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ABSTRACT The kinematic accuracy improvement is a key challenge in the development of over-constrained
parallel mechanisms (PMs). Taking a two degree-of-freedom (DoF) over-constrained PM applied in assem-
bly line as an example, this paper addresses the kinematic calibration problem of over-constrained PM to
improve accuracy and promote its practical application. Instead of establishing conventional error mapping
model, a nonlinear error model is built by inserting geometric errors of parts to the real inverse position
analysis. On this basis, a set of nonlinear identification equations are formulated. Unlike other methods that
identify the geometric errors by an identification Jacobian matrix and pay extra attention to the robustness
of the matrix, these nonlinear identification equations are directly solved by optimization technique. Herein,
the hybrid genetic algorithm is adopted in the optimization due to its high robustness, efficiency, and
accuracy. Finally, error compensation is implemented by modifying the motor outputs in the controller.
Simulations and experiments are then carried out to verify the calibration method, which show that the
orientation accuracy of the 2-DoF over-constrained PM improves by 93.96% and 90.38%, respectively.
Comparative studies to the conventional regularization method and four other optimization algorithms are
also investigated. The results further confirm the high accuracy of the proposed kinematic calibration method
for over-constrained PMs.

INDEX TERMS Over-constrained parallel mechanism, kinematic calibration, real inverse kinematic, hybrid
genetic algorithm.

I. INTRODUCTION
Over-constrained parallel mechanism (PM) has drawn much
attention from both academia and industry because it has the
merit of PMs such as potentially high stiffness, large load
weight ratio and good dynamic response. In the meantime,
it keeps the same mobility but offers extra constraints to
the end-effector, contributing to the rigidity improvement of
the whole mechanism [1], [2]. One typical example is the
over-constrained Delta PM for high speed pick-and-place
operation in the food packaging, medicine and semiconduc-
tor manufacturing [3]. Motivated by its success, substantial
researches have been carried out for further practical applica-
tions of the over-constrained PMs [4], [5].

Along this track, we developed a 2 degree-of-freedom
(DoF) over-constrained PM for pose adjusting, target tracking

or positioning in the assembly line. For instance, up to 90◦

rotation range and a rotating speed between 10◦ to 20◦ degree
per second are required for the components assembling in
aviation or aerospace. The proposed PM has large rotating
capabilities, and the over-constrained feature is introduced for
better load-carrying and higher stiffness for such application
scenarios. The prototype has been built after design opti-
mization [6]. The next problem for its practical application is
the accuracy improvement, which is also a key issue for the
development of over-constrained PMs regarding as potential
candidates for other industrial domains.

Kinematic calibration and feedback control are recognized
as two inevitable steps to improve accuracy, where the for-
mer is a necessary preparation for the latter step. Kinematic
calibration improves mechanism accuracy by identifying the
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geometric errors and compensating them in the controller [7].
Past few decades have witnessed the developments of PMs’
kinematic calibration. Generally, it can be divided into four
stages: error modeling, measurement planning, parameter
identification and error compensation [8]. Kinematic calibra-
tions of the over-constrained PMs follow the same procedure
since they are the subset of PMs.

Error modeling is the formulation of linear mapping mod-
els between geometric errors of the parts and pose errors
of the moving platform. The mapping matrix, named as
error Jacobian matrix, is intended to be built. The pose
error is calculated by linearization or differentiation of dis-
placement equations. As a result, the mechanism errors are
the linear superposition of the joint displacements and the
geometric errors. Mathematical tools, such as D-H conven-
tion [9], closed-loop vector [10], screw theory [11] or POE
formula [12], have been applied to the error modeling of
PMs. Among them, screw theory based method is highly
welcome due to the application of wrenches to exclude the
passive joint twists. Especially for the over-constrained PMs,
all limb wrenches, including the over-constrained wrenches,
can be adopted to the formulation of error Jacobian matrix.
The obtained error model is assumed to be more precise and
complete [13].

Measurement planning is to use the least measuring con-
figurations for the best identification results [14]. Then a
set of identification equations are formulated to identify
the geometric errors, which is called parameter identifi-
cation [15]. The main challenge for these two stages is
the ill-conditioning problem of the identification Jacobian
matrix, which is brought by linear dependence of some
geometric errors. In the conventional measurement planning
of PMs, optimizations of measurement configurations are
intensively investigated to increase robustness of the iden-
tification Jacobian matrix. Various observability indices and
different searching methods have been proposed [16]–[18].
In the parameter identification, there are two research trends
to address the ill-conditioning problem of the identification
Jacobian matrix. One is to eliminate redundant errors and
then solve the equations by direct inverse [19]. The other
is adding regularization parameters to control the quality of
the solutions [4], [16]. Since linear correlation analysis in
the former trend is rather difficult for PMs, regularization
methods in the latter trend have been widely adopted, for
instance, the generalized cross validation method for a 3-DoF
spatial PM [20] and the regularization selection method for a
2-DoF planar PM [21].

Finally, error compensation is performed by modifying
the kinematic parameters in the control system according
to the identified geometric errors [22]. During this process,
the real kinematic models with the consideration of geometric
errors are built for the following motion control. But the
inputs of the over-constrained PMs cannot be derived from
the actual kinematic models when assigning certain poses
to the moving platform. One possible reason is that the
kinematic constraints corresponding to the over-constrained

features are violated because of the geometric errors. Hence,
error compensation of the over-constrained PMs is usually
implemented by input modifications based on the geometric
error model [4], [13].

In summary, current kinematic calibration methods for
the over-constrained PMs use the inverse of identification
Jacobian matrix for identifying and compensating geometric
errors. Extra attention has to be paid to the consideration of
over-constrained features in the formulation of identification
Jacobian matrix. In addition, intensive efforts are required by
the measurement planning and the parameter identification
for robust calibration. All these make the calibration process
tedious. The improvement of accuracy is limited.

Having realized above-mentioned problems, we proposed
a novel kinematic calibration method for the over-constrained
PMs in this paper. Geometric error model is built by inserting
the geometric errors to the inverse kinematic model. Since the
inverse kinematic equations are formulated by each closed-
loop, the geometric error model based on real inverse kine-
matics can be divided into several sub-models. Thus, the same
measuring data can be applied to identify the geometric
errors of each sub-model, increasing the efficiency of both
measurement planning and parameter identification. In the
following, a set of nonlinear equations aiming at minimizing
actual and normal motor outputs are formulated. Solving
nonlinear identification equations becomes the main task
instead of worrying the robustness of identification Jacobian
matrix. In this way, the geometric errors can be identified
without implementing complicated measurement planning
but adopting reliable algorithm for the nonlinear problems.
Herein, a hybrid genetic algorithm (HGA) is applied, which is
widely recognized as robust, accurate and efficient algorithm
for dealing with nonlinear optimization problems. The details
will be illustrated in the following sections.

The organization of the paper is as follow. Section II briefly
introduces the 2-DoF over-constrained PM and its controlling
scheme. Section III presents the geometric error modeling by
real inverse kinematics, while Section IV investigates param-
eter identification by HGA. Simulations and experiments are
implemented in Section V. Comparative studies are discussed
in Section VI. Finally, conclusions are drawn in Section VII.

II. THE 2-DOF OVER-CONSTRAINED PM
The 2-DoF over-constrained PM consists of a fixed base,
a moving platform, a SS limb and four symmetrically dis-
tributed RSR limbs (see Fig. 1a). Herein, R and S denote
the revolute and spherical joints. The R joints linking to the
fixed base in the 1st and 2nd RSR limbs are connected to
torquemotors. Necessary notations and coordinate frames are
defined as shown in Fig. 1b. Point Bi, Si and Ai (i = 1, 2, 3, 4)
denote the center of joints within RSR limb in sequence. Point
Bi and Ai are located on a circle respectively. The radiuses
are both a. The lengths of the RS and SR links are all l.
Point O and CE are the centers of fixed base and moving
platform. They are also the centers of S joints in SS limb. The
length of SS limb is given by h. A fixed coordinate frame
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FIGURE 1. The 2-DoF over-constrained PM (a) physical prototype,
(b) schematic diagram.

O − xyz is assigned to point O. The x-axis is from point O
to point B1, and the z-axis is perpendicular to the fixed base.
Similarly, a moving coordinate frameCE−uvw is established
at point CE . The direction of the u-axis is from point CE to
point A1. The w-axis is normal to the plane of the moving
platform. The frames are defined according to the right hand
rules.

In the framework of screw theory, the twist of point CE can
be formulated by the twists of joints within RSR limbs or SS
limb as follows.

$t =

5∑
j=1

θ̇a,j,i$̂ta,j,i, i = 1, 2, · · · , 5 (1)

where $̂ta,j,i and θ̇a,j,i denote the unit twist screw and its inten-
sity of jth 1-DoF joint in the ith limb (SS limb is described as
the 5th limb). The S joint is expressed by three R joints whose
axes are linear independent. Since only R joints are involved
in the 2-DoF over-constrained PM, the $̂ta,j,i can be expressed
in axis-coordinate as

$̂ta,j,i =
(
rj,i × sj,i, sj,i

)T (2)

herein sj,i is the vector of the rotational axis of jth joint and
rj,i is the vector pointing from point CE to any point on the
axis.

Reciprocal screw product is defined as the instantaneous
work contributed by the wrench during the motion along the

twist [23]. If a wrench does not do work on a twist, their
reciprocal product is zero. The wrench and twist are then
described as reciprocal. Therefore, the constrained wrench of
the limb is the reciprocal screw of all the joint twists, which
is derived by computing the six-dimensional vector having
zero inner products with all the joint twists. The constrained
wrenches of RSR limbs and SS limb are derived as

$̂wc,i =

(
sc,i

CESi × sc,i

)
, $̂wc,5 =

(
r/h
01×3

)
(3)

where CESi are the vectors from point CE to point Si. sc,i
is the intersection line of two planes formed by R joints and
links, i.e. the first R joint and RS link, the fifth R joint and
SR link. sc,i = l1,i× l2,i, l1,i = s5,i×SiAi, l2,i = s1,i×SiBi,
i = 1, 2, 3, 4. r is the vector from point O to point CE .
Mobility of the PM can be analyzed by the constraints

of the mechanism, which is to find out the independent
constrained forces and toruques. Due to the symmetrical
structure, sc,i (i = 1, 2, 3, 4) is located on the plane formed
by the centers of the S joints, indicating that the con-
strained wrenches of the RSR limbs are all on this plane.
These constrained wrenches are constrained forces that oppo-
site ones are parallel and adjacent ones are perpendicular
(sc,1//sc,3, sc,2//sc,4, sc,1⊥sc,2, sc,3⊥sc,4). According to geom-
etry, a plane is uniquely determined by arbitrary two lines.
Hence, two independent constrained forces on the plane and
the constrained force of SS limb constitute the full space of
forces. In other words, there exists redundant force on the
plane since there are at most three linear independent forces
for any rigid body. For the constrained torques, it is found that
an equivalent torque about the normal direction of the plane
is formed by the opposite constrained forces. Altogether,
the constraints of the mechanism are three independent forces
and one torque. Based on the dual relations between motions
and constraints, the mobility of the mechanism is two rota-
tions. There are only four linear independent wrenches pro-
vided by limbs, resulting in one extra constrained wrench to
the moving platform. Hence, this PM is over-constrained.
To achieve large rotating capability, S joints of the phys-

ical prototype are replaced by three perpendicular R joints
during fabrication. The moving platform of the 2-DoF over-
constrained PM can rotate within the range ±90◦. TwinCAT
NCPTP developed byBeckhoff Automation [24] is applied to
the motion control. Comparing with the conventional motion
controllers, TwinCAT NC PTP works on the same CPU as
PLC, contributing to a fast and direct data exchange between
the motion and logic controller. The motion control block
is shown in Fig. 2. It is divided into three phases, i.e. PLC,
NC and physical axes. PLC phase contains motion and IO
control program. The IO control program can directly control
the IO devices such as indicator lights and sensors. Motion
control program is based on the kinematicmodel of the 2-DoF
over-constrained PM. The desired motion of end-effector
(including displacement, velocity and acceleration) is derived
by controlling the output of motors. Control order is sent
to the NC motion controller and then to the motor drives.
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FIGURE 2. Motion control block of the 2-DoF over-constrained PM.

Motion inaccuracy is compensated by both modifying motor
outputs according to the kinematic calibration results and
motion information of the moving platform obtained from the
feedback control.

III. GEOMETRIC ERROR MODELING BY REAL
INVERSE KINEMATICS
The inverse position analysis without geometric errors
is firstly carried out by closed-loop vector equations.
Tilt-Torsion angles [6] are applied to describe the pose of the
moving platform. The rotation matrix of the frame CE − uvw
with respect to the frame O− xyz is expressed as

R =

 c2φcθ + s2φ sφcφcθ − sφcφ cφsθ
sφcφcθ − sφcφ s2φcθ + c2φ sφsθ
−cφsθ −sφsθ cθ

 (4)

where s and c denote sine and cosine. φ, θ are azimuth, tilt
angles, φ ∈ [0, 2π ], θ ∈ [0, π ].

The closed-loop vector equations are formulated as

bj + lw1,j + lw2,j = r+ Raj, j = 1, 2 (5)

where bj is the vector of point Bi in the frame O − xyz. w1,j,
w2,j are the unit vectors of

−→
BjSj and

−→
SjAj. w1,1 = Ry,β1e1,

w1,2 = Rz,π/2Ry,β2e1. Herein,Rz,π/2 is the orientation matrix
that rotates about z-axis with π/2.Ry,β1 ,Ry,β2 are the rotation
matrices about y-axis with β1 and β2. e1 =

(
1 0 0

)T. r is
position vector of point CE . aj is the vector of point Ai in
frame CE − uvw. And

b1 = a1 =
(
a 0 0

)T
, b2 = a2 =

(
0 a 0

)T

TABLE 1. Geometric errors of RSR limb.

The closed-loop equations are further organized as∥∥r+ Raj − bj − lw1,j
∥∥ = l (6)

The position vector of point CE can be obtained through

r =
(
hcφs

θ

2
hsφs

θ

2
hc
θ

2

)T

(7)

Hence, the input angles β1 and β2 can be computed via (6)
and (7) when the orientation angles φ, θ are given.

By adding geometric errors, the closed-loop vector equa-
tions for real inverse position analysis are re-formulated.
The vectors expressed by nominal parameters in (5) will be
replaced by the actual parameters that contain position or
orientation errors of joints.

The bj becomes bj+1bj because of position errors of point
Bi. Herein, 1bj is defined as

1bj =
(
0δx1,j 0δy1,j 0δz1,j

)T (8)

The lw1,j turns into (l + 1l1,j)w′1 due to the error of link
length and the orientation error of link

−→
BjSj. This orientation

error is led by the orientation errors of R joint connecting to
the fixed base. w′1 is defined as

w′1 = w1 +1w1 × w1 (9)

where 1w1 =

 0 −
0δγ1,1 0

0δγ1,1 0 −
0δα1,1

0 0δα1,1 0

. 0δα1,1, 0δγ1,1

are the orientation errors along the local frame Bj − xjyjzj,
in which yi-axis is collinear with the rotation axis of R joint.
The actual expression of lw2,j is formulated in the same

way as lw1,j. Similarly, aj becomes a′j +1aj, and

a′1 =
(
a 0 −hs

)T
, a′2 =

(
0 a −hs

)T (10)

1aj =
(
6δx5,j 6δy5,j 6δz5,j

)T (11)

where hs is the distance from the upper surface of moving
platform to the point Aj. 6δx5,j, 6δy5,j and 6δz5,j are the
position errors of point Aj in the frame CE − uvw.
The geometric errors of each RSR limb is summarized

in Table 1, where
1δx2,j = 1l1,j sin(θL), 1δy2,i = −1l1,i cos(θL),
4δx5,j = 1l2,j sin(θH), 4δz5,j = 1l2,j cos(θH).

With the real parameters, the real inverse position model
can be formulated as

bj +1bj + (l+1l1,j)w′1 + (l+1l2,j)w′1 = r′ + R(aj +1aj)

(12)
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where r′ is the measured position vector of point CE . There
is no errors in R because the axes of established fixed and
moving frames are assumed to be correct references, which
will be explained in Section V.

The actual inputs of the 2-DoF over-constrained PM are
computed by solving (12).

βj = 2 arctan
((
−Bj +

√
B2j − C

2
j + A

2
j

)
/
(
Cj − Aj

))
(13)

The computation of Aj, Bj and Cj are shown in Appendix.
The geometric errors in the presented study are defined
in the same way as the previous error modeling methods.
The difference lies in the way of formulating error models.
In the conventional methods, the displacement equations of
PMs are differentiated to obtain the mapping error model.
In our method, however, geometric errors are directly added
to the inverse position analysis. Coupling items between the
geometric errors appear when calculating the mechanism
inputs. As a result, the nonlinear geometric error models are
formulated.

IV. PARAMETER IDENTIFICATION BY HGA
After the geometric error model is built, measurement plan-
ning and parameter identification are implemented. Herein,
Laser tracker is selected as the measuring device. With the
measuring poses of the moving platform, the identification
equations are formulated as

fs =
N∑
s=1

(
βj,s − βj,s,0 −1θj,s,0

)2 (14)

where βj,s, βj,s,0 are the actual and nominal inputs of the
jth RSR limb, 1θj,s,0 is the home position error. Herein,
the geometric errors are unknown variables incorporating
with the measuring poses on the right side of the equations.
There are two closed-loops, thus two identification equations
are formulated.

For the inverse position analysis of PMs, certain inputs can
be analytically computed under any configurations selected
from nonsingular workspace. Due to this feature, random
measuring configurations can be selected for solving iden-
tification equations shown in (14). To achieve the best com-
promise between efficiency and accuracy, measuring points
should be 2∼3 times more than the numbers of geometric
errors [10]. There are 11 geometric errors in each limb, thus
24 evenly distributed measuring points are finally selected.
Herein, any number that is between 22 and 33 points are
acceptable.

In terms of solving nonlinear equations, nonlinear opti-
mization method is adopted. The identification equation is
turned into an objective function and the optimization prob-
lem can be described as: finding out the optimal geometric
errors that make fs be minimal. Since unique mechanism
inputs can be obtained when giving certain poses of moving
platform, min fs = 0 exists and the optimal parameters are
just the desired geometric errors.

FIGURE 3. Kinematic calibration procedure of the 2-DoF over-constrained
PM.

Mathematically, the optimization for determining
geometric errors is a nonlinear convex programming prob-
lem without constraints. There have been local and global
searching methods to deal with this problem. Local searching
algorithms such as sequential quadratic programming (SQP)
[26] have rapid local convergence. But the results are depen-
dent on the initial starting point whose selection is difficult,
and they would stop searching if a local optimum is obtained.
Genetic algorithm (GA), as one of the most important global
searching methods, is robust and insensitive to initial point.
However, GA has difficulties in the convergence rate of a
local search. It spends most of the time competing between
different hills, rather than improving solutions on single hill
where optimal point is located [27].

By combining SQP and GA, a HGA method has been
proposed [28], [29]. The implementation is divided into two
phases. In the first phase, GA is employed to provide the
potential near optimum solution. By regarding it as starting
point, SQP is applied to search for the precise optimum with
high speed in the second phase. Taking the advantage of GA
and SQP, the HGA is improved effectively and efficiently.

After parameter identification by HGA, modifications of
motor outputs in controller are employed to compensate geo-
metric errors as

1θ = −J−1ρ Eaeεae −1θa,1 (15)

where Jρ is Jacobian matrix computed by nominal velocity
analysis [6]. 1θa,1 and εae are output errors of motors and
geometric errors. Eae is the error coefficient matrix.
The procedure of the kinematic calibration method by the

real inverse kinematic and HGA is summarized in Fig. 3.
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V. SIMULATION AND EXPERIMENT
Through inserting given values of geometric errors to the
ideal prototype, calibration simulation is firstly carried out by
SolidWorks software. The identified errors are then compared
with the initial given values to verify the effectiveness of
proposed method.

The nominal parameters of the 2-DoF over-constrained
PM, i.e. a, h, l and hs are given by 150, 402, 317 and
80 mm. Then 24 measuring points are evenly chosen from
the workspace. The simulation is implemented as follow.

(1) Draw 3D sketch of the 2-DoF over-constrained PM in
SolidWorks. Establish the fixed frameO-xyz according to the
schematic diagram and insert the given geometric errors.

(2) Drive the 3D sketch model to the 24 measuring points.
Select nonlinear points P1, P2, P3 on the moving platform.
Measure their coordinates at each measuring configuration.
In order to consider measuring noise from laser tracker,
white noise with mean value 0, standard deviation 0.01mm
is applied to the coordinates of measuring points.

(3) Compute the rotation matrix R =
[
u v w

]
by

u =
(
−−→
P2P1

)/∥∥∥(−−→P2P1)∥∥∥
w =

(
−−→
P2P1 ×

−−→
P2P3

)/∥∥∥(−−→P2P1 ×−−→P2P3)∥∥∥
v = w× u

(16)

(4) Formulate parameter identification equations by the
measuring configurations. Perform programing in Matlab.

(5) Apply HGA by Matlab Genetic Algorithm Toolbox.
In the settings, the population size is given as 100. The
optimization generations are 3000. The elite generations are
8. The probability of crossover and mutation probability are
assigned as 0.7 and 0.1. The fmincon and SQP are selected as
the solver and hybrid algorithm. The stopping criteria are set
as TolX=1012, TolFun=10100.

Comparisons between the predefined and identified geo-
metric errors are shown in Table 2. The maximum deviation
of the position error is 0.399 mm while the maximum devia-
tion of the orientation error is 0.03◦. In the whole, the average
deviation is 9.52%, which confirms the effectiveness of the
calibration method.

TABLE 2. Predefined and identified geometric errors by simulation (unit
for position errors are mm and orientation errors are deg).

Simulation results also indicate that the random selected
measurement configurations lead to high accuracy. The same
set of measurement points can be applied for the parameter
identification of different limbs. The efficiency of the whole
calibration process is greatly improved.

Kinematic calibration experiments are also implemented.
The experimental setup is as shown in Fig. 4. First of all, the
fixed and moving frames are established. The fixed frame is
assigned according to the datum holes on the fixed base. The
center of these datum holes are defined as point Q1, Q2, Q3
and Q4. The line going through point Q1 and Q3 is set as
x-axis. The normal direction of the plane formed by point
Q1, Q2, Q3 and Q4 is collinear with z-axis. The y-axis is
determined by default. Since the laser tracker is capable of
finding the center of S joint, the origin of fixed base can be
accurately found out. Hence, the frameO−xyz is successfully
set up. Similarly, the non-collinear points Q5, Q6, Q7 and Q8
are selected from the moving platform.

FIGURE 4. Kinematic calibration experimental setup.

Herein, the u-axis is defined by point Q5 and Q7 while
the w-axis is determined by the plane formed by all the four
points. From this procedure, it is noted that both the fixed
and moving frames are established through the references
on the fixed base and moving platform. Geometric errors
of parts are expressed as the relative errors to these frames.
In other words, the axes of established frames are regarded as
corrected references. On this basis, the geometric errors are
defined. The position errors of pointO and CE are considered
by the home position error 1θj,s,0 and the position vector r′.
Hence, the rotation matrix R is assumed to be without errors
in the error modeling process.

With the samemanner as simulation, the orientation matrix
can be computed by (16). The orientation angles are obtained
as

θ = arccos(R33), φ = arctan
(
R23
R13

)
(17)

where R13, R23 and R33 are the elements in the third column
of the orientation matrix R.

Then, the identification equations can be formulated with
the measuring data obtained from all measuring points
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according to (14). Herein, the measuring points are the same
as the points adopted in simulation. The HGA is applied to
identify the geometric errors. Finally, error compensation is
implemented through modifying the motor outputs by (15).
To evaluate error compensation results, the calibrated 2-DoF
over-constrained PM would be driven towards 24 testing
points, as shown in Fig. 5. It is found that the orientation
angles largely deviate from the expected values before cal-
ibration. For all testing points, the average deviations of θ
and ϕ are 0.3069◦ and 1.3586◦. The maximum deviation
of both angles are up to 0.4632◦ and 3.205◦. After calibra-
tion by the proposed method, the maximum deviation of θ
drops to 0.0249◦, and the average is reduced to 0.0059◦. The
maximum and average differences of ϕ become 0.1452◦ and
0.0337◦. In general, the accuracy improvements for θ and ϕ
are 93.96% and 90.38%, this proves the high accuracy of the
proposed kinematic calibration method for over-constrained
PMs.

FIGURE 5. Orientation angles of testing points before and after
calibration.

VI. DISCUSSION
In the presented calibration method, error model by the real
inverse position analysis and the parameter identification by
HGA are essential. In order to further discuss feasibility
of this method, comparative studies on these two steps are
carried out in this section.

A. KINEMATIC CALIBRATION BASED ON
REGULARIZATION METHOD
For the 2-DoF over-constrained PM, the direct error mapping
model is as follow [30].

$t = Jeεe (18)

where Je =
(
JTxJx

)−1
JTxEe is error Jacobian matrix. Jx

is formed by all actuation and constrained wrenches, Ee is
coefficient matrix corresponding to geometric errors of all
limbs. The same 22 geometric errors are included in this
geometric error mapping model.

96 evenly distributed measuring poses are selected from
the orientation workspace. The laser tracker is adopted again
for measuring position of points on the moving platform,

from which the orientation angles are computed. By incor-
porating the measuring data, the error model becomes

1Xp = H1ε (19)

where 1Xp denotes the pose errors of the moving platform
under 96 measuring poses.H is identification matrix consist-
ing of error Jacobian matrices under 96 measuring poses.

For the 2-DoF over-constrained PM, the condition number
of H is 6.72×104. The accuracy of the calculated geometric
errors is low if the inverse of H is directly applied. To solve
this problem, a regularization parameter λ is applied to con-
trol quality of the solutions.

In order to find a suitable λ, the parametric plot of x(λ)
and y(λ) is investigated. Herein, x(λ) =

∥∥1Xp −H1ε
∥∥ and

y(λ) = ‖1ε‖ for all λ > 0. The corner of the obtained curve
shows a good balance between the regularization error y(λ)
and the right-hand error x(λ) [14]. Corresponding λ is chosen
as the regularization parameter. The identification equations
can be formulated with the determined λ as

1ε =
(
HTH + λI

)−1
HT1Xp (20)

Kinematic calibration experiment based on regularization
method is carried out. The deviations of orientation angles at
testing points are shown in Fig. 6. The maximum deviation
of θ and ϕ at testing points after calibration by regularization
method are 0.4706◦ and 0.4682◦, and the average deviations
are 0.247◦ and 0.352◦. Comparing with our method, the
orientation deviations for both angles are larger. Accuracy
improvement of θ and ϕ are 5.815% and 74.189% by reg-
ularization method. It indicates that our method has better
accuracy than the regularization method. Besides, measuring
points of our method are less. The whole calibration process
is more efficient.

FIGURE 6. Deviation of orientation angles by two calibration methods.
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B. OPTIMIZATION ALGORITHMS FOR NONLINEAR
PARAMETER IDENTIFICATION
Since the nonlinear error model is built by inverse position
analysis of the 2-DoF over-constrained PM, the nonlinear
identification equations can always find a set of geometric
errors that make the deviations of the real and nominal motor
outputs are minimal. Therefore, the parameter identification
can be achieved by optimization algorithm.

Besides HGA, four commonly used optimization
algorithms for non-linear problems are applied, i.e. genetic
algorithm (GA), Levernberg Marquadt (LM), Simulated
Annealing (SA) and Particle Swarm Optimization (PSO).

1) GA
GA is based on biological evolution that repeatedly modifies
a population of individual solutions. At each step, GA selects
individuals to be parents randomly from the current popula-
tion. Two parents are combined to form children for the next
generation by crossover and mutation. The population moves
toward optimal solution over successive generations.

2) LM
LM is a damped least-square method arising from
least squares curve fitting. LM interpolates between the
Gauss-Newton algorithm and gradient descent method. The
choice of damping parameter depends on the initial searching
point.

3) SA
SA is a probabilistic technique that approximates the global
optimum. SA randomly generated a new point at each itera-
tion. The searching distance of the new point from the current
point is set by a probability distribution. By accepting the
points that raise the objective, SA is able to explore globally
for better solutions.

4) PSO
PSO is inspired by the social behavior like bird flock or
fish school. PSO solves a problem through a population with
candidate solutions, called particles. It moves these particles
in the searching space according to the position and velocity
of the particle. Each particle’s movement is influenced by its
local best known position, but is also guided toward the best
known positions of its neighbors.

The same set of predefined geometric errors as Section V
is chosen. Through simulation, deviations between the pre-
defined and the identified errors by different optimization
algorithms are shown in Fig. 7 and Fig. 8. In general, posi-
tion errors identified by SA have the worst accuracy. For
instance, the identified 6δz5,1 is −1.707 mm when it is given
as 1.2 mm. The maximum deviation is up to 2.907 mm. The
accuracy of LM is also unacceptable. The identified 0δx1,1 is
−0.102 mm when the predefined value is −1.5 mm. For the
GA, the maximum deviation is 1.706 mm. If the generation
of PSO is set as 30,000, the identified errors of the 1st RSR

FIGURE 7. Deviation of position errors by different optimization
algorithms.

FIGURE 8. Deviation of orientation errors by different optimization
algorithms.

limb has better consistency with the predefined errors than
the 2nd RSR limb. The maximum deviation is −3.29 mm in
6δy5,2. Comparatively, themaximumdeviation of the position
errors by HGA is the smallest (−0.385 mm). Similar results
are obtained for the orientation errors. The ranking of the
maximum deviations is SA (0.5◦), LM (0.357◦), GA (0.34◦),
PSO (0.169◦) and HGA (0.096◦). In the whole, the identified
position errors by HGA stay close to the predefined errors.
It confirms the high accuracy of HGA.

VII. CONCLUSION
This paper deals with the kinematic calibration of a 2-DoF
over-constrained PM. By inserting geometric errors of the
parts to the inverse position analysis, the geometric error
model is firstly built. It is divided into two sub-models accord-
ing to the closed-loop equations. These sub-models allow
separate parameter identification of limbswith the same set of
measuring poses, thereby increasing efficiency of calibration
process.

Nonlinear identification equations are then formulated by
randomly selected measuring poses. They are turned into
nonlinear optimization problem and then HGA is applied.
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HGA combines the global convergence of GA and the fast
searching capability of SQP, hence can search for the geo-
metric errors in an efficient and accurate manner. Finally,
error compensation is implemented by modifying the motor
outputs.

The proposed method is testified by simulation and exper-
iments. The results show that orientation accuracy improve-
ments of the 2-DoF over-constrained PM are up to 93.96%
and 90.38%. Comparatively, Kinematic calibration based on
the regularization method improves accuracy by 5.815% and
74.819%. Different optimization algorithms, including GA,
LM, SA and PSO, are further compared with the HGA in
parameter identification. The comparisons indicate that the
error modeling by real inverse kinematics and the parameter
identification by HGA contribute to the high accuracy of the
proposed calibration method. The presented work lays a solid
foundation for the following motion control of the 2-DoF
over-constrained PM. It can also be applied to the kinematic
calibration of any PM.

APPENDIX
The coefficients of (13) are as follow.

A1 = 2λ1,1(l +1l1,1) cos(0δγ1,1)+ 2λ2,1(l +1l1,1)

× cos(0δα1,1) sin(0δγ1,1)+ 2λ3,1(l +1l1,1)

× sin(0δα1,1) sin(0δγ1,1),

B1 = 2λ2,1(l +1l1,1) sin(0δα1,1)− 2λ3,1(l +1l1,1)

× cos(0δα1,1),

C1 = (l +1l1,1)2 + λ21,1 + λ
2
2,1 + λ

2
3,1 − (l +1l2,1)2,

A2 = −2λ1,2(l +1l1,2) cos(0δα1,2) sin(0δγ1,2)

+ 2λ2,2(l +1l1,2) cos(0δγ1,2)+ 2λ3,2(l +1l1,2)

× sin(0δα1,2) sin(0δγ1,2),

B2 = −2λ1,2(l +1l1,2) sin(0δα1,2)

− 2λ3,2(l +1l1,2) cos(0δα1,2),

C2 = (l +1l1,2)2 + λ21,2 + λ
2
2,2 + λ

2
3,2 − (l +1l2,2)2,

λ1,1 = a+ 0δx1,1 − rx − R1 (a1 +1a1),

λ2,1 =
0δy1,1 − ry − R2 (a1 +1a1),

λ3,1 =
0δz1,1 − rz − R3 (a10 +1a10),

λ1,2 = −
0δy1,2 − rx − R1

(
a2 + Rz,π/21a2

)
,

λ2,2 = a+ 0δx1,2 − ry − R2
(
a2 + Rz,π/21a2

)
,

λ3,2 =
0δz1,2 − rz − R3

(
a2 + Rz,π/21a2

)
.

Herein, r = ( rx ry rz )T, Rk (k = 1, 2, 3) is the kth row of
orientation matrix R.
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