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ABSTRACT Service composition is widely used to build complex value-added composite services to
meet various coarse-grained requirements of customers. Discovering relevant services as the constituents of
composite services is a crucial task, which needs to be frequently performed during the composition process.
Due to the fact that the amount of services available on the Internet is increasing drastically, the efficiency
of both service discovery and composition becomes a big challenge. To solve this challenge, we propose a
Priori Knowledge Based Service Composition (PKBSC) approach to reduce the searching space of relevant
service discovery so as to improve the efficiency of service composition. PKBSC utilizes an interoperable
approach, including an ontology construction and merging method, to solve the problem of the cross-domain
and heterogeneous services from different repositories. In addition, service pattern is adopted to describe
priori knowledge from massive historical solutions, which is a recurrent valuable fragment composed of
services frequently invoked together in service solutions. PKBSC also adopts the Formal Concept Analysis to
extract the implicit relationship between service requests and service patterns. Compared with the approach
of composing multiple services from scratch, PKBSC exhibits better performance since the search space is
greatly reduced by the adoption of service patterns. Experiments demonstrate that the proposed approach
significantly improves the efficiency of service composition by 22.44%.

INDEX TERMS Formal concept analysis, frequent pattern mining, service composition, service pattern.

I. INTRODUCTION
In Service Oriented Architecture (SOA), Web service as a
method of communication between two applications over
the Internet has grown up to be an important part of soft-
ware development. Web services are software components
designed to assist interoperable machine-to-machine interac-
tions without considering the development platform or oper-
ating environment. Subsequently, semantic Web service
approaches give us the ability to describe the capabilities of
services in a formal and machine-processable manner and the
semantic relationships among services, which are stimulating
automatic service discovery and composition. Over the past
decade, the success of Semantic Web turns out to depend
on the use of ontology as a means of communication and
information sharing. Ontology is a paramount technology
of the Semantic Web, which provides a formal and explicit
specification of knowledge representation, with the advan-
tage that they are reusable and shareable. However, as Web

services go through different stages of development, the exist-
ing Web services on the Internet utilize various description
languages. Not all service providers adopt semantic technol-
ogy to define Web services. In general, Web service descrip-
tion methods fall into three categories [1]: SOAP (WSDL
[2]), REST (WADL [3]), and Semantic WS (OWL-S [4],
WSDL-S [5], WSMO [6]). Meanwhile, with the development
and popularization of intelligent hardware, the booming of
Internet of Things (IoT) represents the next most exciting
technological revolution [7], [8]. The IoT connects billions
of things that include sensors, actuators, services, and other
Internet-connected objects which sets up the environment
where things can automatically communicate with comput-
ers [9]. The implementation of the IoT system will seam-
lessly integrate the cyber world with our physical world, and
computers will be able to learn and gain information and
knowledge to solve real-world problems [10]. Although IoT
services are categorized differently, this paper focuses on
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FIGURE 1. Smart Elderly Care [11].

those IoT services that provide ambient data collection and
analysis. This category of IoT services is growing rapidly
especially in the eldercare domain where personalized living
related data tracking and monitoring has become vital.

As a complex system that integrates a series of Web ser-
vices and IoT services, Smart Elderly Care (SEC) focuses
on providing comprehensive and personalized service solu-
tions [12]. Massive services from multiple repositories con-
verge on SEC (see Fig. 1), thus causing a series of related
problems (RQ). RQ1: how to retrieval and consume these
cross-domain and heterogeneous services is becoming an
important problem.

Besides, SEC aims to construct composite services that
could provide a one-stop shop for customers when no single
service can fulfill customer’s request on its own.

An analysis of the service composition literature highlights
that the process of service discovery is a non-negligible task.
It needs to be frequently carried out to discover relevant ser-
vices during the generation of composition, no matter which
composition approach is adopted, whether it is a fully auto-
mated approach based on Artificial Intelligence (AI) plan-
ning techniques [13], a semi-automatic approach relied on
predefined workflow [14], or a graph-based approach which
focuses on semantic Input/Output (I/O) parameter matching
[15], [16]. In addition, due to the fact that the number of
services is mushrooming in recent years and the connections
among services become more and more complex, the search
space of the service composition algorithm increases rapidly.
Therefore, RQ2: how to improve the efficiency of ser-
vice discovery is the key point of service composition,
especially when a large number of potential services are
involved.

Process reuse plays a vital role in service computing and
businessmanagement domains, which encourages developers
to fragment their applications into more services for reuse
and benefit in scalability. Many studies pay attention to how
to identify and describe valuable process fragments from a
historical log. By analogy, we believe that reusable knowl-
edge can be used in service composition. Dealing with ser-
vice discovery for service composition by considering priori
knowledge is a promising way, which contains the previous
and implicit interactions among Web services. RQ3: how to
manage and when to utilize priori knowledge is another issue
to consider.

In order to tackle the previous problems, we propose
a Priori Knowledge Based Service Composition (PKBSC)
algorithm. For RQ1, we utilize an interoperable approach
including an ontology construction method for services with-
out semantic technology and a merging method for multi-
ple ontologies. We also provide a method to calculate the
similarity of semantic concepts in a merged ontology (see
Section IV). For RQ2, we adopt service pattern to describe
priori knowledge from massive historical solutions, which is
a recurrent valuable fragment (or a coarse-grained compo-
nent) composed of services frequently invoked together in
service solutions. The priori knowledge is harvested from
the historical log of existing solutions by service patterns
mining algorithm (see Section V). For RQ3, we utilize For-
mal Concept Analysis (FCA) to extract the implicit rela-
tionship between service requests and service patterns (see
Section VI).When a new service request arrives, the most rel-
evant service patterns could be used empirically for providing
coarse-grained components while constructing a service solu-
tion during the priori knowledge based forward search. After
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that, a heuristic backward search proceeds to identify the opti-
mal service solution which is an executable solution without
any redundancy (see Section VII). We conduct a series of
experiments using both real and synthetic data to evaluate
the efficiency and effectiveness of our approach. We improve
the efficiency of A* based traditional graph searching service
composition algorithm (A*-TSC) [17] by 22.44%. We ana-
lyze performance changing of PKBSC in terms of the time-
aware frequency of service patterns, which both can affect the
performance of the algorithm.

It is worth noting that Quality of Service (QoS) is also
an indispensable measure of service computing. The work
in this paper does not involve QoS at present, but read-
ers can find QoS based services selection in the previous
work [18]. The rest of this paper is organized as follows: In
Section II, we discuss related works. In Section III, we intro-
duce formal problem formulation and the whole process of
approach. Section IV-VI elaborate the proposed method in
detail and Section VII reports experimental results. Finally,
Section VIII offers some concluding remarks.

II. RELATED WORKS
A. SEMANTIC WEB SERVICE
The last decade has witnessed the emergence of a number of
approaches and tools leveraging Semantic Web technology
that has been proven effective in service discovery, composi-
tion, and recommendation [19]–[21]. These approaches often
adopt various markup languages to annotate service elements
with the semantic concepts defined in ontologies, such as
operations, inputs, and outputs. For example, Meteor-S [22]
is a combined approach toward automatic semantic anno-
tation which suggests concepts from domain ontologies
to facilitate annotation task. The approach uses a simple
aggregation function to combine string matcher, structural
matcher, and synonymfinder. Duo et al. [23] present a similar
approach which also aggregates the results of several match-
ers from different perspectives. Salomie et al. [24] propose
an approach named SAWS which enhances the Web Service
Definition Language (WSDL) descriptions with semantic
concepts provided by domain ontologies. Chabeb et al. [25]
propose a method that executes semantic annotation on Web
services and integrates the results intoWSDL. Ranabahu [26]
automatically annotates Web services based on the similarity
between service descriptions and vectors of available onto-
logical concepts. A context-based semantic approach to the
problem of matching and ranking Web services for possible
service composition is suggested in [27].

B. FREQUENT PATTERN BASED COMPOSITION
Web service composition technique is widely used to make
more complex and value-added applications to meet various
requirements of Web customers, which is to compose Web
services with different functionalities [28]. As the number of
available Web services is rapidly increasing, the discovering
process of relevant Web service from massive candidates

demands a lot of efforts, and it is quite inefficient. Therefore,
a large number of approaches and automatic composition
techniques are proposed to enhance development efficiency,
bringing a hot topic in the research community of Web
service. Among these tools and techniques, frequent pat-
tern based composition approaches receive a great deal of
attention [28]–[32]. Although the number of created service
compositions is growing rapidly, most of these compositions
tend to follow some popular business models and usage
patterns [32]. So, given the dataset of previously proposed
service compositions, it can always find out some frequently
occurred service composition patterns from history, and then
based on these patterns make service composition in the
future. A great number of service composition approaches
based on this idea are proposed and proved to be very suc-
cessful. These frequent patterns usually give rules that sum-
marize the relationships of correlations, collaborations and
complements between services in historical compositions.

C. FORMAL CONCEPT ANALYSIS
Formal concept analysis (FCA) is a mathematical model
which offers conceptual knowledge representation in a hier-
archical order. As a branch of lattice theory, FCA has
been applied in various fields like knowledge represen-
tation [33], data analysis, information management and
retrieval [34], [35], designing role based access control [36],
and knowledge processing tasks [37]. Reference [38] pro-
poses an approach for Web service interface decomposition,
which uses the FCA to identify the hidden relationships
among service operations in order to improve the interface
modularity and usability. Reference [39] uses the FCA to
generate service dependency network which is used to select
the composition of discovered Web services set. Reference
[40] groups service descriptions into hierarchical clusters
based on the topic correlation, and uses the FCA to orga-
nize the constructed hierarchical clusters into concept lattices
according to their topics. Reference [41] exploits the fuzzy
extension of FCA theory to generate knowledge represen-
tations based on hierarchical structures for web resources
retrieval. Reference [42] shows how to combine rough set
theory with fuzzy formal concept analysis to perform Seman-
tic Web search and discovery of information.

III. SERVICE COMPOSITION PROBLEM
Service composition aims to construct composite services
that could fulfill a request from the customer under the
assumption that no single service can achieve such a request.
In order to compose services together, we define a formal
representation of services and the relationship between them.
Definition 1 (Service): The functionality of a service

(Web service and IoT service) s can be defined as a tuple
s =< Ins,Outs >, s ∈ S, In,Out ⊆ P where In is a set
of input parameters required to invoke s and Out is the set of
output parameters returned by s after its execution, S is a set
of all services in repository, and P is a set of parameters used
to delineate the input/output of services in S.
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FIGURE 2. A toy example: (a) Construction process of a service solution, (b) Historical Record.

Definition 2 (Service Composition): Given a request r=<
Inr ,Outr >∈ R, Inr ,Outr 6= ∅, Inr ,Outr ⊆ P, and Inr ∩
Outr = ∅, where Inr is a set of available input parameters
and Outr a set of requested output parameters, we can define
the problem of Web service composition as that of finding
a service solution sol without any redundancy. A soli is a
multilayer directed graph and is defined by a tuple: soli =<
Ssoli ,E(Ssoli ) >. Ssoli indicates the services contained by soli,
Ssoli = {s1, s2, · · · , sN }, Ssoli ⊆ S. E(Ssoli ) describes the
connection relationship between services. We say soli is a
valid composition solution for request r if and only if the
following expression is satisfied:

(Inr ∩ Ins1 = Ins1 ) ∧ ((Inr ∪ Outs1 ) ∩ Ins2 = Ins2 )

∧ · · · ∧ ((Inr ∪ Outs1 ∪ · · · ∪ OutsN ) ∩ Outr = Outr ) (1)

Fig. 2 gives an example of service composition. When a
service request arrives, we need to construct a feasible and
optimized service solution with a series of services. This
example describes how we help two groups of elders with
different purposes at the same time. We could adopt the tradi-
tional graph based approach to construct the service solution.
In graph based composition approach (left side in Fig. 3),
a service network [16] is eventually generated based on the
I/O matching information of the relevant services. This net-
work contains all possible service compositions or solutions
that fulfill the customer’s request. Then, the service network
is optimized by applying different techniques to reduce the
number of services and redundancy. The optimal service
network is a satisfied solution for the service request. As an
eldercare service system, it assembles medical and health ser-
vices, housekeeping services, life services, emergency relief

FIGURE 3. The whole process of approach.

services, cultural and entertainment services, and transporta-
tion services from different service repositories. Some ser-
vices are Web service and some are IoT service, the biggest
feature of IoT services is linking the cyber world and the
physical world, such as the semantic concept ‘‘CurrentLo-
cation’’ is automatically perceived by IoT service. How to
implement interoperability among different service repos-
itories is a problem that needs to be solved. In addition,
we find it is a promising way using a priori knowledge of
historical solutions to accelerate the process of service com-
position.We can extract the frequent fragment which is called
a service pattern, such as ‘‘W1-W2’’, ‘‘W5-W6’’, ‘‘W10-
W11’’. However, how to identify the most related service
pattern according to a service request is problem to be solved.
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Fig. 3 (right side) provides a general idea of the framework,
sketching the whole workflow through the main phases.
First, we adopt ontology construction and merging method
to solve multiple repositories interoperability and build a
matrix (Similarity Matrix) to index the similarity between
two different semantic concepts. Second, we adopt the apriori
algorithm to mine the service patterns (frequent fragments)
of historical solutions. Then, we adopt the formal concept
analysis method to establish relations between the semantic
concepts in service requests and service patterns. We use two
matrices (Relativity Matrix and Mapping Matrix) to index
the relations. Last, We use these three matrices together to
complete priori knowledge based service composition.

IV. HETEROGENEOUS SERVICE INTEROPERABILITY
The goal of an ontology is to capture relevant domain knowl-
edge and provide a common understanding to identify com-
monly recognized vocabulary in a domain, which gives a
clear definition of the relationship between concepts from dif-
ferent levels of formalization. It also provides a viable solu-
tion for application interoperability, data access, and complex
domain modeling by applying common standard languages
such as OWL and RDF. In addition, the use of ontology
to describe web resources promises validity, efficiency, and
accuracy in information retrieval activities, especially since
most knowledge is typically encapsulated in a collection
of unstructured text documents. As an eldercare platform
integrated various IoT services from different service reposi-
tories, we must propose an interoperable approach for han-
dling different service description methods. For services
used WSDL/WADL, we adopt an ontology bootstrapping
approach [43] to construct a new ontology. Then a merging
approach of heterogeneous domain ontologies [44], [45] is
used to address the interoperability problem between the
ontologies. At last, based on the merged ontology, Similarity
Matrix is constructed which accelerates the service compat-
ibility detection and enhances understanding in the intention
of a service request.

A. ONTOLOGY CONSTRUCTION AND MERGING
As mentioned before, ontologies have become the de-facto
modeling tool of choice, employed in many applications and
prominently in the semantic web. Most automatic ontology
learning methods still need of a significant manual effort in
the completion, consolidation, and validation of the automat-
ically generated ontology. Moreover, the issues of duplicate
information across documents and redundant annotations are
major challenges to automatic ontology creation as the auto-
matically populating ontology from diverse and distributed
web resources poses significant challenges. For services with
an XML-based description, we adopt an ontology bootstrap-
ping approach proposed in [43]. Ontological bootstrapping
is a promising ontology construction technique with less
manual effort, which aims at automatically generating con-
cepts and their relations in a given domain. Bootstrapping
an ontology based on a set of predefined textual sources

address the problem of multiple, largely unrelated concepts.
This approach exploits the advantage that Web services usu-
ally consist of both WSDL/WADL and free text descrip-
tors. It proposed two methods to exact concepts in the
WSDL/WADL descriptor, namely Term Frequency/Inverse
Document Frequency (TF/IDF) analysis and web context
generation. Ontology bootstrapping approach integrates the
results of above methods and applies a method to validate
the concepts using the service free text descriptor, thereby
offering a more accurate definition of ontologies.

For services already used semantic technology, due to
unavailability of any standard for ontology construction,
ontologies from various repositories are different. It leads
that the interoperability between multiple ontologies is very
low. There is an increasing need to integrate or merge mul-
tiple ontologies, with the goal of creating a single ontology
that provides a unified view while maintaining all the infor-
mation from them. Several such multiple ontologies map-
ping approaches have already been proposed [46], [47], one
increasingly adopted and promising idea is to decompose
the complex integration problem into the match and merge
subtasks. The match-merge base mappings support two very
related operations, namely ontology alignment and merg-
ing. The ontology alignment process leverages the advances
made for automatic ontology and schema matching. It takes
two or more input ontologies of the same or similar domain
and produces a set of relationships between semantically
matching concepts. The ontology merging process can then
utilize match relationships identifying corresponding con-
cepts in the input ontologies that should be merged. It com-
bines semantically matching concepts into a single concept
and then generates a unique ontology from the source ontolo-
gies. Ontology mapping can solve multiple forms of mis-
match, which can be caused by multiple ontology standards
used by different knowledge engineers in different environ-
ments and at different time intervals.

B. SEMANTIC MATCHMAKING
A fundamental task for generating service compositions is
the ability to analyze the compatibility between different
available services. We extract comparable features available
in each Web service description. Since services are for-
malized as Input-Output interfaces, only semantic features
of input and output descriptions are taken into account.
After ontology construction and merging, we assume that
all I/O parameters are related to semantic concepts provided
by a domain ontology DO through semantic annotations.
Semantic matchmaking is in charge of assessing the level of
semantic compatibility between semantic concepts, given an
ontology.

In this context different ontological similarity measures
have been proposed [48]. We first define the hierarchical
relation as follows with respect to given two concepts in a
domain ontology (DO). Let a and b be two semantic con-
cepts represented by the two nodes in a predefined ontology,
i.e., a, b ∈ DO.
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Definition 3 (Hierarchical Relation):

• Equivalent (≡). If both concepts are equivalent, i.e., a
and b represent the same concept even though they could
be expressed by means of equivalent synonyms, a ≡ b.

• Sub-concept (v).If a is a sub-concept of b, i.e., a is a
hierarchical specialization of b, a v b.

• Super-concept (w). If a is a super-concept of b, i.e., a is
a hierarchical generalization of b, a w b.

To quantify semantic similarity, the measure proposed
in [49] gives a more pertinent and practical result. The set
of taxonomical features describing the concept a is defined
in terms of the relation as follows:

Φ(a) = {ci | ci v a ∨ ci ≡ a, ci, a ∈ DO} (2)

and the semantic similarity between two concepts is defined
in (3), as shown at the bottom of this page. To acceler-
ate the process of semantic concept similarity computation,
we define a Similarity Matrix (SimM = Semantic Concept ×
Semantic Concept) to index the relationship between any two
different semantic concepts.

SimM ij =

 SimM11 · · · SimM1|DO|
...

. . .
...

SimM |DO|1 · · · SimM |DO||DO|

 (4)

where SimM ij ∈ [0, 1], SimM ij = SimM ji and SimM ii = 1.
The above defines how to calculate the similarity between

individual semantic concepts, in order to measure the quality
of compatibility, we also need a matchmaking mechanism
that evaluates the semantic similarity of two sets of con-
cepts. Two services are compatible if and only if the output
parameters returned from the first service can satisfy the input
parameters of the second service. That is also to say that each
semantic concept annotating input parameters in the second
service must has a same or similar concept offered by the
first service. The similarity measure of two sets of concepts
defines as follows:
Definition 4 (Full Match): Given two sets of concepts

C1,C2 ⊆ DO, we define C1 ⊕ C2 = {c2|Sim(c1, c2) ∈
[θ, 1], c1 ∈ C1, c2 ∈ C2}, where θ is a predefined similarity
threshold. Note that this operator ⊕ is incommutable. A full
match between C1 and C2 exists if and only if C1⊕C2 = C2.
We say that two services s1 = (Ins1 ,Outs1 ) and s2 =

(Ins2 ,Outs2 ) are compatible if and only ifOuts1⊕Ins2 = Ins2 .
And soli =< Ssoli ,E(Ssoli ) > is a valid composition solution
for request r =< Inr ,Outr > if and only if the following
expression is satisfied:

(Inr ⊕ Ins1 = Ins1 ) ∧ ((Inr ∪ Outs1 )⊕ Ins2 = Ins2 )

∧ · · · ∧ ((Inr ∪ Outs1 ∪ · · · ∪ OutsN )⊕ Outr = Outr ) (5)

V. SERVICE SUBGRAPH MINING ALGORITHM
To promote the efficiency and accuracy of constructing a new
service solution, considering the historical solutions could be
a promising approach, which contains a set of already devel-
oped service solutions to satisfy customer’s request. Often,
there are lots of valuable subprocesses frequently appeared
in service solutions. Such a large number of subprocesses
could serve as a knowledge base for providing the guidance
for solution construction effort. Therefore, the discovery and
presentation of these valuable subprocesses (a.k.a. service
patterns) have become of great importance. A service solution
could be abstracted to a Directed Acyclic Graph (DAG),
the valuable subprocesses mining can be considered as Fre-
quent Subgraph Mining (FSM). Note that throughout this
paper, the terms frequent subprocess, frequent subgraph and
service patternwill be considered interchangeable.We define
service pattern as follows:
Definition 5 (Service Pattern): A service pattern spi ∈ SP

is a frequent subgraph mined from a set of solutions. spi is
defined by a tuple: spi =< Inspi ,Outspi , Sspi ,E(Sspi ) >.
Refer to [50], a comprehensive survey about FSM algo-

rithm, Apriori-based approach and pattern growth-based
approach are two different kinds of widely adopted tech-
niques to generate a set of frequent subgraphs. In most cases,
pattern growth-based approach has better performance than
Apriori-based approach due to the fact that it discovers all
the frequent subgraphs without candidate generation and it
combines the growing and checking of frequent subgraphs
into one procedure. Additionally, it adopts two techniques,
Depth-First Search (DFS) lexicographic order and minimum
DFS code. However, according to our experimental studies,
the average size of frequent subgraphs is small, that is to say
that few number of nodes appear in a frequent subgraph. The
computation complexity of Apriori-based approach is accept-
able under the condition that sizes of frequent subgraphs
are relatively smaller and services in a solution are rarely
repetitive. Besides, it is easy to understand and implement.

Given a database, an Apriori-based approach adopts a
Breadth First Search (BFS) strategy to explore the graph. The
basic Apriori-based algorithm is presented in Alg. 1. This
approach first considers all (k-1) subgraphs before consid-
ering k subgraphs. The Downward Closure Property (DCP)
has been widely adopted with respect to candidate subgraph
generation. If a graph is frequent, then all of its subgraphs
will also be frequent. If any of the (k-1) candidate subgraphs
are not frequent, then the DCP can be used to safely prune
the candidates. Frequent subgraph mining approaches adopt
an iterative pattern mining strategy, where each iteration can
be divided into three phases:

• Candidate generation (line 6). The set of candidates is
generated by a self-join of the candidates found in the

Sim(a, b) = 1− log2(1+
| Φ(a) \Φ(b) | + | Φ(b) \Φ(a) |

| Φ(a) \Φ(b) | + | Φ(b) \Φ(a) | + | Φ(a) ∩Φ(b) |
) (3)
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Algorithm 1 Apriori-Based Service Pattern Mining
Algorithm
Input: Historical service solutions G, minimum support

ϕ

Output: F1,F2, · · · ,Fk a set of frequent patterns of
cardinality 1 to k

1 begin
2 F1← Identify all frequent k=1 pattern in G
3 k ← 2
4 while Fk−1 6= ∅ do
5 Fk ← ∅
6 Ck ←candidate generation(Fk−1) /*Candidate

generation by a self-join of (Fk−1)*/
7 foreach candidate c ∈ Ck do
8 c.count ← 0
9 foreach g ∈ G do
10 if subgraph-ismorphism(g, c) then
11 c.count ← c.count + 1 /*Counting

candidates*/
12 end
13 end
14 if c.count ≥ ϕ|G| ∧ c /∈ Fk then
15 Fk ← Fk ∪ c /*Pruning based on

support*/
16 end
17 end
18 k ← k + 1
19 end
20 end

last pass. In the k-th pass, a graph could be considered
as a candidate only if each of its subgraphs is frequently
found in the (k-1)-th pass.

• Counting candidates (lines 8-13). A new scan of the
database calculates support for each candidate through
subgraph isomorphism detection.

• Pruning based on support (lines 14-16). Those candi-
dates become the seed for the next pass only if their
counts(or supports) are equal to or higher than the pre-
defined threshold. The algorithm terminates when no
frequent subgraph is found in a pass, i.e., when there
is no candidate generated.

An example is shown in Fig. 4. Given a graph database
which contains eight different graphs (solutions) in the left
part and a minimum support ϕ = 0.3, the algorithm builds a
subgraph lattice of this database in the right part after multi-
ple iterative executions. This lattice consists of all frequent
subgraphs generated in different iterations, and each level
in Fig. 4 presents the times of iteration. Frequent nodes (only
one node in each subgraph) are identified in level one, whose
frequency of occurrence is more than three, e.g., A,B, · · · .
The permutation of these candidates with single nodes will be
calculated in the next iteration, e.g., C → D,C → F, · · · .
Iterative process terminates until no candidate is generated.

FIGURE 4. An example of Apriori-based pattern mining.

Note that, a service solution is abstracted to a DAG, so we
adopt appropriate coding scheme to avoid unnecessary com-
putation, such as the lexicographic order used in Fig. 4, D→
C is a backward edge violating lexicographic order, which
never appears in any solution. So, a candidate is only con-
sidered when all inside edges comply with the lexicographic
order.

VI. FORMAL CONCEPT ANALYSIS
In the last section, we introduce how to mine service pat-
terns in historical records. Service patterns can improve the
retrieval efficiency of related services to a certain extent,
however service patterns can appear anywhere in the service
solution, some service patterns are directly semantic related
to service requests, and some are indirectly statistical related.
Therefore, how to establish the relationship between service
requests and service patterns has become an urgent problem
to be solved. Therefore, in this section, it details how to
use the formal concept analysis (FCA) to retrieve relevant
service patterns, including semantic correlation and statistical
correlation, according to service requests.

FCA is a mathematical model which permits the identifi-
cations of groups of objects having common attributes and
offers conceptual knowledge representation in a hierarchical
order based on the applied lattice theory [51]. FCA starts the
analysis from a given matrix called formal context, which
comprises a set of objects, a set of attributes and a binary rela-
tionship between them. The basic outputs of FCA are formal
concepts, formal concept lattice and attribute implications.

• A formal concept is a maximal pair of set of objects
(extent) and its attributes (intent) closed with Galois
connection, which is regarded as a basic unit of human
thought, allowing meaningful comprehensible interpre-
tation [52].

• The formal concept lattice provides a hierarchical order
visualization between the discovered formal concepts.

• Attribute implications provide dependency between a
given set of attributes and are applied in fields like
healthcare [53], clustering [54], and decision formal
context [55].

Since FCA allows the extraction of dependencies within
the data, we exploit FCA to organize the historical solution
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into a formal concept lattice according to their semantic con-
cepts. And it helps to discover the hidden dependency among
semantic concepts. Then a set of association rules are exacted
from this formal concept lattice. Finally, for making it easy to
calculate, we build a related matrix to record the relationship
between semantic concepts and valuable association rules.
It is worth noting that the semantic concept and the formal
concept are two easily confused but different terms. They
are considered as similar terms because that they are both
organized in a hierarchical order, but the semantic concept is
from an ontology while the formal concept is from a formal
concept lattice.
Definition 6 (Formal Context): A formal context is

denoted by K = (G,M , I ) where G is a set of objects, M
is a set of attributes, and I is a binary relation between G and
M (I ⊆ G × M ). The object g ∈ G has the attribute m ∈ M
(or the attribute m ∈ M applies to the object g ∈ G) if g and
m are in relation I (denoted by gIm).

Given a context K = (G,M , I ), let O ⊆ G and A ⊆ M be
two sets.We define the dual setsO′ = {m ∈ M |∀g ∈ O : gIm}
and A′ = {g ∈ G|∀m ∈ A : gIm}, where O′ is the set of all
attributes that are valid descriptions for all objects in O and
A′ is the set of those objects that have all attributes from A,
respectively.
Definition 7 (Formal Concept): A formal concept is con-

sidered to be a unit of thought constituted of two parts: its
extent and its intent. The extent consists of all objects belong-
ing to the concept, while the intent comprises all attributes
shared by those objects.

A formal concept of the context K = (G,M , I ) is a pair
(O,A) such that O ⊆ G, A ⊆ M and O′ = A, A′ = O.
The set O and A represent the extensional and intensional
components, which are referred to as the extent and the intent
of a concept, respectively.
Definition 8 (Concept Lattice): Aconcept lattice defines a

hierarchical representation of objects and attributes, in which
a certain concept inherits all the extents (objects) of its
descendants and all the intents (attributes) of its ascendants.
Definition 9 (Partial Order, ≤): Let c1 = (O1,A1) and

c2 = (O2,A2) be two formal concepts of a formal context
K = (G,M , I ), then c2 is a subconcept of c1 (equivalently, c1
is a superconcept of c2), if and only if (O1,A1) ≤ (O2,A2)⇔
O1 ⊆ O2(⇔ A1 ⊆ A2).
Let M be a set of attributes of a formal context K =

(G,M , I ). An association rule is a pair X ⇒ Y with X ,Y ⊆
M . The support is defined as:

Sup(X ⇒ Y ) =
|(X ∪ Y )′|
|G|

(6)

and the confidence is computed as:

Conf (X ⇒ Y ) =
|(X ∪ Y )′|
|(X )′|

(7)

where |(X ∪ Y )′| is the number of objects which have both
X and Y attributes in their extents, |G| is the number of

objects in G, and |(X )′| is the number of objects which have
X attributes in their extents.

According to the support and confidence mentioned above,
the association rules mining task based on formal concept
lattice can be stated as follows.

• For any formal concept ci = (Oi,Ai) in the for-
mal concept lattice, if |Oi| (=|(Ai)′|) is greater than
a threshold θ , then ci is called a frequent formal
concept.

• If frequent formal concepts c1 = (O1,A1) and c2 =
(O2,A2) satisfy c1 ≤ c2, we can exact association rule
A1 ⇒ A2−A1 which confidence is |A1|/|A2|, otherwise,
A2 − A1 ⇒ A1 which confidence is 100%.

• If frequent formal concepts c1 = (O1,A1) and c2 =
(O2,A2) do not satisfy c1 ≤ c2 or c2 ≤ c1, and there
exists nonempty common maximum-subconcept c =
(O,A), there are association rules between A1 and A2:
A1 ⇒ A2, A2 ⇒ A1, their confidences are |A|/|A1|,
|A|/|A2| respectively.

We define a Relativity Matrix (RelM = Semantic Con-
cept × Association Rule) to index the inclusion relationship
between semantic concepts and association rules. RelMij = 1
indicates the semantic concept i appears in the antecedent
of association rule j, otherwise RelMij = 0 indicates the
semantic concept i is irrelevant to the association rule j. Given
a set of semantic concepts, we say an association rule is
related if and only if that the antecedent of an association rule
is the subset of this semantic concept set. Therefore, given a
service request, we can get a set of relative association rules
easily. Note that an association rule is input-related when the
antecedent of this association rule is the subset of input of
given service request, otherwise, it is output-related when the
antecedent of this association rule is the subset of the output
of given service request.

However, these attribute association rules are vulnerable to
noise in the formal context. In addition, FCA’s scalability and
computability is another major focus of lattice-based appli-
cations. Given a formal context, the complexity of generating
all formal concepts and their visualization is exponential [56].
Due to this fact, it is difficult to properly analyze the underly-
ing knowledge using FCAwhen generating a large number of
formal concepts [57]. Reducing the formal context to a lower
dimension could help us in solving these problems. From
one side, replacing the original solutions with the service
patterns mined in the previous section can effectively reduce
the number of attributes in the formal context. The minimal
concept lattice can be found to avoid redundancy while main-
taining structural consistency. By deriving the equivalence
relationship between the concept lattice nodes, the number
of nodes and edges of the concept lattice can be significantly
reduced. From the other side, we can calculate the semantic
similarity of service solutions and adopt clustering method to
divide objects into different fragments, and generating con-
cept lattice in each fragment respectively is another effective
way to reduce the complexity.
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FIGURE 5. FCA example: (a) Annotated Formal Context with Service Patterns, (b) Concept Lattice, (c) Association Rules.

Wedefine aMappingMatrix (MapM=Association Rule×
Semantic Concept) to index the mapping relationship from
the antecedent of association rule to the related semantic
concepts in the consequent of the same association rule. As
we discuss before, substituting semantic concepts by ser-
vice pattern in each solution, we can identify the related
service patterns statistically when they are semantical irrel-
evant to a given service request. Also, we can get a set of
semantic concepts which are relevant, in the high probabil-
ity. MapMij indicates the consequent of association rule i
contains the relative service pattern (or semantic concept)
j, and records the support and confidence of association
rule j. Continuing with the previous example, given a ser-
vice request <{Credit Card, Current Location, Destination
Location,Personal ID},{Commodity Delivery, Examination
Report}>, we get nine most related service solutions by iden-
tifying the cluster which this request belongs in. And the first
two columns of the table in Fig. 5(a) is the original solutions
and the annotated solutions with service patterns respectively.
According to these annotates solutions, a formal context is
generated automatically, in which semantic concepts and ser-
vice patterns constitute attributes. Using FCAmethod, we can
get a formal concept lattice as shown in Fig. 5(b) and a set of
association rules can be easily generated by given predefined
minimal support and confidence. Fig. 5(c) shows association

rules under the condition that minimal support (δ) and confi-
dence (σ ) is [δ, σ ] = [30%, 60%]. We can get SP1, SP3, SP4
by semantic correlation and get SP2 by statistical correla-
tion respectively. Also, we can get some related semantic
concepts, including ‘‘At Destination’’, ‘‘Indoor Address’’,
‘‘Indoor Navigation’’, ‘‘Credit Card’’, ‘‘Receipt and Pay-
ment’’. Using these semantic concepts could identify the
related services, i.e.W3,W4,W7,W8,W9 in this example.

VII. PRIORI KNOWLEDGE BASED SERVICE
COMPOSITION ALGORITHM
On the basis of the formal definition of the service com-
position problem, in this section we present a graph-based
algorithm to generate service solution effectively and effi-
ciently which fulfills customer requirement from available
input concepts to desired output concepts.

A. PRIORI KNOWLEDGE FORWARD SEARCH FOR
RELEVANT SERVICES
Service composition generates a composite solution, which
consists of multiple services that can be executed in
sequence or in a parallel process. Therefore how to identify
the most relevant services is the key point of this section.
Given a service request, a set of candidates (available services
and service patterns) is dynamically generated layer by layer
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FIGURE 6. An example of heuristic backward search.

from inputs to outputs of this request (see Fig. 6). For each
layer, the algorithm first traverses a priori search space which
is a set of service patterns from historical solutions, then it
searches available services from the repositories. That means
each layer contains all services and service patterns that can
be executed with a set of outputs provided by previous layers.
The search process terminates until all the outputs of a request
are obtained. This candidate set has the ability to construct all
possible solutions that fulfill the request. A solution consists
of a set of layered services (and service patterns) which could
be connected in a specified executable path.

Priori knowledge based forward search algorithm is shown
in Alg. 2. Initialization of the first layer is in lines 2-7,
a dummy service SIn is created, which does not have any
input concept and its output concepts are the same as input
concepts of a request r . Variable i indicates current layer,
Li is a set of candidates contained in layer i, and Outi is
a set of output concepts generated by these candidates. C
indicates a set of semantic concepts achieved during the
execution of the algorithm, or it can be considered as the
intersection of all output concepts from previous layers. The
algorithm first searches service patterns mined from three
matrices, which presents the potential knowledge from histor-
ical service solutions (lines 11-17). After scanning each ser-
vice pattern, the algorithm also considers available services
from the priori knowledge when all input parameters can
be matched with obtained semantic concepts (lines 18-24).
Iterative search process terminates when the algorithm gets
all output concepts of a request, or there is no new candi-
date generated which can be added into service solution. At
last, if all desired semantic concepts are obtained, a dummy
service SOut is created, whose input concepts are the same
as output concepts of a request r and it does not generate
any output concepts (line 28), otherwise it continues with
executing A*-TSC algorithm.

B. HEURISTIC BACKWARD SEARCH FOR
EXECUTABLE SOLUTION
Once the possible candidates including available services
and service patterns are calculated after priori knowledge
based forward search, a backward search needs to be per-
formed to identify the optimal execution path. The backward

Algorithm 2 Priori Knowledge Based Forward Search
Algorithm
Input: Service request r = (Inr ,Outr ), all services S, all

service patterns SP, similarity matrix SimM ,
relativity matrix RelM , mapping matrixMapM

Output: Layered candidates LCS = {L1,L2, · · · }
1 begin
2 Calculate related services S ′ and service patterns SP′

by SimM ,RelM and MapM
3 C← ∅, i← 0,Li← ∅,Outi← ∅ /*i indicates

current layer */
4 Create a dummy service SIn = (∅, Inr )
5 Li← Li ∪ SIn /*Li indicates candidate set in layer i*/
6 Outi← Outi ∪ Inr /*Outi indicates obtained

semantic concepts by layer i*/
7 C← C ∪ Outi /*C indicates obtained semantic

concepts so far*/
8 while C⊕ Outr 6= Outr ∧ Li 6= ∅ do
9 i← i+ 1
10 Li← ∅,Outi← ∅
11 foreach spj ∈ SP′ /*Search for available service

patterns*/ do
12 if C⊕ Inspj = Inspj then
13 Li← Li ∪ spj
14 Outi← Outi ∪ Outspj
15 SP′← SP′ \ spj
16 end
17 end
18 foreach sk ∈ S ′ /*Search for available

services*/ do
19 if C⊕ Insk = Insk then
20 Li← Li ∪ sk
21 Outi← Outi ∪ Outsk
22 S ′← S ′ \ sk
23 end
24 end
25 C← C ∪ Outi
26 end
27 if C⊕ Outr = Outr then
28 Create a dummy service SOut = (Outr ,∅)
29 i← i+ 1
30 Li← ∅
31 Li← Li ∪ SOut
32 else
33 Execute A*-TSC algorithm
34 end
35 end

search algorithm traverses the candidates backward, from the
dummy service SInr to SOutr in Fig. 6, which is composed
of two steps. The first step generates all possible service
solutions by connecting these layered candidates. The second
step finds out the optimal service solution with a heuristic
approach.
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1) STEP 1
For each layer, available candidates are put into a list, and
these candidates can be executed in parallel. A set of candi-
dates selected from each list constitutes a path, which rep-
resents the execution sequence. Firstly, the algorithm needs
to identify the candidate that provides each input concepts of
SOutr from the list of the last layer. If there is no candidate
in the last layer for that input concept, a dummy service
is created to keep the continuity of execution path, which
indicates that this input concept has already been generated
from a previous layer before the last layer. The input and
output of this dummy service are the same as the missing
concept. Secondly, the algorithm calculates combinations of
these selected candidates. These combinations generate all
possible neighbors from the current list. Step 1 ends after all
possible paths have been connected.

For example, given the service SOutr in the layer L5, with
In = {X ,Y } and a set of candidates a, b, c, d, e in the layer L4
whereOuta = {X},Outb = {Y },Outc = {X ,Y },Outd = {X},
Oute = {Y }, we construct a list of services for each input
parameter of SOutr : Set(X) = {a,c,d} and Set(Y) = {b,c,e}.
Then, we generate all combinations. Each combination will
constitute a neighbor from SOutr . The possible combinations
are: (a,b), (a,c), (a,e) (c,b), (c), (c,e), (d,e). All these combi-
nations generate the required input parameters for SOutr .

2) STEP 2
Sol is a composite service obtained as a path over a set of
candidates from different layers. The goal is to minimize the
number of services in a composition, therefore, the function
cost should calculate the length of a composition based on
the number of services. On this basis, we define a heuristic
function H (Sol) as follows.

H (Sol) = Minimize
N∑
i=1

cost(Li) (8)

where L1 is the first layer of the current composition service,
LN is the last layer and cost is a function that retrieves the
number of services from each layer. The dummy services in
a candidate list will not be computed.

VIII. EXPERIMENTAL ANALYSIS
In this section, we conduct two experiments to verify the
effectiveness of our proposed approach. First, we compare
the performance of Priori Knowledge Based Service Com-
position algorithm (PKBSC) with the A* based traditional
graph searching service composition algorithm (A*-TSC)
[17]. Then we aim to discover the impact factors of PKBSC
in terms of search space variation, which could be affected by
the time-aware frequency of service patterns.

A. DATASET
The dataset used in our experiments collects 2,037 real-
worldWeb services from public datasets includingQWS [58],
WS-DREAM [59], OWLS [60] and Titan [61]. Exact I/O

parameters of these services are extracted from their WSDL
(Web Services Description Language) files. Since there are
no standard datasets that aggregate customers’ requests on
real-world Web services, we generate a synthetic service
request set based on Toronto 311 service dataset.1 This
dataset records the requests for a public service, which are
submitted by citizens to report relevant problems. Apparent
temporal (i.e., when the request is submitted) and geograph-
ical (i.e., where the request is from) distribution tendency
can be identified, which have a direct influence on the
construction of service solution. We transform each public
request into a requirement of composite service by allocating
semantic concepts in a domain ontology. The transformation
follows the temporal/geographical distributions of the orig-
inal requests so that the underlying variation tendency of
requests are kept without loss. Due to limited space, we do
not introduce details of this transformation. The dataset has
466,090 records in total from Jan. 2012 to Jun. 2013. We ran-
domly divide the entire dataset into 80% training dataset and
20% test dataset. The large training dataset is used to generate
historical solutions. For each request, a service solution is
generated by the A*-TSC algorithm. The test dataset is used
to verify the performance of PKBSC.

B. RESULT FOR PERFORMANCE COMPARISON
In the first experiment, we compare the performance of
PKBSC with A*-TSC to show how the priori knowledge
improves the effectiveness of graph searching in service
composition. In addition, two variants of A*-TSC are also
considered as comparative objects, which are A*-TSC with
service pattern mining (A*-TSC-SPM) and A*-TSC with
formal concept analysis (A*-TSC-FCA). This is to analyze
which is more important in the components of PKBSC. In
order to ensure the fairness of experiments, all methods utilize
the same similar matrix which solves the problem of hetero-
geneity caused by service in different repositories. The total
number of candidate services is 2,000, the number of his-
torical solutions is 10,000. The minimal support for service
pattern mining is ϕ = 0.03, and the minimal support and con-
fidence for formal concept analysis is [δ, σ ] = [0.03, 0.1].
We randomly choose 30 requests from the test dataset to
demonstrate the computation time of different approaches.
The results are shown in Fig. 7 and the average experiment
results are listed in Tab. 1.
The computation time is dynamically changed according

to the search space which is affected jointly by the number
of layers in a service solution and the candidates’ amount in
each layer. PKBSC has the best performance for each service
request, compared with A*-TSC, efficiency increased by an
average of 22.4%. The main reason is that SPM provides
priori knowledge to reduce the number of layers for PKBSC,
while FCA can effectively retrieve priori knowledge related
to service requests, which reduce the number of candidate ser-
vice patterns. A*-TSC-FCA only can retrieve related services

1available for downloading from https://www.toronto.ca/311
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FIGURE 7. Performance with different approaches (color for better reading result).

TABLE 1. Results of performance.

as the priori knowledge, the granularity of related services is
smaller than service patterns in most cases. It cannot reduce
the number of layers, therefore it performs worst among the
three improved approaches. Different from PKBSC, in A*-
TSC-SPM all service patterns are considered as the priori
knowledge, which are mined from the whole training dataset.
However, prior knowledge contains a serious of irrelevant
service patterns, the lack of effective retrieval strategy makes
A*-TSC-SPM cannot get the desired results.

C. IMPACT ANALYSIS WITH DIFFERENT
SELECTION STRATEGIES
We try to find out whether the frequency of service pattern
is changing over time. We calculate the count of occurrence
for each service pattern per month, which can exhibit a
monthly variation tendency of frequency. In Fig. 8, we use
a heatmap to show frequent variation tendency of 100 service
patterns. The variance of service pattern is divided into three
different types. The first type is stable, there are 34 service
patterns belong to this type, that means these service patterns
change little over time. The second type is volatile, there
are 14 service patterns belong to this type. The counts of
these service patterns are significantly high during some
months, and it is arbitrary and irregular. The last one is gentle
undulation, which is a large majority of service patterns, i.e,
52 service patterns. The conclusion from these experiments
is that the frequency of service patterns indeed changes over
time. So, we compare the performance of PKBSC under

FIGURE 8. Time-aware frequency of service patterns: (a) Stable,
(b) Volatile, (c) Gentle undulation (color for better reading result).

different selection strategies of service patterns. In each strat-
egy, we select the frequent service patterns from different
periods as reusable knowledge or a priori search space. Strat-
egy 1 mines service patterns from historical solutions of last
year; Strategy 2 considers service patterns from the corre-
sponding month of last year; service patterns of Strategy 3
are from corresponding period of last year, which includes
corresponding month and two months before it; Strategy 4 is
also three month, i.e., from one month before corresponding
month to next month after it.

The performance with different strategies is shown
in Fig. 9. We can see that the computation time of Strategy 2
is fluctuating drastically, that means if service patterns from
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FIGURE 9. Performance with different strategies (color for better reading
result).

corresponding month are used to construct solution the result
is really well, otherwise, it takes more time to find relevant
services. The average improvement is 5.18% comparing with
Strategy 1. The performance of Strategy 3 and Strategy 4 has
the same changing trend. They are both better than Strategy
1 in most cases. The average improvements are 9.15% and
9.83% respectively.

IX. CONCLUSION AND FUTURE WORK
In this paper, we present priori knowledge based service
composition (PKBSC) that assists the discovering and com-
position of services which best match user needs. We solve
the heterogeneous service interoperability caused by different
service repositories. We obtain prior knowledge by mining
service patterns from historical records and quickly retrieve
prior knowledge by establishing the relationship between
requests and service patterns. We conduct a series of exper-
iments using both real and synthetic data to evaluate the
efficiency and effectiveness of our approach. We improve
the efficiency of A* based traditional service composition
algorithm (A*-TSC) by 22.44%. We conduct a series of
experiments analyzing system performance in terms of the
time-aware frequency of service patterns.

Our future work will focus on how to integrate QoS into
service patterns and build service solutions through func-
tional and non-functional requests.
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