracted from the
de-noised Raman spectrum, in which the 5-th order polyno-
mial fitting was iteratively performed to find the best fit curve
with the intensity value not greater than that of the original
Raman spectrum at every wavelength. More details about
the proposed polynomial fitting method can be found in the
literature [12].

2) WAVELET TRANSFORM

Wavelet transform is used to decompose the de-noised Raman
spectrum into individual frequency components using differ-
ent wavelet bases, and then restore the pure Raman signal
after removing useless frequency components. In general,
fluorescence background consists of slowly changes thus
contains mainly low frequency components, while the Raman
spectrum comprises sharp peaks carrying much higher fre-
quency components. Thus, by removing those low-frequency
components corresponding to the fluorescence background,
the pure Raman signal can be extracted. The parameters
of wavelet transform, e.g. the wavelet bases, decomposition
number, and threshold as shown in Table 1, were optimized by
exploring all possible combinations of different parameters.

3) FOURIER TRANSFORM

Fourier transform is used to represent the original signal in
the frequency domain, in which components of high and
low frequencies correspond to sharp and slow changes in the
original signal, respectively. Similar to the earlier description,
fluorescence background consists of slowly changes thus
contains mainly low frequency components, while the Raman
spectrum comprises sharp peaks carrying much higher fre-
quency components. Thus, the fluorescence background can
be removed by applying a high-pass filter with a proper cut-
off frequency to the measured spectrum. In this study, the
cut-off frequency was optimized in the range of 0 to 20, where
the step size was 0.1.

4) PEAK DETECTION

Since the fluorescence background varies slower than the
Raman spectrum, it can be estimated from a measured spec-
trum by eliminating significant peaks with high-frequency
components. Thereafter, the estimated fluorescence back-
ground can be subsequently removed by simple subtraction
from the original Raman spectrum. In this study, the peaks
were inspected according to the smoothed derivative of a
given spectrum, in which the maximum value of the peak
occurs when the sign of the derivative changes from positive
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to negative and the boundary of the peak can be found at the
adjacent zero positions of the derivative. More specifically,
the smoothed derivative is obtained by smoothing with a
window size varying from 2 to 100 and subsequent smooth-
ing with a peak elimination window size varying from 2 to
the number of wavenumber to remove sharp Raman peaks.
After cropping the corresponding peak area, the fluorescence
background was estimated by applying a modified linear
interpolation, in which interpolated values were calculated by
integrating the background’s derivative in the peak region and
the background can be obtained by assembling interpolated
values for all peak regions together with untouched seg-
ments. Thereafter, the fluorescence background was removed
by simple subtraction from the de-noised Raman spectrum.
More details about the peak detection based fluorescence
background suppression method can be found in the litera-
ture [17].

5) STEPWISE SPECTRAL RECONSTRUCTION

The stepwise spectral reconstruction method is developed
for fast Raman spectroscopic imaging and it can reconstruct
the pure Raman spectrum rapidly from a few narrow-band
measurements, in which the narrow-band measurements are
acquired in the presence of fluorescence background after the
emitted light from a sample passes through a few selected
filters one at a time. Thus, this method naturally possesses
significant potential in fluorescence background removal.

The schematic of the stepwise spectral reconstruction
method is shown in Figure 1. The stepwise spectral recon-
struction is a supervised learning method in nature, thus it
is necessary to establish a calibration dataset to train the
model for fluorescence suppression. The calibration data set
in this method include original Raman spectra, pure Raman
spectra after fluorescence background removal, fluorescence
background spectra and their corresponding narrow-band
measurements, whereas the test data set include only orig-
inal Raman spectra in the presence of fluorescence back-
ground. In this study, the narrow-band measurements N are
defined as the inner product of the transmittance spectra of
the given filters F' and spectra S. Non-negative principal
components (PCs) based filters [20] generated from the cor-
responding denoised Raman spectra, were used to generate
the narrow-band measurements in this study. The transmit-
tance spectra of these non-negative PCs based filters were
derived from the principal component analysis (PCA) of
Raman spectra measured from representative target samples,
thus the resulting narrow-band measurements can benefit
from the optimal compression properties of the PCA scheme.
The number of PCs based filters was optimized in a range
of 2 to 15.

Wiener estimation [20], [21] was used to train the model
for fluorescence suppression. The procedure of Wiener esti-
mation consists of two stages, i.e. the calibration stage and
test stage. In the calibration stage, the Wiener matrix is con-
structed using narrow-band measurements N, and spectra S in
the calibration data set according to (1), in which the relation
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FIGURE 2. Original Raman spectra before fluorescence suppression: (a) spontaneous Raman spectra from phantoms, (b)
SERS spectra from blood serum samples, and (c) spontaneous Raman spectra from leukemia cells.

between the narrow-band measurements N, and spectra S
is built. Wiener matrix A is created to relate fluorescence
background spectra to the original Raman narrow-band mea-
surements, and Wiener matrix B is created to relate pure
Raman spectra to pure Raman narrow-band measurements.

W=E (SNCT) [E (NCNI)]_l (1

where E () denotes the ensemble average, the superscript “T”
denotes matrix transpose and the superscript “—1"* denotes
matrix inverse.

In the test stage, the Wiener matrix W is applied to narrow-
band measurements N; from the test dataset to reconstruct the
corresponding spectrum R according to (2).

R = WN, 2)

The stepwise spectral reconstruction method performs
spectral reconstruction in two steps in both the calibra-
tion stage and the test stage. This method first reconstructs
the fluorescence background spectrum from the original
Raman narrow-band measurements by Wiener estimation
and then the pure Raman narrow-band measurements can
be estimated by subtracting the estimated fluorescence back-
ground narrow-band measurements from the original Raman
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narrow-band measurements. Thereafter, the pure Raman
spectrum is reconstructed from the estimated pure Raman
narrow-band measurements by Wiener estimation. Since the
calibration data set is required by such a method, a leave-
one-out method [22] is used for cross validation to fully
utilize each sample in an unbiased manner. More details about
stepwise spectral reconstruction can be found in [23].

Ill. RESULTS

The original spontaneous Raman spectra from phantoms and
leukemia cells as well as the original SERS spectra from
blood serum samples are shown in Figure 2, in which Raman
spectra from phantoms, blood serum samples and leukemia
cells represent the cases of low fluorescence background,
high fluorescence background, and moderate fluorescent
background, respectively.

In our study, the same set of reference spectra was used
for comparison across all methods being tested including
our method and four other commonly used methods. Such
comparison was made for Raman spectra from different types
of samples in Figures 3 through 5 for comprehensive eval-
uation. The mean relative RMSE is calculated between the
results from corresponding fluorescence background removal
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FIGURE 3. Comparison of the reference Raman spectrum of phantoms obtained using the s5th_order polynomial
fitting and the corresponding Raman spectra extracted using the methods of wavelet transform, Fourier
transform, peak detection, and the stepwise spectral reconstruction in the typical case, in which the relative

RMSE is to the mean value.

method and standard method, i.e. the 5-th order polyno-
mial fitting, and was used as the criterion to evaluate the
fluorescence suppression efficiency. Table 2 shows compar-
ison in the mean relative RMSE of Raman spectra after
the fluorescence background removal using the methods of
wavelet transform, Fourier transform, peak detection, and
stepwise spectral reconstruction. According to the results
in Table 2, the stepwise spectral reconstruction shows signif-
icant improvement compared with other fluorescence back-
ground removal methods in all respects. In order to compare
each method in an unbiased manner, we chose one of the
reconstructed spectra, whose relative RMSE is closest to the
mean relative RMSE for the entire set, to represent the typical
result of each method in Figures 3, 4 and 5. Although the
typical result of each method may correspond to a different
reference spectrum, it represented the overall performance of
each method in fluorescence suppression efficiency.

For phantoms, all the configurations for each method were
optimized to achieve the smallest mean relative RMSE. The
result of wavelet transform is optimal when the wavelet basis
is ‘db5’ with a decomposition number of 11 and a soft thresh-
old of 220000. The result of Fourier transform is optimized
when the cut-off frequency is 1.1. The result of peak detection
is optimal when the smoothing window size is 7 and the peak
elimination window size is 339. The result of the stepwise
spectral reconstruction is optimal when the number of filters
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TABLE 2. Comparison in the mean relative RMSE of Raman spectra after
the fluorescence background is removed by different fluorescence
background removal methods.

Wavelet  Fourier Peak Stepwise spectral
transform transform detection  reconstruction
Phantom 0.0349 0.0840 0.0221 0.0045
Leukemia cell ~ 0.2063 0.2924 0.0694 0.0184
Blood serum 4 1555 02095 0.0403 0.0111

sample

is 4. According to Table 2, the mean relative RMSE for step-
wise spectral reconstruction is 12.9%, 5.4%, and 20.4% of
those for the wavelet transform, Fourier transform, and peak
detection, respectively. Figure 3 shows the comparison of the
reference Raman spectrum obtained with the Sth-order poly-
nomial fitting and the corresponding Raman spectra extracted
using the methods of wavelet transform, Fourier transform,
peak detection and stepwise spectral reconstruction in the
typical case, in which the relative RMSE is close to the
corresponding mean value. The relative RMSEs in Figure 3
are 0.0354,0.0837,0.0219, and 0.0041 for wavelet transform,
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polynomial fitting and the corresponding Raman spectra extracted using the methods of wavelet transform,
Fourier transform, peak detection, and the stepwise spectral reconstruction in the typical case, in which the

relative RMSE is to the mean value.

Fourier transform, peak detection, and the stepwise spectral
reconstruction, respectively.

For leukemia cells, the result of wavelet transform is opti-
mized when the wavelet basis is ‘db20’ with a decompo-
sition number of 11 and a soft threshold of 3000000. The
result of Fourier transform is optimized when the cut-off
frequency is 2.2. The result of peak detection is optimized
when the smoothing window size is 39 and the peak elimi-
nation window size is 949. The result of the stepwise spec-
tral reconstruction is optimized when the number of filters
is 11. According to Table 2, the mean relative RMSE for the
stepwise spectral reconstruction is 8.9%, 6.3%, and 26.5%
of those for wavelet transform, Fourier transform, and peak
detection, respectively. Figure 4 shows the comparison of
the reference Raman spectrum obtained using the 5-th order
polynomial fitting and the corresponding Raman spectrum
extracted using the methods of wavelet transform, Fourier
transform, peak detection, and stepwise spectral reconstruc-
tion in the typical case, in which the relative RMSE is close
to the corresponding mean value. The relative RMSEs in
Figure 4 are 0.2038, 0.2934, 0.0693, and 0.0179 for the
wavelet transform, Fourier transform, peak detection, and
stepwise spectral reconstruction, respectively.

For the SERS spectra of blood serum samples, the result
of wavelet transform is optimized when the wavelet basis is
‘db3’ with a decomposition number of 11 and a soft threshold
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of 3694000. The result of Fourier transform is optimized
when the cut-off frequency is 10.8. The result of peak detec-
tion is optimized when the smoothing window size is 47 and
the peak elimination window size is 207. The stepwise spec-
tral reconstruction is optimized when the number of filters
is 11. According to Table 2, the mean relative RMSE for the
stepwise spectral reconstruction is 10.5%, 5.3%, 5.4%, and
27.5% of those for the methods of wavelet transform, Fourier
transform, and peak detection, respectively. Figure 5 shows
the comparison of the reference Raman spectrum obtained
using the 5-th order polynomial fitting and the corresponding
Raman spectrum extracted using the methods of wavelet
transform, Fourier transform, peak detection, and stepwise
spectral reconstruction in the typical case, in which the rel-
ative RMSE is close to the corresponding mean value. The
relative RMSEs in Figure 5 are 0.1059, 0.2093, 0.0402, and
0.0110 for wavelet transform, Fourier transform, peak detec-
tion, and stepwise spectral reconstruction, respectively.

IV. DISCUSSIONS

According to the above results, the stepwise spectral recon-
struction always shows the best performance, while the
Fourier transform method always shows the worst perfor-
mance in terms of agreement with the reference Raman
spectra after fluorescence background removal. In addi-
tion, the fluorescence suppression performance degrades as
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fluorescence background increases. For example, the fluores-
cence suppression results of phantom spectra, which contain
the lowest background, are always the best; while those of
the leukemia cell spectra are always the lowest. Accord-
ing to Figures 3(d), 4(d), and 5(d), the agreement in the
peak locations between the reference Raman spectra and
the Raman spectra after fluorescence background removal
using the stepwise spectral reconstruction method is excel-
lent and the spectral shape information is mostly preserved.
We believe that the following reason causes the proposed
method to outperform other common methods in this study.
Since the proposed spectral reconstruction method is a super-
vised learning method in nature, the prior knowledge about
the fluorescence background and pure Raman signal in the
calibration data set helps extract fluorescence background
and reconstruct pure Raman spectra in the first and sec-
ond step of stepwise spectral reconstruction. Such a unique
advantage is unavailable in other methods that are essen-
tially unsupervised. Furthermore, since this method requires
a calibration dataset, the performance largely depends on the
quality of reference Raman spectra in the calibration dataset.
In this study, the 5-th order polynomial fitting was used
for fluorescence background removal to generate reference
spectra in the calibration stage. However, the fluorescence
suppression performance of 5-th order polynomial fitting
may not be optimal in some cases. Thus, it is anticipated that
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the performance of the stepwise spectral reconstruction can
be better or worse if a set of reference Raman spectra with
fluorescence background suppressed to a different extent is
used in the calibration dataset. It is worth noting that even
a calibration dataset is required in the proposed method,
this method can be useful in a large number of biomedical
applications in which the speed of data processing is critical
and a calibration data set is available. The peak detection
method can preserve most peak locations and spectral shape.
However, peak intensities are occasionally inaccurate and
some small peaks are missing. This might be the consequence
of excessive smoothing during peak localization. Although
the wavelet transform and Fourier transform methods can
preserve the locations of many peaks, partial fluorescence
background is retained and some Raman peaks and their
intensity values are not recovered well, which are especially
true for the Fourier transform method. This might be due to
the frequency overlap between the Raman peaks and some
uneven fluorescence background.

The computation efficiency was evaluated for performing
fluorescence background suppression of 90,000 leukemia
cells’ Raman spectra for all above methods. Those methods
were coded and tested in a computer with 3.3 GHz Intel(R)
Core(TM) 15-4590 CPU, 4G RAM and Windows 7 operating
system. Each method was tested for 5 times and the compu-
tation time was averaged to find the mean value as shown
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TABLE 3. Computation time taken to remove fluorescence background in
90,000 spontaneous Raman spectra using the methods of polynomial
fitting, wavelet transform, Fourier transform, peak detection and stepwise
spectral reconstruction.

Polynomial Wavelet  Fourier Peak Sst?g:/rl;f
fitting  transform transform detection P .
reconstruction

Time(s) 9608.208 615.3421 10.8812 518.5507 0.7667

in Table 3. According to Table 3, the stepwise spectral recon-
struction method is the fastest one, for which the computation
time is 0.008%, 0.125%, 7.046%, and 0.148% of the methods
of polynomial fitting, wavelet transform, Fourier transform,
peak detection, respectively. The reason for this method to be
computationally efficient is that the Wiener matrix from the
calibration dataset can be calculated beforehand and the final
outcome can be derived with matrix multiplication for just
a few times, whereas others require heavy computation, e.g.
polynomial fitting, wavelet transform, Fourier transform or
complex operation. Such a fast method is important in Raman
spectroscopic imaging in which fluorescence suppression
needs to be conducted for a large number of pixels at the same
time.

V. CONCLUSION

In this study, a fast fluorescence suppression method based on
the strategy of stepwise spectral reconstruction was proposed
to overcome the low computation efficiency of traditional
computational methods. The proposed method was evaluated
on Raman spectra measured from phantoms and cells as well
as surfaced enhanced Raman spectra from blood serum sam-
ples and compared with several commonly used fluorescence
suppression methods. The results show that our method yields
clean Raman spectra closest to the reference results gener-
ated by polynomial fitting while several orders of magnitude
faster than others. Therefore, the proposed fast fluorescence
suppression method is promising in Raman spectroscopic
imaging or related applications in which high computation
efficiency is critical and a calibration dataset is available.
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