IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 2, 2018, accepted October 28, 2018, date of publication October 31, 2018, date of current version November 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2878895

ASIC-Resistance of Multi-Hash Proof-of-Work
Mechanisms for Blockchain Consensus Protocols

HYUNGMIN CHO

Department of Computer Engineering, Hongik University, Seoul 04066, South Korea
e-mail: hcho@hongik.ac.kr

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government—M inistry of
Science, ICT & Future Planning (MSIP)—under Grant 20170174 14.

ABSTRACT Blockchain technology rapidly gained popularity based on its open and decentralized operation.
Consensus protocol is the core mechanism of a blockchain network that securely maintains the distributed
ledger from possible attacks from adversaries. Proof-of-work (PoW) is a commonly used consensus protocol
that requires a significant amount of computation to find a new valid block. As the application-specific
integrated circuits (ASICs) that are specially designed for POW computation begin to dominate blockchain
consensus operation, the decentralized nature of blockchain networks is being threatened. Many PoW
mechanisms are being proposed to disincentivize the use of ASICs in the consensus operation. Employing
multiple hash functions in the PoW computation (i.e., multi-hash PoW) is one of the commonly adopted
approaches to achieve such ASIC-resistance. In this paper, we experimentally evaluate the level of ASIC-
resistance of the multi-hash PoW mechanisms. We assess the level of ASIC-resistance based on the
performance gap between ASICs and general-purpose computing platforms. Contrary to the expectation
of the multi-hash PoW mechanisms, our results reveal that ASIC-resistance of these PoW mechanisms is
not strong enough to prevent ASIC-based mining. Most of them show similar levels of ASIC-resistance as

those of POW mechanisms that are already defeated by ASIC-based systems.

INDEX TERMS ASIC, blockchain, consensus, FPGA, hash, proof-of-work.

I. INTRODUCTION

Blockchain provides a mechanism to maintain an immutable
public record of transactions (ledger) without central authori-
ties [1]-[3]. Blockchain consists of a series of records, called
blocks, that are connected using cryptography. Each block
contains transactions that are based on digital currency cir-
culated in the blockchain network, called cryptocurrency.
The first incarnation of a blockchain network is Bitcoin [4],
which was proposed in 2008 and made public in 2009.
Since then, many blockchain networks have been created and
draw tremendous attention. As of September 2018, about
2,000 cryptocurrencies are being traded in the market, and
the total market size is more than 200 billion US dollars.'
Beyond the basic blockchain protocol of Bitcoin, new gener-
ations of protocols brought new features and improved the
performance and practicality of blockchain networks. For
example, Ethereum [5] supports the execution of a program
recorded in the blockchain. This feature enables an automated
execution of transactions, called smart contracts. Blockchain

1 https://coinmarketcap.com/

technology is expected to bring revolutionary changes in
business operations, and many companies began to prepare
for the blockchain era [6]—[8].

The key to the decentralized operation between indepen-
dent nodes in a peer-to-peer network is blockchain’s consen-
sus mechanism. Only a new block that is accepted by the
consensus protocol can be appended to the blockchain. A con-
sensus mechanism should be able to draw a mutual agreement
between nodes, even in the presence of selfish or malicious
nodes.

Proof-of-Work (PoW) is one of the most widely-adopted
consensus mechanisms. PoW requires a significant amount
of computation effort to find a block that meets the consensus
protocol. Due to its resemblance to digging for gold in a mine,
this process is called mining. When a new valid block is found
and appended to the blockchain, the miner who found the
block can collect the predefined rewards or transaction fees.

Any participant can join the mining process using its
own computing resource. If an adversary wants to disrupt
the consensus operation by breaking the PoW protocol, he
needs to possess computing power larger than the aggregated

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

66210

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8705-7066

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

IEEE Access

computing power of other mining participants (commonly
known as the 51% attack). The rationale behind the PoW
consensus protocol is that there is no economic incen-
tive to perform such an attack on the blockchain network.
However, such a belief is challenged by the introduction
of mining systems based on application-specific integrated
circuits (ASICs).

ASICs that are designed for the PoW computations deliver
much higher performance than general-purpose computing
systems, such as CPUs (central processing units) or GPUs
(graphics processing units) [9]. The biased computing power
threats the decentralized nature of blockchain networks [10].
The aggregated hashrate of the Bitcoin network has dramat-
ically inflated (Fig. 1) by ASIC-based mining, and partici-
pating in Bitcoin mining using a general-purpose computing
system is not profitable. ASIC-based mining created a high
barrier to entry for the general public because they have to
invest in special equipment to participate in the mining pro-
cess. The entities who are capable of investing in and main-
taining a large volume of ASIC systems could take control
of the blockchain network. Therefore, ASIC-based mining is
more vulnerable to the 51% attack. If all POW computation
has to be done using a general-purpose computing platform,
it is more expensive to occupy the majority of the computing
platforms that can join the mining process. On the other hand,
if mining is done using specially-manufactured systems only,
an attacker only needs to occupy the majority of the special-
ized systems, which is a much smaller domain than the group
of all general-purpose computing systems. As of Septem-
ber 2018, Bitcoin mining pools BTC.com and Antpool, which
are operated by the same company that manufactures ASIC
miners, account for more than 30% of the total computing
power (hashrate) in the Bitcoin network [11]. ASIC-based
mining systems that are monopolized by a specific manufac-
turer have another vulnerability. Bitmain shipped their ASIC
mining hardware with a backdoor program installed, which
allows the company to remotely control a large portion of the
hashing power in the network [12].

x10"°

(&) (=]
L L

FS
L

Hashrate per second
N w
N

L

o
L

S 9 @ g g o

Year

T
AD

:
\M o

T T
S W ot

S BV oS

P

FIGURE 1. Aggregated hashrate of the bitcoin network.

In order to discourage the use of ASIC-based sys-
tems for mining, many PoW consensus protocols were
introduced to achieve ASIC-resistance. In principle, there
is no fundamental difference between a general-purpose

VOLUME 6, 2018

computing platform and an ASIC. A part of the general-
purpose system might include a dedicated module to acceler-
ate a commonly-used function (e.g., Secure hash algorithms
(SHA) modules in modern CPUs), and an ASIC may also
use a programmable design (e.g., a microcontroller module
that runs firmware). Because it is impossible to completely
prevent the use of specially-designed hardware for mining,
PoW protocols target ASIC-resistance, not ASIC-proof. The
goal of an ASIC-resistant PoW algorithm is reducing the
profitability of ASIC-based mining. Therefore, it is crucial
to quantitatively study the degree of ASIC-resistance before
adopting a PoW mechanism as the consensus protocol of
a blockchain network. In fact, many PoW mechanisms that
claimed ASIC-resistance turns out to have very little resis-
tance to ASIC-based mining, and some of the blockchain
networks that rely on such mechanisms are already dominated
by ASIC-based mining.

In this work, we evaluate ASIC-resistance of a class of
consensus protocol that use multiple hash functions in their
PoW computation (multi-hash PoW). One way to achieve
ASIC-resistance is making the initial cost for building an
ASIC higher than expected profit. However, this property
is difficult to maintain in a long-term especially if the
blockchain network expands and the obtainable profit from
mining grows. We focus on ASIC-resistance achieved by
the performance gap between ASICs and general-purpose
computing platforms. A PoW algorithm is resistant to ASICs
if it is challenging to design a specialized hardware design
that has a significant performance advantage over CPUs and
GPUs. This performance gap would determine the ASIC-
resistance over an extended period. We implement a multi-
hash PoW computing platform on Field-Programmable Gate
Array (FPGA) to estimate the expected performance of the
PoW mechanisms on ASICs. Unfortunately, the evaluation in
this work reveals that multi-hash PoW algorithms have very
little ASIC-resistance in terms of the performance gap.

The rest of this paper is organized as follows: Section II
introduces blockchain consensus protocols that are widely
used in many blockchain networks. Section III explains the
multi-hash POW consensus mechanisms that are evaluated in
this work. Section IV describes the setup for the experiment
to evaluate ASIC-resistance. Section V shows the ASIC-
resistance evaluation results and discusses the results. Finally,
Section VI concludes of the paper.

Il. BLOCKCHAIN CONSENSUS MECHANISMS

In a public blockchain network, no single entity solely holds
the authority to verify the validity of transactions. An adver-
sary may forge a chain of blocks with false transactions and
propagate the false blockchain to the network. Blockchain
networks employ consensus mechanisms that discourage the
attempts to forge a false blockchain.

A. PROOF-OF-WORK CONSENSUS
Although there are differences in PoW mechanisms adopted
by blockchain networks, we briefly explain Bitcoin’s

66211

IEEE Access

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

Block #n-1 Block #n Block #n+1

Block header Block header Block header

Hash of previous block
o </‘ “ M
Merkle root

Hash 12 Hash 3 4

(a)

Jo0 -0 -0

Stale chain

Current valid chain

Stale chain
(b)

FIGURE 2. lllustration of Bitcoin’s blockchain structure. (a) Block header.
(b) Longest branch selection.

blockchain structure and PoW mechanism to discuss the
basics of the PoW consensus protocol. Each block in Bit-
coin’s blockchain consists of the block header and trans-
actions (TXs) included in the block (Fig. 2). A block
header contains the hash value of the previous block header,
the Merkle root of the transactions, and a nonce field. The
previous hash value in the header makes sure the chain is not
mutable after a block is included in the blockchain, and the
Merkle root summarizes the transactions in the current block.
The nonce field contains a random value that alters the hash
value of the block header without the need for changing other
fields.

Bitcoin consensus protocol requires the hash value of the
block header to be smaller than a certain threshold, deter-
mined by the difficulty value. The difficulty value is dynam-
ically adjusted by the network depending on the network’s
aggregated hashrate. Bitcoin uses double SHA-256 (or
SHA256d) as its hash function, which applies the SHA-2 hash
function twice (i.e., SHA256d(x) = SHA256(SHA256(x)))
on the block header. The mining process is essentially finding
a nonce value that makes the hash value to meet the condi-
tion.> Because the hash function is not invertible, the only fea-
sible solution to find a valid block is a brute-force search that
computes many instances of PoW computations (i.e., hash
function computations) with different nonce values. Since the
output of the hash function is uniformly distributed, the prob-
ability of finding a block with a nonce value that satisfies the
condition is proportional to the devoted computing power.

Each node in the blockchain network selects the longest
blockchain branch as the valid chain (Fig. 2b). Under
this rule, if an attacker wants to forge a false blockchain,
the attacker should present a blockchain to the network that is
longer than the genuine one. Forging such a false blockchain
would require a larger amount of PoW computations than

2 A miner may change the hash value of the block header by producing a
block with different sequence of transactions, but it is computationally more
expensive.

66212

the total sum of the computing power of the miners who are
currently participating in the mining process.

The security of the POW consensus protocol lies in the
belief that there is no financial incentive to occupy the major-
ity of the computing hardware and spend electrical energy to
attack the blockchain. However, ASIC designs for blockchain
mining introduce a great threat to this belief. The PoW com-
putation requires massive computing power, but the computa-
tion is limited to specific types of calculations, usually hash
functions. When compared to a general-purpose computing
system, such as a CPU or a GPU, an ASIC-based system
can deliver unparalleled performance and energy efficiency
for the designated computation task. For example, an ASIC-
based mining platform for Bitcoin [13] can perform 13 trillion
PoW computations per second while consuming 1310 W of
power, whereas a GPU-based mining platform with NVIDIA
GeForce GTX 1080 ti achieves only 1.5 billion PoW sompu-
tations per second with 250 W of power consumption. Manu-
facturing an ASIC requires a considerable investment, but the
majority portion of the manufacturing cost is non-recurring
engineering (NRE) cost that gets amortized if the production
volume increases. As the Bitcoin network grows, more and
more ASIC-based mining systems are introduced, and the
economic benefit of participating in the mining process is
not sustainable unless the miner uses ASIC-based mining
systems.

Many ASIC-resistant PoW mechanisms are introduced to
avoid the same consequences of the Bitcoin mining process.
The common types of ASIC-resistant PoW algorithms can be
classified as follows.

1) Multi-hash PoW: Unlike the Bitcoin’s PoW algorithm
that uses only one type of hash function, PoW algo-
rithms in this class employ multiple hash functions
to compute the valid condition of the block. Those
hash functions are applied to the block’s header in a
particular sequence. The sequence of hash functions
is either fixed or dynamically determined per each
block. Many variations of multi-hash PoW algorithms
are created, such as X11 [14], X14 [15], X17 [16],
X11EVO [17], X16S [18], X16R [19], Quark [20], and
TimeTravel [21].

2) Memory-hard PoW: Although ASICs provide much
higher computation efficiency than general-purpose
computing platforms, ASICs are also limited by exter-
nal data bandwidth similar to general-purpose com-
puting platforms. Memory-hard PoW algorithms, such
as Ethereum’s Ethash [5], Scrypt [22], and Crypt-
Night [23], focus on this aspect to provide ASIC-
resistance. A memory-hard PoW computation requires
to fetch random pieces of data out of a large dataset.
The size of the entire dataset is large enough to make
it difficult to design an ASIC that stores the entire
dataset in on-chip memory. For example, Ethash’s DAG
dataset is larger than several gigabytes and continu-
ously increase its size. The location of the data that
has to be fetched per each PoW computation with

VOLUME 6, 2018

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

IEEE Access

different nonce is determined during the computation,
which means it is not feasible to prefetch the required
data or group multiple nonces that access the same
location of the dataset. Therefore, the effective hashrate
would be limited by the available off-chip data band-
width of the platform.

Currently, memory-hard algorithms have stronger
ASIC-resistance than Bitcoin’s SHA256d as our anal-
ysis in Sec. IV-C shows. However, ASIC systems
that target such memory-hard PoW algorithms are
also eventually released to the market (e.g., Antminer
E3 for Ethash and Antminer L3+ for Scrypt). Moreover,
emerging transistor technologies, such as 3D stacking
[24] would mitigate the performance bottleneck for
memory-hard PoW systems. The ASIC-resistance of
memory-hard PoW algorithms has to be tested with
such emerging technologies as they get approachable
to low-cost ASIC systems.

3) Programmatic PoW: One of the new directions for
PoW mechanisms to be ASIC-resistant is increas-
ing the diversity of the computations. For example,
a large pool of mathematical functions [25] or a
randomly-generated program can be a part of the com-
putation [26], [27]. It would be impractical to build
specialized hardware modules that target each of the
possible computation tasks. This type of PoW mecha-
nisms are not realized in a practical blockchain network
yet, but they are actively being developed. However,
it is still possible to build specialized hardware with a
large array of small, yet efficient programmable cores
to increase the computation efficiency over existing
general-purpose computing platforms.

In this work, we focus on evaluating the ASIC-resistance
of a wide range of multi-hash PoW mechanisms. Although
multi-hash PoW algorithms claim ASIC-resistance, some of
them are already defeated by ASIC systems. For the remain-
ing multi-hash PoW algorithms, it has not been shown that
whether they are truly resistant to ASICs or ASIC systems
are not introduced yet merely because the blockchain net-
work is not large enough to invest in the ASIC development.
Unfortunately, the evaluation in this work reveals that the
ASIC-resistance of the multi-hash algorithms does not have
an apparent difference with other PoW mechanisms that are
already defeated by ASIC. Our evaluation results mean that a
stronger ASIC-resistant mechanism is required to effectively
deter ASIC-based mining.

B. PROOF-OF-STAKE CONSENSUS

It is often criticized that PoW mechanisms waste massive
electrical energy for wasteful computation. An alternative to
PoW consensus protocol is Proof-of-Stake (PoS) consensus
mechanism [28]. In PoS, a person who possesses a larger
amount of cryptocurrency gets a higher chance of obtaining
the right to create the next block. This process is called
minting compared to mining in PoW. Unlike PoW, where a

VOLUME 6, 2018

miner obtains such right through a massive amount of com-
putation, PoS consensus protocol requires little computation
effort. However, PoS introduces new possible vulnerabilities
to blockchain protocols, such as Nothing at Stake Problem
and Bribe Attack [28], [29]. Nothing at Stake Problem arises
because there is no additional cost to participate in the mint-
ing of multiple different branches. Bribe Attack might nullify
a committed transaction in the main branch by encouraging
other minters to mint on a false branch using a relatively small
amount of rewards (i.e., bribe). Several mitigation approaches
were introduced to prevent such attacks on PoS [30], [31];
however, the security of PoS-based blockchain networks has
to be tested in a longer term.

C. OTHER CONSENSUS MECHANISMS

Although not as popular as PoS or PoW, other types of
consensus protocols have been proposed for blockchain net-
works. Practical Byzantine Fault Tolerance (PBFT) is a
replication-based consensus protocol between known parties
that can tolerate the Byzantine failure of up to 1/3 of the
parties [32]. Proof-of-Human-Work requires the involvement
of human action, by requiring a solution of a puzzle as the
proof of work [33]. The puzzle is designed to be human-
efficient, but machine-inefficient similar to CAPTCHA [34].
Some consensus protocols try to connect the PoW compu-
tation with meaningful work that benefits the world (i.e.,
Proof-of-Useful-Work). For example, Primecoin’s consensus
protocol is based on a computation that finding a prime
number chain [35].

lll. MULTI-HASH PoW MECHANISMS
In this section, we describe the multi-hash PoW consensus
mechanisms that are evaluated in this work.

A. HASH FUNCTIONS

To be used as a PoW mechanism, a hash function needs a
firm guarantee that it is infeasible to invert and collision-
resistant (i.e., difficult to find two inputs a and b such that
H(a) = H(), and a # b) [36]. It is difficult to create
a large pool of distinct hash functions with such proper-
ties from scratch. The US National Institute of Standards
and Technology (NIST) held an open competition to create
a new hash function called SHA-3 [37]. A large number
of hash function candidates were submitted to the contest,
and the final winner was Keccak [38]. Most of the multi-
hash PoW algorithms utilize the candidates of the NIST
competition as their hash functions. Although other candi-
dates were not selected as the final winner, hash functions
proceeded to the second round of the competition satisfied
NIST’s hash function criteria and received a fair amount of
cryptanalyses. Other than Keccak, hash functions accepted to
the second round (or even to the final round) are as follows:
Blake [39], Blue Midnight With (BMW) [40], Grgstl [41],
JH [42], Skein [43], Luffa [44], CubeHash [45], SHAVite [46],
SIMD [47], Echo [48], Hamsi [49], Fugue [50], Shabal [51].

66213

IEEE Access

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

B. FIXED SEQUENCE HASH CHAINS

In X11, eleven different hash functions form a fixed hash
chain. That is, the output of the n™ hash function is fed into the
(n+ 1)th hash function (Fig. 3). A valid block is a block with
a nonce value that makes the final hash value (i.e., the output
of the eleventh hash function) smaller than the threshold. This
fixed hash chain approach was expected to be ASIC-resistant
because a mining system must implement a large collection
of distinct hash functions. On CPUs and GPUs, it is only
a matter of using different hash function codes for each of
the hash functions, while an ASIC-based system requires a
higher design cost to implement all of the hash functions
in hardware. Following X11, other similar multi-hash PoW
mechanisms were proposed with more hash functions in the
chain (e.g., X14 and X17).

Hash Hash
chain function
order name
Block Blak
header D EH Ca’e |
[2]| BMW |
g
| Grost |
:.
—

Verifier
| ECHO | D Hash result < threshold ?

FIGURE 3. Hash functions connected in a fixed chain.

Unfortunately, ASIC-resistance of X11 did not last long.
About two years after the launch of the DASH blockchain
network, which is the first blockchain network that uses
X11 as its consensus mechanism, an ASIC-based mining sys-
tem that implements the X11 algorithm was launched to the
market with superior performance than CPU or GPU perfor-
mance [52]. Most of the blockchain networks that employed
a similar fixed hash chain to provide ASIC-resistance are no
longer immune to ASIC-based mining.

There are two reasons why such fixed hash chains quickly
lost its ASIC-resistance. First, unlike the expectation of PoW
algorithms, design efforts to implement an ASIC that sup-
ports a wide variety of hash functions were not so high.
The hash functions in X11 are candidates of the NIST
competition, where one of the requirements is low hard-
ware overhead. That is, those hash functions are designed
to be ASIC-friendly. Secondly, increasing the length of the
hash chain not only increased hardware overhead but also
increased the computation time on CPU and GPU platforms.
Chaining multiple hashes in a row did not decrease the
efficiency gap between the general-purpose computing plat-
forms and ASIC-based platforms. We experimentally verify
that a fixed hash chain is not an effective way to achieve
ASIC-resistance.

66214

C. HASH CHAINS WITH VARIABLE SEQUENCE PER BLOCK
After the introduction of ASIC-based mining systems
defeated the ASIC-resistance property of X11, a different
class of multi-hash PoW mechanisms was introduced. These
PoW mechanisms also use a chain of hash functions, but the
sequence of the hash functions gets permuted periodically.
The sequence of the hash functions can be determined either
by the block number, timestamp, or hash value of the previous
block.

The motivation behind this approach is that it is not prof-
itable to create multiple versions of hardware designs for each
of the possible hash sequences. However, this expectation
is not valid because it assumes that the hash modules in
an ASIC have to be connected in a fixed pipeline. It may
require additional overhead to provide configurable data path,
but a hardware design that supports flexible ordering of the
hash functions is entirely possible. Although no commercial
ASIC-based mining system is currently available to directly
target this class of PoW mechanisms, it is crucial to assess
the levels of hardware overhead to support variable-sequence
hash chain in advance before the attempts to build such ASIC
platforms.

We also implement an FPGA-based multi-hash mecha-
nism that supports the flexible sequencing of hash functions.
In Sec. V, we show the implementation and experiment
results that show the additional resource and performance
impact to support such variable sequence is not high enough
to preclude ASIC-based mining.

These variable-sequence hash chains can be further clas-
sified into two different types depending on whether they
allow repeated use of a hash function in the chain. When
the permutation is done without repeats, all hash functions
appear only once in the chain, and the computation load per
each hash function is identical. However, if the permutation
allows repeats, certain hash functions could be utilized more
frequently than others. In ASICs, each hash module can only
compute a specific type of hash function, and unbalanced use
of hash modules would result in performance degradation.

The X16R PoW algorithm composes a new hash chain per
each block based on the previous block’s hash value (Fig. 4).
Each 4-bit in the previous block’s hash determines the hash
function out of sixteen hash candidates, and total sixteen hash

Previous block's hash value Hash chain order for
....8E310286042D139F715| the current block

t-»0x0: [Blake]
onisads X112
e Ox2: _m

OxE: | _Whiripool
ey OXF: [SHA2-512

FIGURE 4. Hash function use in the X16R hash mechanism.

VOLUME 6, 2018

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

IEEE Access

functions are chosen to form a hash chain for the following
block. As the example in Fig. 4 shows, a hash function can
be selected multiple times. Unlike CPU or GPU platforms
where repeated use of a hash function can be handled by
simply executing the corresponding hash function multiple
times, these can result in a load imbalance between the hash
modules in an ASIC implementation.

However, the hash value of the previous block would be
uniformly distributed, which is an expected property of a
cryptographically secure hash function. When the hash func-
tions are selected with uniform probability, the cases with
extreme load imbalance are rare. For example, the probability
of having more than r repeats of a specific hash function in
a chain that selects n hash functions out of n candidates with
uniform probability is as the following:

" n\ (1N n—1\"K
Pr(repeats > r) = <) <—) () (1)
; k n n

The probability quickly diminishes as r grows. Whenn = 16,
the probability of having equal or more than three repeats are
less than 8%.

D. HASH CHAINS WITH VARIABLE SEQUENCE

PER NONCE

We also evaluate a new type of multi-hash PoW mechanism
that applies a distinct sequence of hash functions for each
nonce value. This PoW mechanism is not realized by an active
blockchain network, but the basic idea is an extension of
the Quark PoW algorithm. Each PoW computation in Quark
goes through nine hash functions. The hash sequence is fixed
except for the third, sixth, and ninth hash functions, which are
selected out of two candidates based on the second, fifth, and
eighth hash result, respectively. We evaluate a PoOW mecha-
nism that selects every hash function in the chain dynamically
based on the previous hash function’s result. We describe the
algorithm in detail in Sec. V-C.

IV. PERFORMANCE EVALUATION SETUP FOR
MULTI-HASH PoW MECHANISMS
In this section, we describe our evaluation approach to assess
the level of ASIC-resistance of multi-hash PoW mechanisms.
Several factors would affect the profitability of adopting an
ASIC-based system, such as the amount of initial invest-
ment for ASIC fabrication and the cost of operation (e.g.,
electricity and maintenance cost). It is difficult to boil down
such factors into a single metric because they have high
fluctuations depending on the market condition. To avoid the
involvement of unpredictable factors, we investigate ASIC-
resistance solely based on the performance aspect. That
is, we evaluate how the ASIC-resistance PoW algorithms
impose performance disadvantage on ASICs while they retain
performance levels on CPUs and GPUs.

We estimate the expected performance of ASIC-based
mining by implementing a multi-hash PoW platform on an
FPGA. Although the results from FPGA implementations

VOLUME 6, 2018

are not actual measurements on an ASIC, FPGA results can
be used to assess the performance and the area overhead
of ASIC implementations, especially for logic-dominated
designs [53]. Hash functions heavily use logic operations,
such as XOR, shift, majority, and mux. FPGA implemen-
tation results in Sec. V-A also show that the most promi-
nent resource usage is the logic components in look-up
tables (LUTS).

A. PERFORMANCE METRIC

The performance of a PoW systems is commonly represented
using the hashrate. It represents the number of PoW com-
putations per unit of time. A PoW platform with a high
hashrate has a higher chance of finding a valid block during
a given amount of time. Technically, the hashrate is not the
actual number of hash function computations because PoW
algorithms may involve multiple hash functions per each
instance of PoW operation. A PoW algorithm may result
in a lower hashrate if it has more hash functions per each
instance of PoW computation. We denote the hashrate of
PoW algorithm x on computing platform y as Py(x). (y is
either CPU, GPU, or FPGA in this work).

B. EXPERIMENT PLATFORMS

1) CPU-BASED PLATFORM

We use the cpuminer open-source mining software [54]
to measure the performance of a CPU-based PoW plat-

form. CPU hashrates are measured on a system with an
Intel 17-8700K CPU, which has eight hardware threads.

2) GPU-BASED PLATFORM

To measure the GPU hashrates, we use the ccminer open-
source mining software [55]. ccminer uses the CUDA pro-
gramming interface to program NVIDIA GPU devices. Our
experiment platform uses an NVIDIA GeForce GTX 1080 ti
GPU, which has 3,584 computing cores. The host machine
that runs the GPU is the same platform as the CPU-based
platform.

3) FPGA-BASED PLATFORM

Our multi-hash PoW platform uses the Xilinx Zynq
UltraScale4+ ZU9EG FPGA. The hash functions are imple-
mented using the open-source hash modules created by
the Cryptographic Engineering Research Group (CERG) at
George Mason University [56]. Each hash module is con-
nected to input and output FIFOs, which together forms a
hash unit (Fig. 5). These FIFOs provide a temporary storage
space while the hash modules are computing the results.
Also, these FIFOs support clock domain crossing to enable
different clock frequency (Clkp,s;) in each hash module.
Table 1 lists the hash modules used in our evaluation and their
FPGA resource utilization. As we mentioned, FPGA resource
utilization shown in Table 1 is dominated by the LUT use.
More than 77% of the available LUTs are used when the
FPGA platform contains all fifteen hash modules, while the

66215

IEEE Access

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

Hash unit
C/k/'merface L{ L
Input to the Input Hash Output
hash module FIFO module FIFO
C/khash F F F{

N J\C AN J
g
Clkintertace Ciknash Cikintertace
Clock domain Clock domain

Clock domain

FIGURE 5. Structure of a hashunit.

utilization level of registers and on-chip memory modules are
less than 18% and 5%, respectively.

Unlike CPU or GPU platforms where the number of com-
puting cores is fixed, the number of hash modules in an
FPGA or ASIC platform can be increased if the resource (i.e.,
silicon area) is available. Unfortunately, the FPGA module
used in this evolution is not large enough to flexibly include
multiple instances of multi-hash PoW units. For example,
in Table 1, Fixed-12 and Fixed-15 use 72.7% and 77.1% of
LUT resources on our FPGA platform, respectively. Only one
instance of either case can be instantiated on FPGA even
though Fixed-15 requires a higher hardware overhead. Such
discrepancy is less prominent on an ASIC platform with a
higher logic capacity per chip.

To represent the expected performance without the dis-
proportionate performance evaluation, we scale the measured
hashrate (f’ppGA(x)) based on the ratio of the available LUTs
(274,080 on ZU9EG) and the platform’s LUT utilization.

of available LUTs on FPGA

P =P ?
FPGA (X) = PEPGA (X) X # of LUTs used @

For example, a single instance of SHA256d PoW module
on FPGA uses 3,496 LUTs, and it achieves the hashrate
of 3.2x10° PoW operations per second. On the Xilinx
ZU9EG FPGA, we scale the hashrate to match that from
274.080 _ 78 4 instances of SHA256d PoW modules on

3,496
FPGA, which is 251 MH/s.

C. EVALUATION METRIC FOR ASIC-RESISTANCE

The goal of the comparison in this work is to investigate
whether the multi-hash PoW algorithms make ASIC designs
less effective when compared to the general-purpose comput-
ing platforms for computing the PoW algorithms. Directly
comparing the measured hashrates from the experiment plat-
forms does not give a good representation of ASIC-resistance.
Even if a platform has a lower hashrate, the throughput of a
whole system can be increased by employing many instances
of the same platform. For instance, most of the ASIC-based
mining systems include a large number of independent ASIC
chips to increase the throughput per system [9].

Instead of comparing the raw measurements from entirely
different systems, we define a metric to evaluate ASIC-
resistance of PoW algorithms based on the relative per-
formance difference on each platform. We use Bitcoin’s

66216

SHA256d as the common performance baseline. Due to its
relatively simple PoW computation structure, many ASIC-
based PoW platforms have been created for Bitcoin, and
ASIC-based platforms dominate Bitcoin’s PoW consensus
operation. Therefore, SHA256d PoW mechanism can be con-
sidered not resistant to ASIC. We evaluate the relative per-
formance of multi-hash PoW algorithms compared to that of
SHA256d on each of the three computing platforms. On our
CPU, GPU, and FPGA platforms, the hashrate of SHA256d
is 31.6 megahashes per second (MH/s), 1500 MH/s, and
251 MH/s, receptively.

We measure the level of ASIC-resistance of a PoW mech-
anism x by calculating the relative performance disadvan-
tage of ASIC over the (general-purpose) computing platform
y (y = CPU or GPU):

PrpGA(SHA256d) Py (SHA256d)
PrpGa(x) Py(x)

This ASIC disadvantage (AD) metric is the ratio between the
two values, £ FPGI;*(SHAZSGC‘) and DOHA26D ‘o gt value
FPGA (X) Py(x)
(Prpga) represents the performance impact of using algo-
rithm x compared the baseline SHA256d algorithm on ASIC.
Most of ASIC-resistant algorithms seek to increase this value,
by making computation harder on ASICs. Being ASIC-
resistant also requires algorithm x does not have such degree
of performance impact on CPU or GPU platforms; otherwise,
ASIC:s still possess performance advantage. The second value
(Py) of the AD metric addresses the performance impact on
CPUs and GPUs. A PoW algorithm x can be considered to
have a stronger ASIC-resistance than SHA256d only if its
performance degrades in a larger scale on ASICs than it does
on CPUs or GPUs (i.e., £ FPG;,“‘(SHAZSM) > > Dy(SHASG)
FPGA (X) Py(x)

For example, consider a case where PFPGA(SHA256d)
100 MH/s and Pcpy(SHA256d) = 1 MH/s. Suppose a new
PoW algorithm x; is proposed with a more complex hash
operation and resulted in Prpga(x;) = 10 MH/s. However,
due to its complex hash operation, Pcpy(x1) is also reduced to
0.1 MH/s. In this case, ADcpy(x1) = 10MH/S/ollhﬁg§s =1x,
which means x| does not impose any more performance dis-
advantage on ASICs compared to SHA256d. Since SHA256d
is not resistant to ASIC, this level of difference would be
considered far from a strong ASIC-resistance.

Unfortunately, multi-hash PoW mechanisms discussed in
this paper do not show any meaningful ASIC-resistance when
evaluated based on the AD metric. Most of them did not show
a sufficiently high ADcpy or ADgpy value; even some of
them show an AD value lower than 1x.

In contrast, memory-hard PoW mechanisms have higher
AD levels. Although we did not evaluate any memory-hard
PoW mechanism on FPGA in this work, the hashrate of
a memory-hard PoW mechanism can be estimated based
on the platform’s external memory bandwidth. For exam-
ple, the Ethash PoW algorithm requires 8 KB of external
data access per each instance of PoW computation. On the
NVIDIA 1080 ti GPU, which has 320 gigabytes per sec-
ond (GB/s) of external memory bandwidth, the theoretical

ADy(x) = 3)

VOLUME 6, 2018

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

IEEE Access

TABLE 1. FPGA resource utilization of fixed hash chain implementations on the Xilinx Zynq UltraScale+ ZU9EG FPGA.

Hash Hash Fixed-3 Fixed-6 Fixed-9 Fixed-12 Fixed-15
Order unit LUT | Register LUT | Register LUT | Register LUT | Register LUT | Register
1 BLAKE 10,828 6,377 10,831 6,377 10,840 6,377 10,834 6,377 10,835 6,377
2 BMW 28,042 5,776 28,004 5,776 28,000 5,776 28,028 5,776 27,979 5,776
3 Grgstl 22,478 5,834 22,475 5,833 22,479 5,836 22,464 5,833 22,465 5,834
4 Skein 7,567 4,419 7,546 4,419 7,620 4,419 7,632 4,418
5 JH 5,581 4,032 5,587 4,032 5,589 4,030 5,578 4,028
6 Keccak 4,755 3,932 4,754 3,934 4,754 3,937 4,755 3,934
7 Luffa 8,835 3,047 8,834 3,045 8,782 3,046
8 Cubehash 15,028 12,156 15,056 12,164 15,048 12,148
9 SHAvite-3 6,919 5,215 6,913 5,215 6,927 5,215
10 SIMD B 52,606 16,656 52,597 16,656
11 ECHO - 24,709 7,150 24,688 7,139
12 Hamsi 11,826 6,720 11,768 6,700
13 Fugue . 4,497 2,966
14 Shabal - 5,296 6,508
15 SHA2-512 2,504 2,734
Total 61,348 | 17,087 | 79213 | 30369 | 109,088 | 50,792 | 199,233 | 81,322 | 211351 | 93479
(% of FPGA chip) | (22.3%) | (3.28%) | (28.9%) | (5.54%) | (40.1%) | (9.27%) | (727%) | (14.8%) | (17.1%) | (17.1%)

peak hashrate is 40 MH/s, and the actual hashrate mea-
sured on the GPU is about 32.4 MH/s. The Xilinx ZUIEG
FPGA has a single DDR4 interface that provides the peak
bandwidth of 19.2 GB/s, which translates into 2.34 MH/s

of maximum hashrate. The lower bound of ADgpy(Ethash)
Prpga (SHA256d) /PGPU(SHA256d) __ 251MH/s / 1500MH/s ~
Prpga (Ethash) Pgpy(Ethash) — 2.34MH/s/ 32.4MH/s
2.32x, which is much higher than 1x.

This ASIC-disadvantage level of Ethash is a conserva-
tive estimation. Unlike the evaluation of multi-hash PoW
algorithms, where most of the hardware overhead comes
from logic elements, an overhead comparison that involves
external I/O on FPGA is not analogous to that of an ASIC.
On FPGA, logic elements involve high overhead (more
than an order of magnitude) due to their programmabil-
ity, while many external I/O use dedicated hard blocks
without such overheads. The performance of Ethash and
SHA256d depends on external I/O bandwidth and logic
capacity, respectively. The performance gap between those
two on ASICs will be smaller than the conservative estimation
discussed here (i.e., a higher AD level than 2.32x).

Although memory-hard PoW mechanisms prevented many
blockchain protocols from being dominated by ASIC-based
mining, ASIC mining systems for memory-hard PoW mech-
anisms are eventually introduced to the market as the
blockchain networks grow, which means even the AD level
of 2.32x is not strong enough to permanently prevent ASIC-
based mining.

V. ASIC RESISTANCE EVALUATION RESULTS

A. FIXED HASH CHAINS

ASIC-based mining systems already defeated Multi-hash
PoW mechanisms that use fixed hash chains. We experimen-
tally show that these fixed hash chains indeed have almost
no ASIC-resistance based on the AD metric in (3). Starting
from X11, which has eleven hash functions, many algorithms
continued to increase their hash chain lengths while expect-
ing a longer chain would have a stronger ASIC-resistance.

VOLUME 6, 2018

To evaluate the level of ASIC-resistance of this approach,
we tested five different hash chain lengths, up to fifteen
hashes in line. We set the sequence of those fifteen hash
functions the same as the hash sequence of the X15 algo-
rithm,3except the last hash function. In X15, the last hash
function is Whirlpool [57], which is not included in the NIST
SHA-3 standard competition. Instead, we use SHA2-512 [58]
as the last (fifteenth) hash function of the chain. SHA2-512 is
also used as a part of X16R and X17.

We create fixed hash chains on FPGA by directly con-
necting the hash units in a pipelined architecture. We name
those fixed pipeline implementations as Fixed-n, where n is
the number of hash functions in the chain. Table 1 shows the
FPGA resource utilization of fixed hash chain implementa-
tions with five different hash chain lengths.

The pipeline is fed with the block header with a unique
nonce value on each PoW operation. The hash modules inside
the hash units are also designed using a pipelined architecture,
and they start processing of the next computation task as
soon as the previous one flows down to the pipeline; that is,
multiple nonce trials are computed simultaneously through
the pipeline. After the final hash unit completes the hash
operation, a verifier module checks if the hash result satisfies
the valid condition.

Figs. 6a-6¢c show the measured hashrates of fixed hash
chains on CPU, GPU, and FPGA platforms, respectively.
Longer hash chains decrease hashrates on all platforms,
not just on FPGA. On CPU and GPU platforms, a longer
hash chain results in a lower hashrate because of the elon-
gated computation time per each PoW operation. On FPGA,
the throughput of a single pipeline is not directly affected
by the length of the hash chain, but the effective hashrate
per available hardware resource (i.e., the scaled hashrate)
decreases as the number of hash functions in the chain

3X12, X13, X14, X15, and X17 follow the same hash sequence as their
predecessors. That is, the first eleven hash functions in X12 have the same
sequence as X11, and so forth.

66217

IEEE Access

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

1.75 70 4

1.50 60 -

Pcpy (MH/s)
o -
o 8 ¥

0.50 - 20 1
0.25 10 4
0.00 - 0-

© © [] 0 © © =3 o~ 0

° ° ° i h - - ° i h

[} [} [} o ° 9} 9} [} o °

x X x 9} 9} X X X 9] 9]

i i i S 2 [[[y X X

ic ic ic ic

(a) (b)

14 B ADcpy W ADgpy
12 4 9(1.0x + -
] ©
2" 3 0.8x
I °
S 8 S
j(’ g 0.6Xx
Q -8 0.4x
41 @
©
2] o 0.2x
2
0- 0.0x
k-] el el o o el o el o)
[} [} [} o o [} Q [} el el
X X X Q (] X X X (] Q
i [i X X [i i X X
ic ic ic ic
© @

FIGURE 6. Performance results of fixed hash chains on our experiment platforms. (a) CPU platform hashrates. (b) GPU platform hashrates. (c) FPGA

platform scaled hashrates. (d) AD levels.

increases. Fig. 6d shows the ASIC-resistance levels repre-
sented in the AD values over CPU and GPU. Because the
hashrates of all three platforms decrease as the hash chain
length increases, the AD levels of fixed hash chains are all
close to 1x and do not show any meaningful increase over
the baseline. These low levels of ASIC-resistance are well
reflected in the fact that multiple ASIC-based mining systems
are introduced for the fixed hash chain mechanisms. Merely
using a larger number of hash functions in a fixed pipeline
does not effectively deter ASIC-based POW operations.

B. VARIABLE-SEQUENCE HASH CHAINS
If the hash modules in an ASIC are connected in a fixed
pipeline as the Fixed-n implementations, such an ASIC
design cannot be used for PoW mechanism that dynami-
cally changes the sequence of hash functions in the chain.
Many multi-hash PoW mechanisms, such as X11EVO, X168,
and TimeTravel, are based on such assumption and claimed
ASIC-resistance by periodically shuffling the sequence of the
hash functions in the chain. However, there is no need to
create a large number (n!) of distinct ASIC implementations
to support all possible permutations out of » hash functions.
Instead, an on-chip interconnect that provides a configurable
data path between the hash modules can accommodate any
hash function sequencing. ASIC-resistance through variable-
sequence hash chains can be achieved if the additional over-
head to provide such a flexible interconnect is big enough to
reduce ASIC’s performance advantage by a large degree.
We create another multi-hash PoW system that supports
variable-sequence hash chains, called VarChain, to evalu-
ate the additional overhead for supporting variable-sequence
hash chains (Fig. 7). The input and output ports of the fifteen
hash units are connected to a 16x16 crossbar interconnect.
The initial input (i.e., block header with a nonce value) and
the final hash result of the chain are also assigned to separate
input and output ports of the interconnect. When a hash unit
completes the hash computation, the resulting output is deliv-
ered to the next hash unit through the crossbar interconnect,

66218

Input port #1 Hash unit #1
Output port #1 Blake

Input port #2 Hash unit #2
Output port #2 BMW

Input port #3 Hash unit #3
Output port #3 Grostl

Input port #15 Hash unit #15

Output port #15 SHA2-512

Input port #16

Block header

g o 4 Oodad

Output port #16 | Hash result |
v
16x16 crossbar Verifier

interconnect Hash result < Threshold ?

FIGURE 7. Hash modules connected to a crossbar interconnect (VarChain).

and each hash unit informs the crossbar interconnect of the
next port number. We choose the crossbar interconnect for
VarChain because it provides a dedicated data path between
each input and output port pair. Other types of interconnection
networks, such as a shared bus or a mesh architecture, can
be used for the variable hash sequence with lower overhead
but higher latency [59]. Even with a crossbar interconnect,
however, the added hardware resource overhead compared to
the fixed hash pipeline is not prohibitively large to discourage
the use of such a flexible interconnect.

VOLUME 6, 2018

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

IEEE Access

Table 2 compares the hardware overhead of Fixed-15 ver-
sus VarChain. In terms of the utilized number of LUTs and
registers, VarChain has only 5.8% and 6.2% higher overhead
than Fixed-15, respectively. Fig. 8 is the layout of VarChain
that displays the placement of the fifteen hash units and the
crossbar interconnect module (blue color) on FPGA.

TABLE 2. FPGA resource utilization comparison between Fixed-15 and
VarChain.

Hash unit Fixed-15 VarChain
LUT | Register LUT | Register
BLAKE 10,835 6,377 10,882 6,396
BMW 27,979 5,776 28,017 5,795
Grgstl 22,465 5,834 22,499 5,856
Skein 7,632 4,418 7,684 4,438
JH 5,578 4,028 5,658 4,051
Keccak 4,755 3,934 4,807 3,959
Luffa 8,782 3,046 8,859 3,070
Cubehash 15,048 12,148 15,200 12,224
SHAvite-3 6,927 5,215 6,999 5,234
SIMD 52,597 16,656 54,973 16,675
ECHO 24,688 7,139 24,791 7,152
Hamsi 5,884 3,350 5,956 3,369
Fugue 4,497 2,966 4,561 2,986
Shabal 1,324 1,627 1,364 1,710
SHA2-512 2,504 2,734 2,552 2,753
Crossbar interconnect - 8,831 5,071
Total 211,351 93,479 223,681 99,238
(% of FPGA chip) (77.1%) (17.1%) | (81.6%) (18.1%)

|| Hash unit #1 Blake

[] Hash unit #2 BMW

[Hash unit #3 Grast!
|| Hash unit #4 Skein

|| Hash unit #5 JH

. Hash unit #6 Keccak
D Hash unit #7 Luffa

I Hash unit #8 Cubehash
|| Hash unit #9 SHAvite-3
I Hash unit #10 SIMD
|| Hash unit#11 ECHO
B Hash unit #12 Hamsi
I Hash unit #13 Fugue
I Hash unit #14 Shabal
[] Hash unit #15 SHA2-512

. Crossbar interconnect

FIGURE 8. Layout of VarChain placed and routed on the Xilinx Zynq
UltraScale+ ZU9EG FPGA device.

Using the VarChain platform, we evaluate three different
types of the variable-sequence hash chains. The first two of
them represent the hash chains that vary the hash sequence
per block. Variable-15P sets the hash chain sequence by
rearranging the order of the hash functions (i.e., permutation
without repeats). This scheme is similar to that of TimeTravel,
X11EVO, and X16S PoW mechanisms. These have 8, 11, and
16 hash functions, respectively. The hash sequence may get

VOLUME 6, 2018

changed after a certain period (e.g., daily) or on every block.
We change the hash sequence on every block when evaluating
the performance of Variable-15P.

Variable-15R allows repeated use of a hash unit in the
chain, similar to X16R (i.e., permutation with repeats). The
only difference between Variable-15R and X16R is that
Variable-15R lacks the Whirlpool hash in the hash candidates.
This approach provides another aspect of ASIC-resistance
because even if an ASIC platform can adapt to the variable
hash sequences, it cannot dynamically adapt itself to the
variable load distribution between the hash functions. In the
extreme, it is possible that the previous block’s hash happens
to select the same hash fifteen times for the following block’s
hash chain. In that case, the throughput may degrade by 11—5 X
while the rest unselected hash modules are left idle. However,
as we discussed in Sec. III-C, such extreme cases are rare.
In most cases, the level of load imbalance is tolerable.

Figs. 9a-9c compares the hashrate of fixed and variable-
sequence hash chains on CPU, GPU, and FPGA plat-
forms, respectively. Although the sequence of hash functions
changes on each block, Variable-15P has almost no perfor-
mance variation because all hash functions are used exactly
once in the hash chain. On the other hand, the resulting
hashrates of Variable-15R have high variations depending
on the previous block’s hash value because different com-
binations of hash functions are included in the chain. The
hashrates of Variable-15R in Figs. 9a-9c are shown in box
plots that displays five values: 1 percentile, the first quar-
tile, mean (red bar), the third quartile, and 99 percentile.
Fig. 9d shows the corresponding AD levels. The AD values
for Variable-15R are derived using its mean hashrate.

The hashrate of Variable-15P does not have a significant
difference from the hashrate of Fixed-15 on CPU and GPU
platforms. On FPGA, the scaled hashrate gets reduced by
6% from Prpga(Fixed-15), which reflects the small added
overhead from the crossbar interconnect. The AD levels of
Variable-15P have no significant improvement from those of
Fixed-15.

Although the hashrates of Variable-15R have a high vari-
ance per block, the mean hashrate converges very closely
to the hashrate of Fixed-15 and Variable-15P on CPU and
GPU platforms. If a miner participates in the PoW operation
over multiple blocks, the expected hashrate would not have
a noticeable difference even if the hashrate fluctuates on
each block. On FPGA, on the other hand, the mean hashrate
of Variable-15R is worse than the hashrates of other multi-
hash PoW mechanisms due to the load imbalance. The mean
hashrate of Variable-15R on FPGA is 32.6% lower than
Prpga(Variable-15P). The performance degradation due to
the load imbalance is reflected in ADgpy(Variable-15R) value
of 1.33x, which tells that Variable-15R has a better ASIC-
resistance than other multi-hash PoW mechanisms.

C. VARIABLE-SEQUENCE HASH CHAINS PER NONCE
Using the VarChain FPGA platform, we evaluate another case
of possible multi-hash PoW algorithm that changes the hash

66219

IEEE Access

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

0.40 20.0
0.35 1 17.5
0.30 1 15.0 -
» 0
2 025 £ 125
= 0.201 = 10,0
=} =)
& 0.15 A & 7.5
a a
0.10 5.0 1
0.05 - 2.5 1
0.00 - 0.0 -
(2l o ' p4 v o g p4
\n)] 5 \n)] [}
° = i i - = i =
2 ° ©) 2]) o)
&8 & 8 “ 8 & 8
S Y s S Y S
(a) (b)

35 BEm ADcpy W ADgpy
o 1.4x
3.0 1
= 1.2x
5 25 s
2 D 1.0x
z o
20 2 0.8x
= 8
g 1.51 § 0.6x
Q gl
1.0 _g 0.4x
0.5 o 0.2x
0.0 2 o.0x
0 o o 4 0 o 4 z
o © %)) n) o] 5
k<l =~ -~ - i<l = ~ -~
2 °]) 2] ol)
i 3 s 8 = 3 8 8
2 s 2 s 3 s

(c) (d)

FIGURE 9. Performance results of variable-sequence hash chains on our experiment platforms. (a) CPU platform hashrates. (b) GPU platform hashrates.

(c) FPGA platform scaled hashrates. (d) AD levels.

sequence on every nonce value (Variable-15N). Variable-15N
selects the i hash function in the chain based on the (i — 1)
hash result during the PoW computation. That is, the output of
a hash function is not only sent to the next hash function, but
a part of the computed hash value determines the next hash
function. Because the hash value would be different if the
nonce value changes, the sequence of hash functions applied
to each PoW computation instance is not identical even in the
same block. Algorithm 1 describes the computation flow of
Variable-15N.

Algorithm 1 Pseudocode for Varaible-15N
Input: B := Block header
n := Nonce
th := Hash value threshold for a valid block
Output: v := Validity of the block header

Hashes[] < {0:Blake, 1:BMW, ..., 14:SHA2-512}
num_hash = size(Pool)

x < Bln

H <« Hashes[x mod num_hash]
fori < 1to 15do

L x < H(x)

H < Hashes[x mod num_hash]

Vv<x<th
return v

Similar to the per-block performance variation in Variable-
15R, the computation time to perform a single instance
Variable-15N computation would be different for each nonce
value. However, the performance of a PoW platform should
be determined by the throughput (i.e., the number of tried
nonce values per given amount of time). We measure
Py(Variable-15N) over the period of 1 hour using ran-
dom nonce values. Figs. 9a-9c also show the hashrates
of Variable-15N. Pcpy(Variable-15N) has almost no differ-
ence with other hashrates on the CPU because per-nonce

66220

performance variation would even out over a large number of
PoW computations with different nonce values. On FPGA,
Variable-15N also suffers from the load imbalance similar to
Variable-15R. However, Prpga(Variable-15N) is better than
the mean value of Pppga(Variable-15R), only 15.7% lower
than Pppga(Variable-15P). On VarChain, multiple instances
of Variable-15N computations are computed simultaneously,
each of which has a different combination of hash functions in
its chain. This mixture of different hash chains would mitigate
the load imbalance in the individual chains per nonce.

Interestingly, Pgpy(Variable-15N) is considerably low
(2.68% of Pgpy(Variable-15P)). This is due to the control
flow divergence on GPU platforms [60]. GPUs achieve the
high computation efficiency by executing multiple threads in
parallel if the threads go through the same control path. When
computing PoW algorithms, GPU threads are assigned with
PoW computation tasks that have different nonce values. The
control paths of the threads do not have significant divergence
from each other if all of them use the same hash sequence.
On Variable-15N, however, the computation task for each
nonce value would use a different hash chain sequence. This
divergence results in a severe performance degradation on
GPU. Therefore, Variable-15N is not an effective way to
achieve ASIC-resistance, but it can be used to exclude GPU-
based platforms from mining.

D. DISCUSSION

Table 3 summarizes the evaluated PoW mechanisms and their
ASIC-disadvantage levels. Regardless of their hash chain
types or the current availability of the ASIC-based mining
systems, multi-hash PoOW mechanisms have low degrees of
ASIC-resistance. Variable-15R has a better ASIC-resistance
than other multi-hash PoW mechanisms, but its AD levels are
much lower than those of the memory-hard Ethash PoW algo-
rithm. Given that there exist ASIC-based mining systems for
Ethash as well, it is difficult to consider the ASIC-resistance
level of Variable-15R is strong enough to preclude ASIC-
based mining.

VOLUME 6, 2018

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

IEEE Access

TABLE 3. ASIC-resistance of the PoW mechanisms discussed in this paper.

[PoW mechanism [Hash chain type

[ADcpy | ADgpy | Example PoW implementations [ASIC availability”

. .] X11, X12, X13, X14, X15, X17 .
Fixed-15 Fixed sequence 1.05 0.94 C11, Tribus, Qubit, NISTS Yes
Variable-15P Permutation without repeats 0.72 0.97 X11EVO, X168, TimeTravel No
Variable-15R Permutation with repeats 0.76 1.33 X16R No

. Permutation with repeats b .
Variable-15N (different chain per nonce) 0.77 0.03 Quark Nof
Memory-hard(Ethash) - 2.83 2.32 Ethash, CryptoNight, Scrypt Yes

2 Based on ASIC-based mining platforms that have been introduced to the retail market by September 2018.
b Variable-15N is a more generalized approach than Quark with a larger variability in the hash function sequence.

¢ ASIC mining system for Quark is available, but not for Variable-15N.

A new PoW mechanism can be designed to amplify the
degree of load imbalance in Variable-15R or X16R to impose
a higher performance disadvantage on ASIC. For example,
a PoW mechanism simply selects only a few hash functions
out of the candidates on each block, which greatly reduces
the ASIC utilization. However, in such a case, the unused
hash modules can be power-cycled to reduce the energy
consumption of the platform. In terms of the energy effi-
ciency, an ASIC still has an advantage. Evaluating the ASIC-
resistance in terms of the energy efficiency is not the focus of
this work. Most of the computing cores or hash modules are
almost fully occupied while computing the multi-hash PoW
algorithms discussed in this work.

We observed low levels of ASIC-resistance in many vari-
ants of Multi-hash PoW mechanisms. It means that someone
can easily create ASICs for such PoW mechanisms that pro-
vide superior computing efficiency than CPUs or GPUs.

VI. CONCLUSION

In this work, we evaluated ASIC-resistance levels of multi-
hash PoW mechanisms. Even after the most basic form of
multi-hash PoW mechanisms that use a fixed hash chain is
defeated by ASICs, many variants of multi-hash PoW mech-
anisms are continuously being developed. We implemented
several multi-hash PoW mechanisms on FPGA to assess their
performance on ASICs. Our evaluation includes PoW mech-
anisms that are already shown to be not resistant to ASICs
as well as mechanisms that still claim ASIC-resistance. The
results from this work revealed that PoW mechanisms based
on multiple hash functions have little ASIC-resistance in
terms of the performance gap against the general-purpose
computing platforms.

ASIC-resistance is challenging to achieve because the
profitability of ASIC-based mining is determined by many
factors, not only by the performance. Even the memory-
hard PoW mechanisms that favor general-purpose computing
systems in terms of the achievable performance are not safe
from ASIC-based mining. Blockchain networks that require
ASIC-resistance in their consensus protocol should develop
a PoW mechanism with a stronger ASIC-resistance or con-
sider different types of consensus mechanisms, such
as PoS.

VOLUME 6, 2018

REFERENCES

[1]

[2]
[3]

[4]
[5]

[6]
[71
[8]
[9]

[10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten,
“SoK: Research perspectives and challenges for Bitcoin and cryptocurren-
cies,” in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 104—121.

M. Swan, Blockchain: Blueprint for a New Economy. Newton, MA, USA:
O’Reilly Media, 2015.

F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084-2123, 3rd Quart., 2016.

S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum, Tech. Rep. EIP-150 REVISION, 2014. [Online]. Avail-
able: http://yellowpaper.io/

K. Christidis and M. Devetsikiotis, ‘“Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292-2303, 2016.

S. Underwood, ““‘Blockchain beyond Bitcoin,” Commun. ACM, vol. 59,
no. 11, pp. 15-17, 2016.

M. Iansiti and K. R. Lakhani, “The truth about blockchain,” Harvard Bus.
Rev., vol. 95, no. 1, pp. 118-127, 2017.

M. B. Taylor, “The evolution of bitcoin hardware,” Computer, vol. 50,
no. 9, pp. 58-66, 2017.

A. Beikverdi and J. S. Song, “Trend of centralization in bitcoin’s dis-
tributed network,” in Proc. IEEE/ACIS 16th Int. Conf. Softw. Eng., Artif.
Intell., Netw. Parallel/Distrib. Comput. (SNPD), Jun. 2015, pp. 1-6.
Hashrate Distribution—An Estimation of Hashrate Distribution Amongst
the Largest Mining Pools. Accessed: Sep. 19, 2018. [Online]. Available:
https://www.blockchain.com

The Antbleed Backdoor. Accessed: Sep. 27, 2018. [Online]. Available:
https://www.antbleed.com/

BITMAIN. ANTMINER S$9i, The World’s Most Power-Efficient Bit-
coin Miner. Accessed: Sep. 19, 2018. [Online]. Available: https://shop.
bitmain.com/promote/antminer_s9i_asic_bitcoin_miner/

E. Duffield. X11 White Paper. Accessed: Sep. 19, 2018. [Online]. Avail-
able: https://github.com/dashpay/dash/wiki/Whitepaper

X14 POW/POS Cryptocurrency With Block Explorer, Stats, and IRC
Chat! Accessed: Sep. 19, 2018. [Online]. Available: https://github.com/
webcoinx 14/Webcoin

X17 Algorithm—List of All X17 Coins and Miners for NVIDIA & AMD.
Accessed: Sep. 19, 2018. [Online]. Available: https://coinguides.org/x17-
algorithm-coins/

RevolverCoin Resources. Accessed: Sep. 19, 2018. [Online]. Available:
http://revolvercoin.org/resources/

L. Pighetti. (2018). X16S—Sixteen Shuffled Algorithms Designed for
Small Miners. Accessed: Sep. 19, 2018. [Online]. Available: https://github.
com/Pigeoncoin/brand/blob/master/X16S-whitepaper.pdf

T. Black and J. Weight. X/6R—ASIC Resistant by Design. Accessed:
Sep. 19, 2018. [Online]. Available: https://ravencoin.org/wp-content/
uploads/2018/03/X16R-Whitepaper.pdf

Quark Mining Guide. Accessed: Sep. 19, 2018. [Online]. Available:
http://www.quarkcoins.com/mining-quarkcoin.html

Time Travel (TimeTravellO | Bitcore) Algorithm, Coins, Miners and
Hashrate. Accessed: Sep. 19, 2018. [Online]. Available: https:/
coinguides.org/time-travel-coins/

C. Percival, “Stronger key derivation via sequential memory-hard func-
tions,” Tarsnap, Vancouver, BC, Canada, Tech. Rep., 2009.

66221

IEEE Access

H. Cho: ASIC-Resistance of Multi-Hash PoW Mechanisms for Blockchain Consensus Protocols

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

N. V. Saberhagen. (2013). CryptoNote V.2.0. [Online]. Available: https://
cryptonote.org/whitepaper.pdf

M. M. S. Aly et al, “Energy-efficient abundant-data computing:
The N3XT 1,000x,” Computer, vol. 48, no. 12, pp. 24-33, Dec. 2015.

J. Emanuel. ‘Loaded” PoW: A New Direction in Proof-of-
Work Algorithms. Accessed: Sep. 27, 2018. [Online]. Available:
https://medium.com/@jeffrey.emanuel/loaded-pow-a-new-direction-
in-proof-of-work-algorithms-ae15ae2ae66a

ProgPoW—A Programmatic Proof of Work. Accessed: Sep. 27, 2018.
[Online]. Available: https://github.com/ifdefelse/ProgPOW

What We Need to Know About Proof of Work (POW).
Accessed: Sep. 27, 2018. [Online]. Available: https://www.reddit.
com/r/Monero/comments/8bshrx/-what_we_need_to_know_about_proof
_of_work_pow/

I. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without
proof of work,” in Financial Cryptography and Data Security, J. Clark,
S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff, Eds.
Berlin, Germany: Springer, 2016, pp. 142-157.

BitFury Group. (2015). Proof of Stake Versus Proof of Work Version
1.0. [Online]. Available: https://bitfury.com/content/downloads/pos-vs-
pow-1.0.2.pdf

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology, J. Katz and H. Shacham, Eds. Cham, Switzerland: Springer,
2017, pp. 357-388.

Delegated Proof-of-Stake Consensus. Accessed: Sep. 19, 2018. [Online].
Available: https://bitshares.org/technology/delegated-proof-of-stake-
consensus/

M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proc.
3rd Symp. Oper. Syst. Design Implement. Berkeley, CA, USA: USENIX
Assoc., 1999, pp. 173-186.

J. Blocki and H.-S. Zhou, “Designing proof of human-work puzzles
for cryptocurrency and beyond,” in Theory Cryptography, M. Hirt and
A. Smith, Eds. Berlin, Germany: Springer Berlin Heidelberg, 2016,
pp. 517-546.

L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA: Using
hard ai problems for security,” in Proc. 22nd Int. Conf. Theory Appl.
Cryptograph. Techn. (EUROCRYPT), Berlin, Germany: Springer-Verlag,
2003, pp. 294-311.

S. King, “Primecoin: Cryptocurrency with prime number proof-of-work,”
Primecoin, Tech. Rep., 2013. [Online]. Available: http://primecoin.io/bin/
primecoin-paper.pdf

P. Rogaway and T. Shrimpton, ““Cryptographic hash-function basics: Def-
initions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance,” in Fast Software Encryp-
tion, B. Roy and W. Meier, Eds. Berlin, Germany: Springer, 2004,
pp. 371-388.

“Announcing request for candidate algorithm nominations for a new
cryptographic hash algorithm (SHA-3) family,” NIST, Gaithersburg, MD,
USA, Tech. Rep. E7-21581, 2007.

G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The Keccak SHA-3
submission,” NIST, Gaithersburg, MD, USA, Tech. Rep. Version 3, 2011.
[Online]. Available: https://keccak.team/files/Keccak-submission-3.pdf
J.-P. Aumasson, W. Meier, R. C.-W. Phan, and L. Henzen, The Hash
Function BLAKE. New York, NY, USA: Springer, 2015.

D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, and J. Amund-
sen, “Cryptographic hash function blue midnight wish,” in Proc. st Int.
Workshop Secur. Commun. Netw., May 2009, pp. 1-8.

P. Gauravaram et al., “Grgstl—A SHA-3 candidate,” NIST, Gaithersburg,
MD, USA, Tech. Rep. Version no. 2.0, 2008. [Online]. Available:
http://www.groestl.info

H. Wu, “The hash function JH,” NIST, Gaithersburg, MD, USA, Tech.
Rep. 42, 2011. [Online]. Available: https://www3.ntu.edu.sg/home/wuhj/
research/jh/jh_round3.pdf

N. Ferguson et al., ““The Skein hash function family,” NIST, Gaithers-
burg, MD, USA, Tech. Rep. Version 1.3, 2010. [Online]. Available:
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

C. D. Canniére, H. Sato, and D. Watanabe, ““Hash function Luffa: Specifi-
cation,” NIST, Gaithersburg, MD, USA, Tech. Rep., 2008. [Online]. Avail-
able: https://ehash.iaik.tugraz.at/uploads/e/ea/Luffa_Specification.pdf

66222

(45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]
[55]

[56]

[57]
(58]

[59]

[60]

D. J. Bernstein, “CubeHash specification (2.B.1),” NIST,
Gaithersburg, MD, USA, Tech. Rep., 2009. [Online]. Available: http://
cubehash.cr.yp.to/submission2/spec.pdf

E. Biham and O. Dunkelman, ‘“The SHAvite-3 hash function,”
NIST, Gaithersburg, MD, USA, Tech. Rep., 2009. [Online]. Available:
http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.01.02.09.pdf

G. Leurent, “The SIMD hash function,” NIST, Gaithersburg, MD,
USA, Tech. Rep. [Online]. Available: https://who.rocq.inria.fr/Gaetan.
Leurent/simd.html

R. Benadjila er al., “SHA-3 proposal: ECHO,” NIST, Gaithers-
burg, MD, USA, Tech. Rep., 2010. [Online]. Available: http://crypto.
rd.francetelecom.com/echo/doc/echo_description_2-0.pdf

0. Kiigiik, “The hash function Hamsi,” NIST, Gaithersburg, MD, USA,
Tech. Rep., 2009.

S. Halevi, W. E. Hall, and C. S. Jutla, “The hash function ‘Fugue,”” NIST,
Gaithersburg, MD, USA, Tech. Rep., 2009. [Online]. Available: https://
researcher.watson.ibm.com/researcher/files/us-csjutla/fugue_Oct09.pdf
E. Bresson et al., “Shabal, a submission to NIST’s cryptographic hash
algorithm competition,” NIST, Gaithersburg, MD, USA, Tech. Rep., 2008.
The Firs XI11 Mining ASIC iBeLink DM384M ASIC DASH Miner.
Accessed: Sep. 19, 2018. [Online]. Available: https://cryptomining-
blog.com/7117-the-first-x11-mining-asic-ibelink-dm384m-asic-dash-
miner/

1. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203-215, Feb. 2007.

T. Pruvot. CPUMiner-Multi. Accessed: Sep. 27, 2018. [Online]. Available:
https://github.com/tpruvot/cpuminer-multi
Ccminer.org—Crypto Currencies ~ Mining Solutions.
Sep. 27, 2018. [Online]. Available: http://ccminer.org/

K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and comprehen-
sive methodology for comparing hardware performance of fourteen
round two SHA-3 candidates using FPGAs,” in Cryptographic Hardware
and Embedded Systems, S. Mangard and F.-X. Standaert, Eds. Berlin,
Germany: Springer, 2010, pp. 264-278.

P. S. Barreto and V. Rijmen, “The WHIRLPOOL hashing function,” Tech.
Rep., 2003.

“Secure hash standard (SHS),” Nat. Inst. Standards Technol., Gaithers-
burg, MD, USA, Tech. Rep. FIPS PUB 180-4, 2015.

D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An analysis of on-
chip interconnection networks for large-scale chip multiprocessors,” ACM
Trans. Archit. Code Optim., vol.7,no. 1, pp. 4:1-4:28, May 2010. [Online].
Available: http://doi.acm.org/10.1145/1756065.1736069

W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient GPU control flow,” in Proc.
IEEE/ACM Int. Symp. Microarchitecture, Dec. 2007, pp. 407-420.

Accessed:

HYUNGMIN CHO received the B.S. degree in
computer science engineering from Seoul National
University, South Korea, in 2005, and the M..S. and
Ph.D. degrees in electrical engineering from Stan-
ford University in 2010 and 2015, respectively.
He was a Research Scientist at Intel Labs, Santa
Clara, CA, USA. He is currently an Assistant Pro-
fessor with the Department of Computer Engineer-
ing, Hongik University, South Korea. His research
interests include reliable computer systems and

accelerator architectures for high-performance computing.

VOLUME 6, 2018

	INTRODUCTION
	BLOCKCHAIN CONSENSUS MECHANISMS
	PROOF-OF-WORK CONSENSUS
	PROOF-OF-STAKE CONSENSUS
	OTHER CONSENSUS MECHANISMS

	MULTI-HASH PoW MECHANISMS
	HASH FUNCTIONS
	FIXED SEQUENCE HASH CHAINS
	HASH CHAINS WITH VARIABLE SEQUENCE PER BLOCK
	HASH CHAINS WITH VARIABLE SEQUENCE PER NONCE

	PERFORMANCE EVALUATION SETUP FOR MULTI-HASH PoW MECHANISMS
	PERFORMANCE METRIC
	EXPERIMENT PLATFORMS
	CPU-BASED PLATFORM
	GPU-BASED PLATFORM
	FPGA-BASED PLATFORM

	EVALUATION METRIC FOR ASIC-RESISTANCE

	ASIC RESISTANCE EVALUATION RESULTS
	FIXED HASH CHAINS
	VARIABLE-SEQUENCE HASH CHAINS
	VARIABLE-SEQUENCE HASH CHAINS PER NONCE
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	HYUNGMIN CHO

