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ABSTRACT Email communication is widely used in managing customer queries such as complaints and
inquiries. With an increasing number of customer emails being received every day, better tools are needed
to answer emails efficiently, reuse past efforts and prevent overwhelming and cluttered email backlog.
Finding similar past cases is difficult since customer requests might use non-standard terminology. In this
paper, we develop a smart email client prototype which helps in replying to an email by providing a list
of replies gleaned from the past replied emails. The suggested replies are ranked according to the level
of similarity. We have evaluated real-world email data in order to ascertain that reuse is possible, but
requires careful retrieval mechanisms. We implement and evaluate a case-based reasoning approach as a
methodology to solve the problem by reusing previously written solutions from the past replies stored in the
case base. We build a retrieval algorithm that finds similar cases beyond the exact matching, by using text
processing and semantics analysis techniques. To optimize retrieval, we apply and cross-evaluate several text
analysis techniques such as lexical analysis and synonym expansion, and our evaluation shows that synonym
expansion could improve the chance of retrieving a more relevant match even at lower ranks. We evaluate
our prototype based on the quality of retrieval results, index size, and processing time elapsed.

INDEX TERMS Case-based reasoning, indexing, information retrieval, email client, synonym expansion,
vector space model.

I. INTRODUCTION
Email is a preferred communication channels as reflected
by the fact that in 2015, the total number of email accounts
reached 4.3 billion, a figure that is expected to grow by
six-7 percent in the next four years [1]. In the same period,
there were 2.5 billion email users, an annual growth of three
percent. This indicates a user may have at least one email
account, with an average of 1.72 email accounts per user, and
more than 112 billion email messages are sent and received
daily [1].

While these overall statistics show the importance of email,
it is also interesting to see the statistics of user activi-
ties. According to the statistics presented in [1], an average
of 122 emails are sent and received by a user daily. Further-
more, 72% are received and 28% are sent emails. Assuming
that the received email messages are queries, the user is
expected to manage the workflow to respond to the query

properly, or it may result in a personal information manage-
ment issue called email overload.

Historically, managing email messages has been done
through an application called email client, which originally
had the main role of accessing the user’s mailbox in a
mail server. However, as email communication evolved and
became more complex, an email client became capable of
dealing with task management applications as well as per-
sonal archiving. One of the components of task management
is related to how a user can receive a message (which may
come in the form of a query), and how they respond to that
message, (in other words, providing the solution in reply
to the query). Due to the increase in daily incoming emails
(or queries), the user needs a more efficient workflow to
respond to the query.

An automatic email response can assist users in reply-
ing their emails. In particular it can be helpful for such
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workplaces where we expect a large number of emails every-
day while most of these emails are related to a few common
issues. Examples of such workplaces are customer services of
hotels, shopping centres, educational help desk, social events,
etc. Since most of the time the emails are related to a few
common issues, there replies are also similar. This creates an
opportunity of using past replies for responding future emails.
In other words, a user could benefit from reusing his/her own
past replies if the query is similar. This may improve the
experience of responding to an email, as the user does not
need to start with a blank message.

Enhancements in retrieving documents based on the user
query can be achieved by implementing additional knowledge
related to that domain. Some studies suggest that provid-
ing a domain-specific ontology may improve the chance of
finding a more relevant result [2]. However, this specific
knowledge might not be useful, since the context of the
terms might not be relevant to the general domain. Another
approach adopts language-based knowledge to accommo-
date lexical semantics by understanding words such as
synonyms [3], [4].

The problem-solving paradigm has also evolved over time,
and recently Case-Based Reasoning (CBR) methodology has
been introduced [5], [6]. CBR solves a problem by retrieving
similar past problems from the collection (knowledge base) -
referred to as the case base - and reusing its solutions for
the new problem. This approach is commonly known as
lazy learners; it performs the function of retrieving similar
knowledge at the time the query is presented instead of first
building a training model.

In this paper, we investigate the hypothesis that we can
use CBR methodology to solve the email overload prob-
lem [7]. We have analysed real world email data sets in order
to investigate the potential for applying CBR. Our analysis
shows future questions could be mapped by utilising similar
previous questions and reusing the answers given to them.
This approach would still allow the user to have control of
the task; further, it could reduce the time and energy required
to compose from scratch or search through the whole mailbox
to find similar queries.

Our proposed email client solution is a desktop application
that has standard functionality for email communications and
an enhanced capability to intelligently provide recommen-
dations for reply. The application starts performing when a
user initiates the action to reply to a new incoming message.
It then attempts to retrieve similar past incoming emails
(known as cases), reusing the answers, and treating them as a
reply recommendation list. The process is finished when the
user selects a result from the list and sends the email. The
answered email is considered to be a problem solved, and is
stored in the case base.

Contributions: The paper offers the following
contributions:
• We develop a prototype of smart email client which
helps in replying to an email by providing a list of replies
gleaned from past replied emails.

• We apply the CBRmethodology to the problem domain,
the email reply behaviour.

• We build a retrieval algorithm to find similar cases
beyond the exact matching using text processing and
semantics analysis techniques [3], [4].

• We evaluate our prototype based on the quality of
retrieval results, index size, and processing time elapsed.

The rest of the paper is organised as follows. Section II
presents related work in detail. Section III describes
background and preliminaries to understand the problem.
Section IV presents our new smart email client prototype
including its system overview and functionality design.
SectionV describes implementation of the system. SectionVI
provides evaluation of our prototype. Section VII presents
discussion on results we obtained. Section VIII concludes the
paper and indicates some future directions.

II. RELATED WORK
In this section, we examine current developments in respond-
ing to email, and identify the gap. A key challenge in email
communication is related to defining a strategy on how to
respond to the high volume of incoming email. This usually
arises in customer-related domains such as help desks, event
management, or customer service [8], [9]. Most of the time,
users have already replied to a similar inquiry; however, they
spend time browsing through their previously sent emails
in order to obtain the respective reply (or solution). This
is a time-consuming and frustrating process. Several studies
have attempted to assist users in managing email responses,
as summarised in subsections below.

A. AUTOMATIC EMAIL ANSWERING OR
TEMPLATE GENERATION
One method of managing an email reply is to imple-
ment an automated email answer. The extensive review by
Sneiders [10] shows that the main approaches for this method
use machine learning techniques.

Kosseim et al. [11] conducted a study that arose from the
typical task of answering an email inquiry, which included
recognising the content (usually a problem) and generating
the reply response. Since the domain is customer support,
they identified the particular categories that are specifically
available in that domain, such as a how-to question, sugges-
tions, problem reports, and others. To analyse the message
text, an information extraction process is undertaken to iden-
tify specific information and represent it in the structured
format. Tokenisation and other lexical analyses are performed
to group part-of-speech and phrases. The text then fills the
prepared templates used in the discourse analysis. Response
formulation is prepared afterwards and typically has a struc-
tured content, such as beginning with a salutation (and the
name of the customer) and ending with a formal closing.

A similar approach [12] was presented for preparing pre-
defined templates to answer customer queries. This idea
arises from an understanding that in a set of query-response
email pairs, the association between the question and answer
can be identified. This association would be useful to map
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similar future questions to their answer templates. The system
is trained to initially identify a large number of email message
pairs in the archive in order to learn to classify them into
standard answers. In mapping new email queries to the old
ones in the archive, this system employs WordNet language
reference. The system performs at 61 percent capability com-
pared to a human-performed task.

Another approach [13] was presented to focus on providing
a set of reply templates based on the incoming email con-
tent. Concepts, as a collection of terms, were extracted from
the body of the email and indexed. The main contribution
of this approach was finding that indexing could make the
search for the associated reply template faster. However,
the knowledge base for a reply template needs to be defined
before the system can associate themwith an incoming email.
In addition, the recommendation only considers a template
calculation score, which came from the terms that appear
more frequently. The best matched reply templates were then
given to the users.

Kannan et al. [14] developed a novel approach for Reply
email messages using short response, Smart Reply. Given
an incoming email message, the system predicts possible
response suggestions that users can choose with their finger-
tips. These suggestions represent a simple yes, ongoing, and
no answer, which were formulated from semantic clustering
techniques. This approach has been implemented in Inbox by
Gmail and at least 10 percent of the composed Replies on that
system were assisted using this Smart Reply.

Van Gysel et al. [15] argue that being proactive in assisting
email Reply composition can be done by suggesting email
attachments too. The idea arises from a context in which the
request for file may or may not be explicit in the message;
however, it may still be appropriate to attach relevant files.
The developed system identifies the terms in the subject and
body of the email message and suggests the appropriate file
attachment in a ranked manner. The evaluation result shows
that the system’s ability to extract a request query can be
affected by the amount of noise in the subject and body field
of the message.

The work presented in [16] identified the importance of
intent and tasks in an email message to improve automated
classification process. In their study, a new taxonomy of
intent (e.g. implicit reason of why someone sends a message)
and task (e.g. the task subject) was proposed to assist annota-
tion process of two email datasets, Enron and Avocado. The
evaluation results on classifying number of tasks in an email
message shows that the annotated data allows the automated
classification process to achieve 71% accuracy.

Extensive observation presented in [17] suggested that an
inquiry in an incoming email can be separated into two parts:
the context or description of the problem, and a request to
resolve. These two elements are important in delivering the
most appropriate reply generation. In this study, instead of
generating answer templates, the authors designed their own
reply pattern, which was manually designed and consists of
syntax and regular expression.

While providing an intensive review of automatic email
answering, Sneiders [10] also argued that business nowadays
does not commonly practice automated email answering.
This happens because of the fear they will lose contact with
their clients, and lead to lost opportunities. This perspective
aligns with our study; we realise users still want control
over the actions they perform; therefore, the solution we
propose should be able to put user control one step above the
automated tasks.

In addition, we can see from the recent studies that
most attempted to develop solutions based on the rule-based
approach, which has the advantage of utilising a set of prede-
fined rules to build a strong knowledge base for performing
the automation process. However, the main drawback of the
rule-based approach is that it requires an extensive knowledge
base before it generates results. In some newly established
recommendations or automation systems, a robust knowl-
edge base might not be present. Thus, the solution does not
work well when the knowledge base has less or minimal
information.

B. PREDICTING REPLY ACTION
Automatic template generation is useful for an efficient reply
to a homogeneous query. Often, the user needs to be assisted
in a way that gives themmore control over the Reply process.
In this case, some of the studies presented below suggest that
by identifying the structure and content of an email message,
a prediction of whether a message needs a reply can be made.

Ayodele and Zhou [18] conducted a study on generating
reply prediction using the machine learning technique. This
study was part of the email management system the author
previously used [19]. Themain idea is to generate a prediction
of whether or not an incoming email message requires a reply
and represent it in a form of labelling. The prediction will
appear as the result of a scoring mechanism calculation [20]
based on the email subject and content extraction, which is
examined based on indicators such as interrogative words,
question marks, domain recognition of the sender’s email
address, attachments, and most-used phrases. Each email is
given a label of definitely needs reply or needs no reply and
is shown to the user according to the score.

The work presented in [18] showed this solution could
assist the users to determine which email is prioritised to be
replied to. However, it is not clear in their study how they per-
form the text processing, other than finding the interrogative
words. In addition, the authors did not explicitly state whether
they considered the body content of the email.

Dredze et al. [21] developed a prototype for predicting
whether a reply is necessary for an email message. This
work differs from that of [18], since it includes a prediction
for the attachment too. The reply prediction indicates that a
message requires a reply by establishing a rule-based system
using reply predictors. The predictors include the user profile
(e.g send/received statistics and address book), as well as
the presence of the words reply or urgent, and of question
marks in a message. Afterwards, the attachment predictors
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benefit from the discovery of the words attach, attaching,
attachment, or attached.

A study [22] for predicting email reply behaviour was
performed based on two approaches: will the message be
replied to, and when will it be replied to? The study par-
ticularly focused on email communication in the enterprise
domain. It investigated various email metadata that are related
to behaviour. The system showed prediction of probability of
the message to be replied to and the reply time latency. The
evaluation result from the feature selection process showed
temporal (message time-stamp), historical interaction
(conversational thread), and message content were important
email features in the prediction of reply behaviour.

While previous studies have demonstrated the usefulness
of features for user control, as in providing labels and alerts,
the system employed a rule-based approach under the hood.
Therefore, to optimise the classification process, collecting
sufficient training data to build the knowledge base for clas-
sifying email is necessary.

C. REUSING PREVIOUSLY AUTHORED REPLY MESSAGE
Some of the studies presented below extend beyond auto-
matic reply, template generation, and predicting the reply.
They know that a new incoming email forming a query
(or problem) may have been replied to in the past. Therefore,
the exploration and utilisation of past messages is identified,
based on the notion that similar problems may have similar
answers.

Lamontagne et al. [2] developed a solution to deal with
customer email messages sent to a company. The goal here is
to adapt previous email messages in order to reply to a new
request. To achieve this, the system compares the new request
messagewith a collection of past messages in order to find the
most similar one. When the most appropriate past message is
found, the system attempts to reuse the corresponding answer
message to reply to the request.

The study conducted by [2] was also part of the Mer-
cure project [23]. This study is domain-specific, notably
in terms of investor-relation messages. Thus, the authors
explain that no domain specific resources are present. They
did not benefit from the existing linguistic resources such
as WordNet; however, by expanding the query into term
co-occurrences, they benefited from a slight increase in
the result. Word embeddings e.g. word2vec [24] can be
another option to retrieve the similar replies from the past
emails [25]–[35] but that is not included in the scope of this
paper.

Although providing reply predictions and templates could
minimise the users’ efforts to reply to similar emails,
an extensive training model with a high volume of samples
could be required to achieve better performances. This inves-
tigation, however, suggests user intervention could help to
provide a better recommendation process by giving feedback
on the most relevant results [36]. Feedback was given after
the system performed a search for the most similar sent
emails. A higher score could be achieved when the users vote

a particular result to be the most appropriate reply. Hence, the
system also learns about user preference.

III. BACKGROUND AND PRELIMINARIES
The problem-solving paradigm has also evolved over time,
and recently Case-Based Reasoning (CBR) methodology has
been introduced. CBR solves a problem by retrieving similar
past problems from the collection (knowledge base), referred
to as the case base, and reusing their solutions for the new
problem. This approach is commonly known as lazy learners
as it performs the function of retrieving similar knowledge
at the time the query is presented rather than building the
training model first.

A. CBR CYCLE
Case-based reasoning as a framework for problem solving has
two main components: the modelling process translated as
a CBR cycle, and the task-method structure associated with
each process in the model. The diagram in Figure 1 represents
the high-level process of adapting the CBR approach. It is
widely recognised as the 4R’s: Retrieve, Reuse, Revise and
Retain.

FIGURE 1. The CBR Cycle adapted from [37].

A case typically consists of a problem description and
its corresponding solution. When a query problem arrives,
it is treated as a new case with a defined problem and no
solution yet; then, an attempt is made to retrieve past cases
from the memory (or case base) with a similar problem
description. Next, the solution to these past cases is obtained
to be reused as a proposed solution. The system either auto-
matically, or through user intervention, attempts to revise
the solution by considering the differences to the current
problem. The proposed solution is evaluated by applying it
to the initial problem, or assessed by domain experts on its
respective problem domain. Finally, the confirmed solution is
retained in the case base to be considered for solving similar
problems in the future.

B. CATEGORISATION OF THE CBR SYSTEM
There has been a significant development in various CBR
systems. In [6] the differences are categorised based on four
criteria (or dimensions): the source of knowledge, function,
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organisation, and distribution. Although it is not an exhaus-
tive list of every CBR system development, we found it useful
to see the positioning of our CBR system within real world
implementation, so we attempted to examine our email client
system based on the criteria previously mentioned.

The first dimension identifies what the form of the case
is. Some CBR systems have their source in the conversa-
tion between the user and the system, the interpretation of
images, or even in the information from temporal relation-
ships such as user action history in a game. Furthermore,
this information can be stored in predefined variables for a
specific domain such as the medical field. Our system relies
extensively on the presence of text in the email message, and
this textual collection is easily obtained.

The second dimension groups the CBR system based on
the function of its development. It is common to see a
CBR system mainly utilised for a classification task where
it can predict labels or classes in a binary (positive or neg-
ative) or discrete (multiple) manner. A CBR system also
assists in the processes of a development life cycle such
as knowledge management, planning, and monitoring the
deviation in the behaviour of a system. In some cases, it can
also provide recommendations according to user preference
and interaction in the system. Our system attempts to provide
this recommendation based on information acquired from the
user’s past responses in replying to messages.

A CBR system can be combined with other knowledge-
based systems or even another CBR system that has a dif-
ferent functionality to solve a problem. This combination
may involve a multilevel organisation used by several CBR
systems, hybridised with other problem-solving methodolo-
gies, or utilise meta information acquired by another CBR
system to reason the best method to apply at every CBR stage.
On the other hand, it is also common to use a single CBR
system for problem solving. In our case, it is sufficient to
use only a single CBR system, as the nature of our task is
relatively simple.

Finally, a CBR system can be categorised by either the
number of the case-bases (or memory) or the type of process-
ing distribution. It can have one case-base or many, and the
processing can be done by either single or multiple agents in a
system. Multiple distributions may be used for building case-
bases to solve complex problems, or for sharing processes
that are computationally expensive. Our system focuses on
a relatively simple process, which involves finding and rec-
ommending email messages from our case-base. In addition,
it is not necessary to build multiple case-bases since a single
case-base already represents information storage in an email
account.

C. TEXTUAL CBR FOR TEXT-BASED PROBLEMS
In recent years, an interest in exploring CBR that specifi-
cally deals with text problems has emerged. This is possibly
because CBR itself is a methodology [37]; thus, it is open
to new problem domain discoveries, such as text. Experi-
ence and information from past problem solving processes

is retained and explicitly reused to deal with new tasks or
problems. This extension is commonly referred as
textual CBR.

One of the typical areas that implements textual CBR is the
customer support domain. Normally, this service relies heav-
ily on text-based documents such as error reports, technical
documentation, or frequently asked questions (FAQs) to solve
customer problems. The problem itself may not necessarily
be solved within seconds, but the support staff needs a system
to assist them in finding the documents that are relevant to a
customer’s query. In addition, a specific technique to retrieve
information based on natural language text in a customer
query is mandatory. Further explanation of this technique is
presented in the next section.

Since CBR is a knowledge-based approach, it is important
to note that a textual CBR system needs knowledge (or case)
representations in any or some of the following categories:
case collection, index vocabulary for each case, similarity
measurement, and knowledge adaptation [38]. First, text-
based documents can be utilised as the source of the case
base. Then, the index is constructed around the terms used
in the document. Through considering the various terms in
the index, the similarity measurement is performed between
the query and the document collections. In addition, this
measurementmay go beyond the statistical termweighting by
utilising semantics components such as a thesaurus or ontol-
ogy from a particular domain.

The domain that we are dealing with, email communica-
tion, has the characteristics that make it suitable for textual
CBR implementation. The document collection used as the
basis of the case base has a text-based form. Even though
an email message has a clear structure consisting of sender,
recipient, date, subject, and body, the greatest source of infor-
mation is located in the subject and body. Moreover, these
fields may form a semi-structured or even unstructured text,
making it a challenge to extract useful knowledge from it.
Therefore, a textual CBR system relies heavily on a technique
that identifies the natural language text in an email message.

Ourwork is closely related to that of [2], [36] as we endeav-
oured to utilise past email replies to answer an incoming
email inquiry. However, only one of the studies implemented
Case-Based Reasoning as the underlying methodology [2].
Contrary to our work, the authors have not provided experi-
mental evaluation of their approach. Also, we believe future
questions could be mapped by utilising similar previous
questions, and then reusing the answers given to them. This
approach would still allow the user to have control of the
task. Further, it could reduce the time and energy required to
compose from scratch or search through the whole mailbox
to find similar queries.

IV. SMART EMAIL CLIENT
Our email client solution is a desktop application that has
standard functionality for email communications and an
enhanced capability to intelligently provide recommenda-
tions for a reply. The application starts performing when
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FIGURE 2. System overview.

a user initiates the reply action for a new, incoming mes-
sage. It then attempts to retrieve similar past inbound emails
(known as cases), reusing the answers, and then using them
as a basis for a reply recommendation list. The process is
finished when the user selects a result from the list and sends
the email. The answered email and its reply is considered to
be a solved problem and is stored in the case base for the
future.

A. SYSTEM OVERVIEW
Figure 2 provides an overview of our smart email client. The
user starts by browsing through their inbox messages. These
messages are stored locally in the database after having been
retrieved from the mail server. Two types of message are
available in the inbox: those replied to and those that have not
been replied to. When the user selects a message to reply to,
the system provides two options for creating a reply. First is
the normal reply option that implements a basic reply proce-
dure – a blank text box with the original message attached at
the end of the box. Second, is the recommended reply option
that provides a ranked list of replies obtained from the user’s
own sent items. When the message composition is complete,
the user sends the message, the system delivers it to the mail
server, and then stores it in the database for future retrieval.

1) NORMALISING MESSAGES WITH TEXT ANALYSIS
In this application, we dealt with text-based email messages;
therefore, it is important to perform several techniques to
analyse the content of the message in order to remove the
noise and identify meaningful context. First, we performed
lexical analysis to normalise the text, including, but not
limited to, the treatment of punctuation marks, digits, and
hyphens, as well as upper and lower cases. This process is
continued by converting a stream of text in a document, com-
monly separated by a whitespace, into a stream of candidate
words to be indexed. Once the stream of potential words for
the use of index terms has been generated through lexical
analysis, some may be shown to have less influence on the

context of the document. This happens when they appear too
frequently in a document, and can be useless in the retrieval
task. Thus, we removed those words commonly known as
stopwords.

In addition, we derived a word by its root. This method is
commonly applied to reduce the variability of words; thus,
more matching can be achieved. For example, a string such
as buy, buys, and buying can be reduced to its root, buy. This
can reduce the number of index terms so a lower number of
distinct words (word roots) are stored.

Finally, we performed term frequency - inverse document
frequency (TF-IDF) – the weighting of a word to measure its
importance to a document within a corpus or collection. This
weighting considers the scaling mechanism: frequent terms
are scaled down and rare terms are scaled up. For example,
a term that appears 10 times more than another may not
necessarily be more important.

2) MEASURING SIMILARITY IN THE VECTOR SPACE MODEL
The Vector Space Model (VSM) transforms a collection of
words in a document into a high dimensional vector. The
weight of the vector is represented by a set of document
terms that have been weighted (in this case using TF-IDF).
The distance between two vectors is measured using the
cosine angle between them, which is usually referred to
as the Euclidean distance. Thus, it appears that the shorter
the distance between two vectors, the more similar the
documents are.

3) EXPANDING SYNONYMS USING THESAURUS
During the process of the semantic identification of words in
a document, a common strategy is to find a set of words that
closely relate to a given word. In linguistics, a thesaurus is
used to find these words known as synonyms.

The use of the thesaurus was motivated by a desire to
achieve advantages such as a reduction in noise, and retrieval
based on concepts (semantic matching) rather than on words
(exact matching). It is useful when the domain has an
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extensive and specific use, such as in the medical field. In the
general domain, a popular lexical database using a thesaurus
in the English language, known as WordNet.

B. FUNCTIONALITY DESIGN
This section explains three main functionalities of our pro-
totype: the email communication, information retrieval, and
user interface as shown in Figure 3.

FIGURE 3. Proposed functionality layers in the application.

1) EMAIL COMMUNICATION
In order to fetch and send email, we developed an email
communication component which was able to perform the
following: (1) establish a connection to the mail server using
given email account settings; (2) fetch all email messages in
the first run and fetch only newmessages on subsequent runs,
and (3) use mail server settings to send outgoing emails. The
system utilises Internet Message Access Protocol (IMAP),
thus it is possible to fetch from the inbox and send messages
from its corresponding folder. We developed the sending
capability using the Simple Mail Transfer Protocol (SMTP)
settings of the mail server. All these tasks were achieved by
implementing JavaMail API.

The email message that has been fetched needs to be fur-
ther processed, since it mostly comes with embedded Hyper-
text Markup Language (HTML) tags. This process is known
as parsing the content in the body part of themessage. Parsing
is performed to ensure the content of the message does not
contain significant noise. While we carefully dealt with the
quality of the content, we left the parsing for multiple email
recipients to future development. At this stage, therefore, our
system focuses on one-to-one email communication between
a sender and a recipient. After building the communication
capability and parsing the content, the messages are stored in
the MySQL database.

2) INFORMATION RETRIEVAL
The next component that we developed is related to the IR
capability. This is the core component in the architecture as
it enables the ad-hoc retrieval of documents (in this case the
email message), according to the user query. It also performs
the following tasks: (1) the indexing of message entries in the
database, (2) the querying of the index to find themost similar
document, and (3) the ranking of themost relevant documents
similar to the user query.

We used Apache Lucene1 to perform the above tasks.
There are several reasons for that. First, Lucerne is an open
source library and available for Java-based application devel-
opment, which aligns with our approach. Being open source,
Lucene is frequently updated and maintained by the commu-
nity. Second, it is capable of performing text analysis, such as
tokenisation, word stemming, and stop words removal [39].
In addition, with further alteration, it is able to parse the
WordNet database to apply synonym expansion during text
analysis. Lastly, by default, it builds its term indexes using
TF-IDF weighting [39], which simplifies our work in using
term weighting for calculating the similarity between query
document and documents in the corpus.

3) USER INTERFACE
We adapted the interface layout guidelines from several
widely known email client applications, such as Mozilla
Thunderbird2 and Opera Mail.3 Figure 4 shows that the
system returns the top ranked matched messages from our
own past replies as a starting template to reply to the query
message.

C. ADAPTING THE CBR IN SMART EMAIL CLIENT
This section explains how we adapted the CBR approach
into our Smart Email Client prototype. Figure 5 illustrates an
overall process workflow of our system after adapting CBR
approach, while each phase of the CBR cycle is explained
below.

1) CASE RETRIEVAL
The retrieval of similar cases starts whenever a user chooses
to reply using the recommended reply option. We developed
a retrieval algorithm that measures the angle of two document
vectors in the multi-dimensional space.

As can be seen in Algorithm 1, the process starts when it
takes on the input of a new case, which is a selected email
that is about to be replied to. Lucene’s native functionality
to read the index file is then defined (lines 1-3). A document
object, which contains the vector of terms in that particular
document, is collected and normalised (lines 4-8) according
to the cosine similarity formula. The similarity score of the
two documents (the query document and the document in the
case base) is obtained by calculating the dot product of both
vectors (lines 10-14). At the end of the process, the algorithm
generates a ranked list of usable past replies (lines 15 and 16).
When the similarity measurement has been calculated in
every case, it is ranked according to the similarity score. The
higher the score, the more similar the new case is to the
retrieved past cases. The next step, reusing the solution from
the past case, is triggered by the user when they select a result
from the recommendations list.

1http://lucene.apache.org/core/
2https://www.mozilla.org/en-US/thunderbird/
3http://www.opera.com/computer/mail
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FIGURE 4. Ranked reply recommendation to be used as a starting template.

FIGURE 5. Process workflow adapting CBR methodology.

2) CASE REUSE
The process of reusing past retrieved cases comprises two
aspects. First is the difference between the new and past
cases. The second regards the part of the retrieved cases that
can be used in the new case. In our email reply problem,
consideration of these differences was partially made during
the retrieval process by calculating the similarity of our case
feature; the system then identifies the corresponding email
reply and reuses it.

3) CASE REVISION
Our system implements case revision, which involves user
intervention. The reasoning behind this is the user should
have the role of direct evaluator. While partly subjective, this
is the best method of matching her or his personal preference.
If the user is pleased with the result, they are able to use it as
is. However, if they are not, our system provides an editing
feature. In this case, the user is able to revise the predefined
reply message before sending the message.
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Algorithm 1 Retrieving Similar Past Email (Past Cases)
Require: newCase Cn & pastCases Cp in case base Ix
Ensure: n most similar pastCases Cpn
1: initialise indexReader()
2: read Ix using indexReader()
3: initialise caseVector[] as count total Cpn in Ix caseIx
4: for all Cn, Cp in Ix do
5: get term vector caseTermVec in Ix
6: caseVector[]← count caseTermVec
7: | caseVector[] | F Normalisation of vector
8: end for each
9: i = 0

10: for all caseVector[] do
11: cosineSim← caseVector[Cn] · caseVector[Cp] F

Dot product
12: mapRetrievedCases← map(i, cosineSim)
13: i++
14: end for each
15: sort mapRetrievedCases
16: use top n mapRetrievedCases(Cpn)

4) CASE RETENTION
This process is concerned with what information to store and
how the solved case can be indexed for a future retrieval
process. In this system, when the user sends the message,
it performs two actions. First, the message is delivered to the
mail server to be processed further for the recipient; then,
the sent message is automatically paired with its incoming
message and stored in the database. It can then be considered
a solved case, so that when the retrieval phase is triggered in
the future, the solved case, if it is similar to the new problem,
can be indexed and retrieved.

V. IMPLEMENTATION
This section provides several screen captures of the smart
email client application. We briefly explain what the user can
do on the corresponding screen.

A. UNREPLIED MESSAGE SCREEN
When the user starts the application, the list of their inbox
messages is shown on the left-hand side of the screen,
as shown in Figure 6a. The red colour represents the unreplied
messages, while the white is for replied messages. The
details of the messages are shown in a split screen, where
the top is for the incoming message and the bottom is for
its corresponding reply. Finally, two buttons – labeled with
Normal Reply or a Recommended Reply - provide options for
replying.

B. NORMAL REPLY SCREEN
Figure 6b shows the screen using Normal Reply. It appears
when the user clicks on the normal Reply button. In this
screen, a pop-up window was built as the underlying con-
tainer for other components. It has a heading, which acts as

an instruction. Text labels map information about the email
that is to be replied to. The editable text area is provided for
typing the body message.

C. RECOMMENDED REPLY SCREEN
In addition to normal reply, the system also provides an
assisted reply via the recommended reply option. When the
user clicks on that option, the system starts the retrieval of
similar past cases and reuses its past replies so they are pre-
sented in a ranked list, as shown in Figure 6c. The relevance
column shows the similarity of the corresponding past reply;
the higher the score, themore relevant it is.Whenever the user
selects a result from the recommendation table, the content
is prepopulated automatically in the reply box. This allows
the user to see the content of their past replies, as illustrated
in Figure 6d. If the user is satisfied with the content, they
can send the message directly. Furthermore, every change in
selection automatically changes the populated content, while
the details from the origin email that is about to be replied to
is still preserved. However, it is also possible to addmore or to
revise the content according to the user’s preference. The
editing process is shown in Figure 6e.

D. REPLIED MESSAGE SCREEN
At the end of the process, after the user has clicked the
send button, the system delivers the message to the mail
server. In addition, the system also retains the reply message
as a solution, making the case solved as shown in Figure 6f.

VI. EVALUATION
The first part of this section provides our experimental design
for evaluating our approach. This includes evaluationmethod,
evaluation metric, dataset description, and hardware specifi-
cations, while the second part presents our results with their
illustration.

A. EXPERIMENTAL DESIGN
1) HARDWARE SPECIFICATIONS
The experiments were performed on a machine with the
following specifications: 4.6GHz Intel Core i5 with 16GB
RAM memory, 500GB solid-state drive (SSD), and running
Windows 10. The evaluation module was implemented in
Java SE version 8.

2) DATASET DESCRIPTION
In order to evaluate our system in conditions closer to a real-
world scenario, we considered the following components to
find the most appropriate dataset. First, since we are dealing
with email problems, it is best to use a dataset of email
messages. However, due to privacy issues around the nature
of email communication, it was challenging to find a publicly
available email dataset. Until recently, there was only one
realistic email dataset available and that has been widely used
for research purposes. The dataset was collected from Enron,
a company that went bankrupt. Originally, this dataset was
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FIGURE 6. System screens. (a) Unreplied message screen. (b) normal reply screen. (c) recommended reply screen. (d) recommended reply
selected. (e) reply revision. (f) solved query.
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published during an investigation into the bankruptcy; after
the data was compiled and cleaned up, it was made available4

to be used in research [40].
Interestingly, a study has been done that used a subset of

the Enron dataset and annotated it [41]. Initially, the authors
used this dataset for person name disambiguation and an
intelligent email-threading task. While they examined both
email headers (e.g. recipients, date, and subject) and email
content, we only used the subject and the content in our
evaluation. Mailbox from two Enron employees was pre-
pared: germany-c and farmer-d. Further details about
the datasets are presented in Table 1.

TABLE 1. Datasets descriptions.

3) EVALUATION METHODS
Retrieval phase is the first step in the CBR cycle; an effective
retrieval process ensures the system generates the most sim-
ilar past cases with respect to the given problem. We iden-
tified three objectives in evaluating the retrieval system.
First, it is important that our system returns only the most
relevant results to satisfy the user needs, according to the
user query. This is known as retrieval effectiveness [42].
Second, the more cases stored in the case base, the bigger
the index size becomes. Since cases are indexed using the
terms, it seems important to maintain the size of the index by
only storing the most representative terms. Therefore, we also
measure the index size of the system. Third, it is also essential
to provide a seamless response, as the user triggers an ad-hoc
retrieval using a query. Thus, we record the time required to
process a query. While this measurement may vary according
to the hardware specifications, the results generated can still
provide a general notion of the system speeds. This is further
considered as retrieval efficiency [42].

4) EVALUATION METRICS
To measure the effectiveness of the retrieval process, we used
Reciprocal Rank (RR). This is a relative score that calculates
the average or mean of the inverse of the ranks at which the
first relevant document was retrieved for a set of queries. For
instance, if a search for a specific query returns a relevant
document at the 1st position, its relative rank or RR is 1.
If the relevant document is at position 2, then the score is
0.5 and so on. If there are no relevant documents, the score
is 0. When averaged across the set of queries, this measure

4http://www.cs.cmu.edu/ einat/datasets.html

is called the Mean Reciprocal Rank (MRR). It is associated
with the use case where the user wishes to see only one
relevant document for a search, subsequently assuming the
user will keep scrolling down on the search results until the
first relevant document is found. Thus, the document is found
at rank n, and the quality of the retrieval is measured by the
reciprocal of the rank (i.e. 1/n).

We observed that each user query has one correct answer
and the assumption is that the user will stop searching once
the correct document, based on his/her preference, is found.
Alternatively, the time required by the user to find the relevant
document corresponding to the search is inversely propor-
tional to the rank. In this case, the better the rank, the lower
the time taken by the user to get to the relevant document. For
instance, an MRR score of 0.8 indicates that the information
retrieval system is 80% relevant.

In addition, Mean Average Precision (MAP) is also a pop-
ular scoring method used in measuring the effectiveness of
an information retrieval system [43]. It is used mostly when
more than one possible relevant result is expected for their
search query [43]. However, in our system, since we assume
the user chooses only the most relevant answer from the
provided recommendation list, we excluded this metric in our
evaluation.

B. RESULTS
In this section, we presented the results of our experimen-
tation. As mentioned in the previous section, we described
the results based on three indicators we measured in our
evaluation: the quality of retrieval results, index size, and
processing time elapsed. However, before starting to present
our experimental results, we performed an initial analysis to
see the distribution of the terms in our dataset. To do this,
the email messages were tokenised to obtain the collection of
words, which were stored as index terms, and then counted
and ranked with respect to the frequency of occurrence in
each document in the corpus. We only kept terms that had
a frequency of at least two in the corpus. We considered
trimming this to provide better distribution visualisation.

The term frequency calculation was obtained using Luke,5

an open source GUI tool that examines the Lucene index
files. The interface of the tool is shown in Figure 7. We can
select the feature indexed, either subject or body, and copy the
results from the table on the right-hand side of the pane. The
term frequeTF-cy obtained is meaningful for two reasons:
first, we saw that some of the most frequent terms that occur
in the corpus are stop words, so we considered examining
the stop words removal influence in our experiment. Second,
we compared our term distribution with Zipfian Law [44],
which is also commonly referred to as Zipf’s distribution.
In the implementation of this distribution in the linguistics
domain, the frequency of a word is inversely proportional
to its rank in the frequency count. A study by [45] demon-
strated Zipf’s distribution in a corpus using a graph. We also

5https://github.com/DmitryKey/luke
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FIGURE 7. Luke: An open source tool to read Lucene index files.

attempted to observe the data according to this distribution by
plotting it on a log-log graph, where each log represents log
(rank order) in the y-axis and log (frequency) in the x-axis.

It can be seen from Figure 8 that the term distribution is
a near fit to Zipf’s Law. The deviation seems to appear in
the most frequent words since the plot merges with the trend
line at half way. Both datasets show similar behaviour, while
slight differences are only present between the log (rank)
of 2 and 4.

1) RETRIEVAL EFFECTIVENESS
The retrieval effectiveness of our algorithm was measured by
comparing the retrieved results with the relevance judgments
given for each corresponding query, as annotated by [41]. The
MRR score reflects the retrieval effectiveness according to
the score. The higher the score, the more relevant the results
retrieved by our algorithm.

Furthermore, Table 2 presents the detailed MRR score
from 18 different trials. Overall, the highest MRR score was

achieved by applying the SA method to the case feature
subject. Then, combining the features subject and body as
all during retrieval still yields a higher MRR score when
compared to that in the body only. It is interesting to see the
SA_NOSTM method gives a better score when implemented
in all case features.

In order to provide better visualisation for comparison,
Figure 9 depicts the summary of the results in a chart. It is
apparent from this chart that the MRR score shows a decreas-
ing trend when the SEmethod is applied in the trials, in spite
of the stemming and stop words removal techniques. More-
over, the results also affirm the case feature subject returns
more relevant emails that match the relevance judgments.
This is followed by all and the body.

While the MRR score was used as the primary metrics
for measuring retrieval effectiveness, we also examined the
cosine similarity score generated from matching a query with
documents in the corpus. This examinationwas performed for
both datasets, farmer-d and germany-c, to determine
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TABLE 2. MRR score from experiments in both dataset.

FIGURE 8. Dataset distribution according to Zipf’s Law distribution. (a) germany-c. (b) farmer-d.

the influence of synonym expansion. Thus, SA represents
results from standard analysis techniques, while SE enhances
standard analysis SA with synonym expansion. We particu-
larly observed the trends from the top 10 retrieved results with
the highest cosine similarity score on two case features: body
and subject.

The observations from Figure 10 show both datasets pro-
vided a similar decreasing trend in their respective body and
subject features as the ranking goes lower from 1 to 10. This
decreasing trend seems linear in the case feature body. How-
ever, the score in the case feature subject, as depicted in Fig-
ures 10b and 10d, shows gradually higher disparities between

SA and SE compared to the results in Figures 10a and 10c.
Thus, we could conclude that synonym expansion SE out-
performs the standard analysis SA techniques in terms of the
cosine similarity score. As a result, it could generate a higher
chance of relevant matching, as shown in the higher score
when compared to SA.
According to the results presented previously, it can be

seen that the decreasing trends occur over the higher rank,
despite the case features. This is possibly due to the sorting of
the retrieval results according to the highest similarity score.
However, it also seems interesting to examine the percentage
of increase before and after applying synonym expansion.
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FIGURE 9. Retrieval effectiveness as represented by MRR score. (a) germany-c. (b) farmer-d.

FIGURE 10. Average similarity score over top 10 results in both germany-c and farmer-d datasets. (a) germany-c body. (b) germany-c subject.
(c) farmer-d body. (d) farmer-d subject.
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FIGURE 11. Similarity score increase rate before (SA) and after (SE) applying synonym expansion with
respect to case features body and subject.

This increase is calculated from cosine similarity score of
SA and SE. Given the same query, when the score of SA and
SE is 0.5 and 0.75 respectively, the rate of increase 50%.
In contrast to the decreasing trend over the higher ranks

in the cosine similarity score, Figure 11 depicts that nearly
40-60 percent of the increasing rate appears in the body
feature, with a relatively low disparity between both datasets.
However, this disparity gradually increases in the subject
feature. This validates our previous findings that synonym
expansion could improve the chance of retrieving more rel-
evant matching, even in the lower ranks, by increasing the
cosine similarity score up to 30 percent in the subject and up
to 60 percent in the body.

Although SE could increase the cosine similarity score,
its MRR score shows the opposite. This might be related to
the relevance judgments provided by [41]. Since it is highly
dependent on human annotation, it might affect the MRR
score. This is further explained in the discussion section.

2) INDEX SIZE
In addition to measuring the retrieval effectiveness, we also
examined the influence of text analysis and case feature
selection on the size of the index. According to Table 3,
the SE_NOSTM method generated the highest number of
terms over all case features. In addition, the case feature all
had the most terms, whereas the subject seemed to have the
least.

It is also shown in Figure 12 that a significant amount
of terms are generated by synonym expansion SE method.
In addition, by not applying the stemming method, as shown
in SA_NOSTM and SE_NOSTM, more terms are generated
compared to other methods.

3) RETRIEVAL EFFICIENCY
Finally, we also measured the retrieval efficiency as repre-
sented by the processing time elapsed for executing a retrieval

process in each query. We argued in the previous section that
although the processing time might be highly dependent on
the hardware used, we can still compare the influence of the
different text analyses performed in the trials. We obtained
the results by averaging the processing times from three
trial repetitions. This processing time was generated using
the Java nanotime library, which provided a more precise
calculation as it was captured within nanoseconds.

In Figure 13, it is clear the retrieval process that used the
case feature subject was the fastest above all other features.
In addition to performing synonym expansion, as shown in
any SE methods, it uses a slightly slower processing time.
Overall, applying stemming and stop words removal does not
seem to significantly affect the processing time.

VII. DISCUSSION
In this section, we provide a further justification of our results
by exploring the influence of text analysis, case feature selec-
tion, and the dataset.

A. INFLUENCE OF TEXT ANALYSIS
During the experiment, we performed trials using several
text analysis techniques. First was the lexical analysis. This
technique removes whitespace, symbols, and punctuation
marks e.g. apostrophe (’), a dot (.), and a slash (/). As all
the words in the content were transformed to lowercase,
there is a likelihood of increasing the chance of matching
that particular word. This normalisation is typically useful
when an abbreviation is misspelt, for instance, EtNG instead
of ETNG.

While lexical analysis technique allows terms to be treated
as equal, it can be seen that the chance of matching could be
improved by applying the second technique, stemming. For
instance, the word telling could match tell if the suffixing is
chopped. Another example of stemming is where the term
handling can match handle. The new term handl seems to
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TABLE 3. Total terms indexed from experiments in both dataset.

FIGURE 12. Index size as represented in a count of terms indexed. (a) germany-c. (b) farmer-d.

be an unknown English word for human, but the computer
could process it. It should be considered however, that the
stemming process would typically be done after the synonym
matching process; otherwise, the chance of matching a word
with its synonym pairs might be less likely. The stemmed
word handl might have no match, but handling might.
Furthermore, not all the terms should be indexed. There

are set of words that are likely to appear frequently in textual
content, and these are commonly identified as stopwords.
While humans have no issue with this, a computer considers
these words as less rare in term weighting if they occur
too often. Interestingly, we found applying lexical analysis
and stopwords removal generally improved the number of

relevant retrieved emails, as shown in the increase of theMRR
score. It seems possible that the removal of these words could
reduce the noise in the content, and might increase the chance
of distinct terms to be fairly calculated while comparing
between two documents.

Another text analysis technique used in evaluation is syn-
onym expansion. This technique is performed by matching
terms with their corresponding synonyms. In our experiment,
we utilised WordNet as additional linguistic knowledge,
and this provided the database of semantic relations. In an
early observation, we found this technique could extend the
capability of exact matching by searching through a word’s
synonym pairs.
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FIGURE 13. Retrieval efficiency as represented in processing time elapsed. (a) germany-c. (b) farmer-d.

The next observation shows a trend where experiments
that use synonym expansion tend to show an increase in the
retrieval execution time for each query. This might be due
to the larger number of terms to be calculated between the
documents. The increasing number of terms occurred because
the synonym words were also considered in the similarity
calculation.

B. FEATURE SELECTION
We also observed that different selected features could affect
the retrieval of relevant messages. By using the case feature
subject, the retrieval effectiveness yielded a higher score
compared to when the body was used. There could be several
possible explanations for this result. First, the subject line
is likely to have fewer words, which might lead to a higher
chance of matching keywords. Second, we found the subject
content contains a relatively uniform pattern. It is a trivial
problem for the algorithm if it only considers the subject,
because of the high number of exact matching words. As can
be seen from the experiment results, it is challenging for the
case feature body to generate a higher MRR score since our
retrieved email did not usually match the relevance judg-
ments. However, our observations showed that applying the
synonym expansion technique could increase the chance of
matching relevant results, even in the lower rank. This finding
is similar to [4], who argues that synonym expansion leads
to an improvement in the similarity measurement. Hence,
we presume this might be related to the collection method
implemented by [41] when building the relevance judgments.
In the next section, we discuss our justifications for this issue.

C. DATASET CRITIQUE
In Section VI-A we talked about the challenge of performing
an evaluation using a real-life email dataset due to the privacy
concerns. However, we overcame this by discovering that the
Enron email dataset is available online. This dataset came in

a collection of raw messages, until some researchers anno-
tated them for study purposes [41].

When we performed an evaluation using this dataset,
we found the results from the subject field tended to be high,
as seen in the MRR score when compared to that of the body
feature. We presume the process of performing a relevance
judgment might be to consider the small number of features
instead of all features in the email message. Then we found,
according to the authors, the relevant messages were anno-
tated using the subject line and time stamp only [41]. This
also explains why using the feature all still generated a higher
result than the body. This could be due to the combination
of the content subject and body, but it still provides a higher
chance of matching the relevance judgments.

We also noticed in a number of messages, the subject
line contains fewer meaningful words in terms of context.
We consider this as less meaningful since they have an empty
value or are only one word with three or fewer characters.
While it might reflect the reality of email communication,
where people are likely to reply using the same subject, it is
challenging in a retrieval task, which considers the subject
only. Thus, it is important to consider another field such as
the body itself.

Finally, we concluded that this dataset is more appropriate
for finding a relevant email by considering the email header,
such as sender, recipient, date, and time. The subject field
is also suitable for use as a case retrieval feature. However,
we found the body field is less useful since the annotation
process might not consider this field.

VIII. CONCLUSIONS AND FUTURE WORK
The paper presented a novel prototype for Smart Email
Client based on a problem-solving framework called Case-
Based Reasoning (CBR). We built a retrieval algorithm
that finds similar cases beyond exact matching by using
text processing and semantics analysis techniques. The
algorithm intelligently retrieves similar past queries and
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their respective replies according to the incoming query.
We evaluated our prototype rigorously based on three key
parameters: the quality of retrieval results, index size, and
processing time elapsed. We used two Enron employees
mailbox data (germany-c and farmer-d) as our dataset.
We have shown that the results we achieved under all three
parameters are promising.

Future development includes performing an automatic
name extraction using the information extraction technique;
this information could be used at the beginning of the reply
message as the salutation. On the other hand, the name-based
entity can be omitted from the reply message in order to
provide a more generic reply message. We also have aim
to test our email client in ICT department of our university
Which deals with the IT related issues of staff and students.
We will validate the accuracy of predicted replies with the
original replies sent by the operator.
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