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ABSTRACT With the advance of gyro technology, modern gyros have two output types: angular rate or inte-
grated angular rate. However, the conventional sculling velocity algorithms usually still adopt integrated
angular rate/specific-force increments as algorithm inputs. So the engineer must convert the angular rate into
integrated angular rate by digital integration to use them. This stepwill produce non-negligible computational
error. To solve this issue, we proposed two types of novel optimal sculling algorithms using angular rate input.
The advantage of the novel algorithms is that they can directly calculate out the carrier velocity without
converting the angular rate of gyro output into integrated angular rate. Hence, they have a higher accuracy
than the conventional sculling algorithms. The results of digital simulations also demonstrate this conclusion.

INDEX TERMS Strapdown inertial navigation algorithm, velocity algorithm, sculling algorithm, coning
algorithm, specific-force transformation.

NOMENCLATURE
f = specific-force measured by accelerometers
Cn
b = direction cosine matrix

H = update period
h = subminor interval in one update period
1θi = incremental angle vector over the ith subminor

interval
ωA3A1A2 = angular rate of coordinate frame A2 relative to

coordinate frame A1 projected on A3 frame axe;
whenA1 is the inertial I frame,ωA1A2 is the angular
rate measured by angular rate sensors mounted on
frame A2

I. INTRODUCTION
A. RELATED RESEARCH WORK
Nowadays, strapdown inertial navigation systems (SINS)
such as being installed on a high-speed unmanned surface
vehicle (USV), often work in a high dynamic environment.
To assess the performance of the navigation algorithms used
in SINS, some standard carrier motions are employed. For
example, coning motion is the standard input to assess the

performance of the strapdown attitude algorithm, sculling
motion is the standard input to assess the performance of the
strapdown velocity algorithm under highly dynamic environ-
ments. To improve the navigation accuracy of SINS in the
high dynamic environment, many scholars conducted numer-
ous researches. Among them Savage is the most outstanding
scholar. He provided an analytical description of sculling
motion and proposed a collection of algorithms which can
preciously calculate the coning correction and the sculling
correction [1], [2]. He also give an analytical model for the
evaluation of error build-up under band-limited random pro-
cess input for the digital integration coning and sculling algo-
rithm [3], [4]. It was demonstrated that the digital integration
process introduced a randomwalk type error in the output that
was directly proportional to the rootmean-square input ampli-
tude, directly proportional to the square-root of the input
bandwidth, and inversely proportional to the digital integra-
tion update frequency. Ignagni is another famous scholar.
He derived a class of optimized sculling algorithms and
demonstrated a duality between the derived class of sculling
algorithms and the class of coning algorithms [4]–[6].
Roscoe proposed a generic equivalency between coning and
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sculling integrals and algorithms. Following his method, it is
easy to obtain a sculling algorithm from the corresponding
coning algorithm based on incremental angle input by adopt-
ing a simple mathematical formula [7]. In [8] two alternative
approaches were developed for deriving strapdown naviga-
tion sculling algorithms. A key point of the two approaches
is the uses of additional gyro/accelerometer output signals
which are the increments of the angular-rate/specific-force
multiple integrals over the iteration interval to improve the
algorithm accuracy. Song employed Taylor series expansion
to analyze the error of the conventional sculling correction
algorithm under maneuvers, he proposed some new sculling
algorithms which are constructed with the presented sculling
algorithms for the velocity translation vector, and avoid the
loss in accuracy of velocity translation vector under maneu-
vers [9], [10].

B. KEY WORK OF THIS PAPER
These conventional sculling velocity algorithms are all based
on the assumption that the output of gyro is integrated
angular rate. However, modern inertial sensors produce
different types of output now. For example, the micro-
electromechanical systems (MEMS) gyro and some kinds of
fiber optical gyro (FOG) have angular rate sampled output,
not integrated angular rate. So, the conventional sculling
velocity algorithms are not well-suited for the SINS which
are equipped with a FOG or a MEMS gyro. In addition, at the
present the accelerators also have different output types, for
example, the quartz accelerometer output is usually specific-
force, but some other types of accelerometer output specific-
force increments.

In order to adapt to this tendency, we designed two
types of optimal sculling velocity algorithms based on angu-
lar rate input. The first type of algorithms uses the angu-
lar rate/specific-force as the algorithm inputs. The second
uses the angular rate/specific-force increments as algorithm
inputs. These novel algorithms can directly calculate out the
carrier velocity without converting the dimension of gyro’s
output. Therefore, for the SINS equipped with a gyro with
the output of angular rate, the precision of the algorithm can
be improved considerably.

II. ALGORITHM EXAMPLES FOR CONVENTIONAL
SCULLING ALGORITHMS
Velocity rate equation is [1]:

V̇ = Cn
b f − (2ωnie + ω

n
en)× V

n
+ gn (1)

where gn is the gravitational acceleration projected on ‘‘n’’
frame axe (navigation coordinate). The subscripts ‘‘i, e, n’’
in ω represent the inertial coordinate, geographic coordi-
nate, and navigation coordinate respectively. ‘‘V ’’ is the car-
rier velocity. The body’s velocity in navigation coordinates
at time tm is then obtained as the integral of Eq.(1) from

time tm−1, evaluated at time tm:

V n
m = V n

m−1 + C
n(m−1)
b(m−1)

∫ tm

tm−1
Cb(m−1)
b(t) fdt

+

∫ tm

tm−1
[gn − (2ωnie + ω

n
en)× V

n
m−1]dt

= V n
m−1 + Cm−11Vsfm +1Vg/corn (2)

where m is the digital velocity integration algorithm update
rate computer cycle index, 1Vsfm is the integrated trans-
formed specific-force increment, 1Vg/corn is the gravity/
Coriolis velocity increment. gn, ωnie in 1Vg/corn can be
assumed as constants. Hence 1Vg/corn in Eq. (2) can be
calculated approximately as a constant during one update
period. ωnen is almost no variation during (tm−1, tm) so it can
be derived from theV n

m−1, which is the carrier velocity at tm−1
and has been calculated out during the last velocity determi-
nation iteration. The 1Vsfm calculation includes solving for
an integral that represents the change in velocity caused by
specific-force acceleration ( [1], Eq.(26)):

1Vsfm = 1Vm +
∫ tm

tm−1
(1θ (t)× f (t))dt (3)

where:

1θ (t) =
∫
ω(t)dt,1Vm =

∫ tm

tm−1
f (t)dt (4)

Then, Eq. (3) can be written as [see [1], Eqs. (27–36) for
development]:

1Vsfm = 1Vm +
1
2
1θm ×1Vm

+
1
2

∫ tm

tm−1
[1θ (t)× f (t)+1V (t)× ω(t)]dt

= 1Vm +1Vrotm +1Vsculm (5)

where 1Vrotm is the velocity rotation correction and 1Vsculm
is the sculling correction. Obviously, there is:

1vsculm =
1
2

∫ tm

tm−1
[1θ (t)× f +1V (t)× ω]dt (6)

The discrete algorithm of 1Vsculm can be converted from
coning algorithm using a simple duality formula [5], [7].
For example, the 2-interval optimal sculling algorithm using
incremental angle/specific-force increments inputs is [5], [7]:

1V̂sculm =
2
3
(1θ1 ×1V2 +1V1 ×1θ2) (7)

Its coning algorithm counterpart, namely the 2-interval
optimal coning algorithm using incremental angle input
is [1], [5]:

18 =
2
3
(1θ1 ×1θ2) (8)

The 3-interval optimal sculling algorithm is [5], [7]:

1V̂sculm = (
9
20
1θ1 +

27
20
1θ2)×1V3

+ (
9
20
1V1 +

27
20
1V2)×1θ3 (9)
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Its coning algorithm counterpart, namely the 3-interval
optimal coning algorithm [5], [7]:

18 = (
9
20
1θ1 +

27
20
1θ2)×1θ3 (10)

III. SCULLING ALGORITHM USING ANGULAR
RATE/SPECIFIC-FORCE INPUT
There are two imperfections in the conventional sculling
velocity algorithms such as [5] and [7]. Firstly, strictly
speaking, only with the duality between coning integral and
sculling integral we can’t obtain the optimal coefficients for
the sculling integration algorithm. To obtain the optimal coef-
ficients, the duality between true coning correction and true
sculling correction also needs to be demonstrated. Secondly,
as is seen in Eqs.(7) and (10), the conventional sculling
algorithm adopts the integrated angular-rate/specific-force
increments as input. But with the development of inertial
sensors, many inertial measurement units (IMU) have the
output of angular rate now. In such cases the conventional
sculling algorithms can’t calculate the body’s velocity accu-
rately. To use the conventional velocity algorithms, we must
convert the angular rate into incremental angle by digital inte-
gration in order to use Eq.(7) or Eq.(9). Obviously, this step
will cause the non-negligible computational error. To solve
this problem, we proposed two types of formalized optimal
sculling algorithm based on angular rate input in this paper.
The first type is the optimal sculling algorithm based on
angular rate/specific-force inputs. The derivation process is
based on the duality between the coning integral and the
sculling integral as well as the duality between true coning
correction and true sculling correction.

A. THE DUALITY BETWEEN THE GENERIC CONING
INTEGRAL AND SCULLING INTEGRAL
Let us define 1V̂sculm to be a digital integration algorithm
for sculling correction, β̂ be a digital integration algorithm
for coning correction. Reference [5] has demonstrated the
duality equivalency between the generic coning integral and
sculling integral. The demonstration details in [5] can be seen
in Appendix. From [6] (Eq.(25)) we can obtain the generic
coning integral term using angular rate input:

β̂ =

N∑
j=i+1

N−1∑
i=0

Kij(ωi × ωj)H2 (11)

where Kij is the constant coefficients which will be optimized
under coning motion, ωi is the angular rate sample of ith
moment in one iteration interval. Based on duality principle,
from Eq.(A12) in Appendix we can obtain:

1V̂sculm

=

N∑
j=i+1

N−1∑
i=0

Kij([ωi(t)+ fi(t)]× [ωj(t)+ fj(t)])H2

−

N∑
j=i+1

N−1∑
i=0

Kij(ωi × ωj)H2
−

N−1∑
i=0

N∑
j=i+1

Kij(fi × fj)H2

=

N∑
j=i+1

N−1∑
i=0

Lij[ωi(t)× fj(t)]H2 (12)

where Lij is the unknown coefficient which should be
optimized under sculling motion.

B. THE DUALITY BETWEEN TRUE CONING CORRECTION
AND TRUE SCULLING CORRECTION
However, only from the duality between the generic coning
integral and the generic sculling integral in [5] we can’t obtain
the optimal coefficients for the sculling integration algorithm.
To obtain the optimal coefficients, the duality between true
coning correction and true sculling correction also needs to
be demonstrated.

A typical sculling motion is defined as:

ω = b� cos(�t)J , f = c sin(�t)K (13)

where b is the amplitude of the angular vibration,c is the
amplitude of the specific-force vibration, J , K are the unit
vectors along the two body axes (y, z) about which the oscilla-
tions are occurring, and� is the frequency associated with the
angular and specific-force oscillations. Substituting Eq.(13)
into Eq.(6) gives the true sculling correction:

1Vsculm =
1
2

∫ tm

tm−1
[1θ (t)× f +1V (t)× ω]dt

=
bc
2
(H −

1
�

sin�H )I (14)

where H is the algorithm update period H = tm-tm−1.
A typical coning motion is defined as [11]:

ω = [0, a� cos(�t)J ,d� sin(�t)K ] (15)

where a, d are the amplitudes of the angular oscillations in
two orthogonal axes of the body. � is the frequency asso-
ciated with the angular oscillations. The corresponding true
coning correction is [5], [7]:

β =
ad
2
(�H − sin�H )I (16)

Compared Eq. (14) with Eq. (16), we can find that Eq. (14)
equals Eq. (16) when b in Eq. (14) are replaced by a, and
c in Eq. (14) are replaced by d�. This is because the con-
ing motion equation Eq. (13) equals the sculling equation
Eq. (15) when b in Eq. (13) is replaced by a, and c in Eq. (13)
is replaced by d�. Hence there is a duality between true
coning correction and true sculling correction.

C. THE EQUIVALENCE BETWEEN THE OPTIMAL
COEFFICIENTS OF CONING AND OF SCULLING
ALGORITHMS
The sculling integral should equal the true sculling correction
in a sculling environment.

1V̂sculm = 1Vsculm (17)
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Also, the coning integral term given in Eq. (11) should
equal the true coning correction in a coning environment.
There is:

β̂ = β (18)

As is stated, there are dualities between 1V̂sculm and β̂,
1Vsculm and β. Hence the optimal coefficients of sculling
algorithm using angular rate/specific-force input are equiv-
alent to those of coning algorithm using angular rate input.
The optimal coefficients of coning algorithms using angular
rate input have been derived in [4] [Eqs.(33), (36), and (42)].
So it is easy to obtain the corresponding sculling algorithm.

D. ALGORITHM EXAMPLES
This section converts two existing derived coning algorithms
into their sculling algorithm counterparts.

1) EXAMPLE 1 2-INTERVAL OPTIMAL SCULLING ALGORITHM
In [4, eq. (47)], the 2-interval optimal coning algorithm using
angular rate input is:

β̂ =
h2

45
(ω0 × ω2)+

28h2

45
(ω1 × ω2) (19)

where h is the sub-minor interval of the algorithm. For a
2-interval algorithm there is H=2h. According to Eq.(19)
and Eq.(A12) the 2-interval optimal sculling algorithm using
angular rate/specific-force input can be obtained:

1V̂sculm =
H2

180
(ω0 × f2 + f0 × ω2)

+
7H2

45
(ω0 × f1 + f0 × ω1) (20)

2) EXAMPLE 2 3-INTERVAL OPTIMAL SCULLING ALGORITHM
In [4, eq. (45)], the 3-interval optimal coning algorithm using
angular rate input is given as:

β̂=
87h2

2240
(ω0 × ω3)+

27h2

56
(ω1×ω3)+

2619h2

2240
(ω2 × ω3)

(21)

where h is the subminor interval of the algorithm. For a
3-interval algorithm there is H=3h. According to Eq.(21)
and Eq.(A12) the 3-interval optimal sculling algorithm using
angular rate/specific-force input can be obtained:

1V̂sculm =
29H2

6720
(ω0 × f3 + f0 × ω3)

+
3H2

56
(ω1 × f3 + f1 × ω3)

+
291H2

2240
(ω2 × f3 + f2 × ω3) (22)

E. DIGITAL INTEGRATION ALGORITHM FOR
VELOCITY ROTATION
1θm, 1Vm in Eq.(5) can be calculated by digital integration.
For example for a 2-interval system there is:

1θm= (
ω0

6
+
4ω1

6
+
ω2

6
)H ,1Vm= (

f0
6
+
4f1
6
+
f2
6
)H (23)

Substituting Eq.(23) into Eq.(5) gives the velocity rotation
correction 1Vrotm of 2-interval velocity rotation digital inte-
gration algorithm:

V̂rotm =
1
2
(
ω0

6
+

4ω1

6
+
ω2

6
)× (

f0
6
+

4f1
6
+
f2
6
)H2 (24)

Then substituting Eqs.(23), (24) and (20) into Eq.(5), we
obtain the integrated transformed specific-force increment
1Vsfm of a 2-interval system there:

1vsfm = υm +1vrotm +1vsculm

= (
f0
6
+

4f1
6
+
f2
6
)H +

1
2
(
ω0

6
+

4ω1

6
+
ω2

6
)

× (
f0
6
+

4f1
6
+
f2
6
)H2

+
H2

180
(ω0 × f2 + f0 × ω2)+

7H2

45
(ω0

× f1 + f0 × ω1) (25)

Described previously,1Vg/corn in Eq. (2) can be calculated
approximately as a constant. Considering V n

m−1 in Eq. (2),
i.e., the carrier velocity at tm−1 has been calculated out dur-
ing the last velocity determination iteration. By substituting
Eq.(25) into Eq.(2) the carrier velocity at tm, i.e., V n

m will be
achieved.

IV. SCULLING ALGORITHM USING ANGULAR
RATE/SPECIFIC-FORCE INCREMENTS INPUT
As is stated, some types of accelerometer have the output
of specific-force increments now. If the IMU produce angu-
lar rate/specific-force increments outputs, the conventional
sculling algorithms such as Eqs.(7) and (9) cannot calcu-
late out the carrier’s velocity directly. The sculling velocity
algorithm must include a step for converting angular rate
into integrated angular rate by digital integration. This step
will produce non-negligible computational error. To solve this
problem, we have developed a novel sculling algorithm using
angular rate/specific-force increments input directly.

A. FORMALIZED OPTIMAL SCULLING ALGORITHM
For an N -interval sculling velocity algorithm using angular
rate/specific-force increment inputs, the sample number of
the accelerometer outputs (specific force) is N + 1, and
the number of the gyro outputs (integrated angular rate) is
N . The theoretical gyro/accelerometer outputs in a sculling
environment defined by Eq.(15) are:

ωi = b�

× cos[�(tm+
i−1
N

H )]J , i = 1, 2, . . . ,N + 1

1Vj =
2c
�

sin
�H
2N

× sin�[tm−1 +
(2j− 1)H

2N
]K , j = 1, 2, . . . ,N

(26)

Based on the duality between coning correction and
sculling correction, following the derivation of
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Eqs.(A8)-(A12) in Appendix, we can obtain:

1V̂sculm = 18̂([ω +1V ]→ ω)−18̂−18̂(1V → ω)

(27)

where ‘‘A→B’’ represents the ‘‘B replaced by A’’. For
example, ‘‘ω + 1V → ω’’ means that ω is replaced by
ω + 1V . Then substituting Eq.(27) into Eq.(11) gives the
generalized form of the sculling correction using angular
rate/specific-force increment input:

1V̂sculm

=

N∑
j=i+1

N−1∑
i=1

Kij(ωiH +1Vi)× (ωjH +1Vj)

−

N∑
j=i+1

N−1∑
i=1

Kij(ωi × ωj)H2
−

N∑
j=i+1

N−1∑
i=0

Kij(1Vi ×1Vj)

=

N∑
j=i+1

N−1∑
i=1

kij(ωi ×1Vj − ωj ×1Vi)H (28)

where N is the number of iteration intervals over the velocity
update period. It follows from Eq.(26) that:

(ωi×1Vj−ωj×1Vi)H

= bcH sin
�H
2N

[sin(
2j−2i+1

2N
�H )−sin(

2i−2j+1
2N

�H )]

= bcH sin
�H
N

sin(
j− i
N
�H ) (29)

Obviously, the sculling correction 1Vsculm is only deter-
mined by |j-i|. Therefore Eq.(28) can be simplified as:

1V̂sculm =
N∑
j=2

kj−1(ω1 ×1Vj − ωj ×1V1)H (30)

Substituting Eq.(26) into Eq.(30) gives:

1V̂sculm = bcH
N−1∑
l=1

ki sin
�H
N

sin
l�H
N

(31)

Applying Eq.(31) with Taylor series expansion for the
coefficient terms ‘‘�H ’’, we obtain:

1V̂sculm = bcH{[k1 + 2k2 + · · · (N − 1)kN−1](
�H
N

)2

+ (−
k1
3!
−
k1
3!
−

2k2
3!
−

23k2
3!
−

33k3
3!

−
3k3
3!
· · · )(

�H
N

)4 + . . .} (32)

Applying Eq.(14) with Taylor series expansion for the
coefficient terms ‘‘�H ’’ gives:

1Vsculm =
bc
2
[
(�H )3

3!�
−

(�H )5

5!�
+ · · · ] (33)

From 1V̂sculm = 1Vsculm we can obtain:

A(N−1)×(N−1) · G(N−1)×1 = D(N−1)×1 (34)

where A and G are shown at the bottom of this page.
The solution to Eq.(34) is G= A−1D. Details regarding the

optimal coefficients are shown in Table 1.

TABLE 1. Sculling algorithm optimal coefficients.

B. ALGORITHM EXAMPLES
1) EXAMPLE 1 2-INTERVAL OPTIMAL SCULLING ALGORITHM
When N=2, substituting k1=1/3 into Eq.(43) gives:

1V̂sculm =
1
3
(ω1 ×1V2 − ω2 ×1V1)H (35)

A =



1
N 2

2
N 2 · · ·

N − 1
N 2

1+ 13

N 43!
2+ 23

N 43!
· · ·

(N − 1)+ (N − 1)3

N 43!
· · · · · · · · ·

1+ 1(2N−3)

N 2(N−1)(2N − 3)!
2+ 2(2N−3)

N 2(N−1)(2N − 3)!
· · ·

(N − 1)+ (N − 1)(2N−3)

N 2(N−1)(2N − 3)!


︸ ︷︷ ︸

(N−1)×(N−1)

,

G =
T

[k1k2 · · · kN−1]︸ ︷︷ ︸
(N−1)×1

,D =

T[
1

2 · 3!
1

2 · 5!
· · ·

1
2 · (2N − 1)!

]
︸ ︷︷ ︸

(N−1)×1
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The per unit time algorithm error is:

δV̂sculm = |V̂sculm − Vsculm| =
bc
360

(�H )4 (36)

In Eqs.(2) and (5), the integrated transformed specific-
force increment 1Vsfm is composed of 1Vsculm, 1Vrotm, and
1Vm.1Vm and 1θm in Eq.(5) can be calculated by digital
integration:

1θ̂m = (
ω1

6
+

4ω2

6
+
ω3

6
)H ,1V̂m = 1V1 +1V2 (37)

Substituting Eq.(37) into Eq.(5) gives:

1V̂rotm =
1
2
(
ω1

6
+

4ω2

6
+
ω3

6
)× (1V1 +1V2)H (38)

Substituting Eqs. (35), (37), and (38) into Eq.(5) gives the
2-interval integrated transformed specific-force increment:

1V̂sfm = 1V1 +1V2 +
1
2
(
ω1

6
+

4ω2

6
+
ω3

6
)

× (1V1 +1V2)H +
1
3
(ω1 ×1V2 − ω2 ×1V1)H (39)

2) EXAMPLE 2 3-INTERVAL OPTIMAL SCULLING ALGORITHM
When N=3, substituting k1=23/40, k2=7/80 of table 1 into
Eq.(30) gives:

1V̂sculm =
23
40

(ω1 ×1V2 − ω2 ×1V1)H

+
7
80

(ω1 ×1V3 − ω3 ×1V1)H (40)

For a 3-interval system there are:

1θm = (
ω0

8
+

3ω1

8
+

3ω2

8
+
ω3

8
)H ,

1Vm = 1V1 +1V2 +1V3 (41)

Substituting Eq.(41) into Eq.(5) gives the velocity rotation
correction 1Vrotm:

V̂rotm =
1
2
(
ω0

8
+
3ω1

8
+
3ω2

8
+
ω3

8
)×(1V1+1V2+1V3)H

(42)

Then substituting Eqs.(40)-(42) into Eq.(5) gives the
integrated transformed specific-force increment 1Vsfm:

1vsfm = υm +1vrotm +1vsculm

=1V1 +1V2 +1V3 +
1
2
(
ω0

8
+

3ω1

8
+

3ω2

8
+
ω3

8
)

×(1V1 +1V2 +1V3)H

+
23
40

(ω1 ×1V2 − ω2 ×1V1)H

+
7
80

(ω1 ×1V3 − ω3 ×1V1)H (43)

Described previously1Vg/corn in Eq. (2) can be calculated
out easily, indeed it can be calculated approximatively as a
constant during one update period and omitted here. V n

m−1
in Eq.(2), i.e., the carrier velocity at tm−1 has been calcu-
lated out during the last algorithm update period. Thus the

carrier velocity at time tm can be calculated out by substi-
tuting Eq.(43) into Eq.(2). Comparing the proposed sculling
algorithm given by Eq.(35) and (40) with the conventional
sculling algorithms represented in Eqs.(7) and (9), we can see
the advantages of the proposed algorithm are that it is able to
calculate out the sculling correction, then the velocity at tm
directly without any demands for the dimension conversion
of inertial sensor outputs.

V. SIMULATIONS
According to the sculling motion given by Eq.(13),
we employ a 600-second digital simulation to verify the
performance of the proposed sculling algorithm using angular
rate/specific-force increments input. The parameters are set
as: the amplitude of the angular vibration b=1◦, the amplitude
of the specific-force vibration c=10g, the frequency associ-
ated with the angular and specific-force oscillations �=2π
rad/s (oscillation frequency is 1 Hz). The inertial sensors
outputs are given by Eq.(26) with N=3. The velocity update
period H=0.01s. The initial attitude is (0, 0, 0)◦. The initial
velocity is (0, 0, 0) m/s. The initial position is (118.78333◦,
32.05000◦, 10m). The navigation coordinate frame is set to
east-north-up. The error comparisons between the proposed
3-interval sculling algorithm given by Eq.(40) and the con-
ventional 3-interval sculling algorithm given by Eq.(7) are
shown in Figs. 1–2. The blue and solid curve is the curve of
proposed sculling algorithm errors, the red and dotted curve
is the curve of conventional sculling algorithm errors.

FIGURE 1. Comparison of the horizontal velocity determination results
between two algorithms under sculling environment. (a) Eastward
velocity error. (b) Northward velocity error.

From Fig. 1 we can see that the eastward velocity errors
of both algorithms are larger about one order than northern
velocity errors. This is because in a sculling environment
defined by Eq.(13), the sculling error mainly exists in the
x-axis of the carrier. The corresponding velocity component
is VE in the east-north-up coordinate frame. So there is a
constant error term in the eastward velocity, which is called
‘‘sculling error’’. So both eastward velocity error curves
increase almost linearly with time due to the sculling error
propagation.
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FIGURE 2. Comparison of the statistical characters of the velocity error
between two algorithms.

However, both the VE error and the VN error of the pro-
posed algorithm is approximately reduced by 10 times com-
pared with those of the traditional algorithm. This is because
the proposed sculling algorithm can calculate out the velocity
directly without dimension conversion of inertial sensor out-
puts. Therefore, the sculling correction has been compensated
more effectively and the velocity determination precision is
improved dramatically.

To further illustrate the accuracy of the proposed algorithm,
we make a quantitative comparison. The results of compari-
son are given in table 2:

For straight comparison, we draw a bar graph named Fig.2,
based on the data of table 2:

We also compared the attitude errors of two algorithms.
The results are given in Fig.3:

TABLE 2. Comparison of the statistical characters of the velocity error
between two algorithms.

TABLE 3. Comparison of the statistical characters of the attitude error
between two algorithms.

FIGURE 3. Comparison of the attitude determination results between two
algorithms under sculling environment. (a) Roll error. (b) Pitch error.
(c) Head error.

FIGURE 4. Comparison of the attitude determination results between two
algorithms under sculling environment.

As is seen in Fig.3, the attitude errors of the developed
algorithm are much less than those of the traditional algo-
rithm. This is because the improved precision in velocity
determination can also result in the improvement of the pre-
cision of attitude determination.

To further illustrate the accuracy of the developed algo-
rithm, we make a quantitative comparison. The results of
comparison are given in table 3 and Fig. 4:

In Fig.4 the bar of pitch error δθ is invisible because the
pitch errors of both algorithms are so small (seen in table 3)
that actually they can be neglected compared with the roll
error and head error.
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FIGURE 5. Comparison of the horizontal position determination results
between two algorithms under sculling environment. (a) Longitude error
(b) Latitude error.

TABLE 4. Comparison of the statistical characters of the position error
between two algorithms.

FIGURE 6. Comparison of the statistical characters of the position error
between two algorithms.

We also compare the position error of two algorithms. The
results are given in Fig. 5:

To further illustrate the accuracy of the developed algo-
rithm, we make a quantitative comparison. The results of
comparison are given in table 4 and Fig.6 :

From Figs.5-6 and table 4 we can see that the longitude
errors of both algorithms are larger than the latitude errors of
them. This is because the eastward velocity error is the key
cause for the longitude error. As mentioned above, the east-
ward velocity errors of both algorithms are larger about one
order than those northern velocity errors. However, the posi-
tion errors of the proposed algorithm are reduced by about

one order of magnitude comparedwith those of the traditional
sculling algorithm. This is because the improved precision
in velocity determination will also improve the precision of
position determination.

VI. CONCLUSIONS
To solve the issue that in certain situations the dimensions of
the IMU output do not meet the demand of the conventional
sculling algorithms for input, the optimal sculling algorithms
using angular rate/specific-force and angular rate/specific-
force increments inputs are developed in this paper. The
developed sculling algorithms can directly calculate out the
velocity of the carrier without the dimension conversion
of inertial sensor outputs. Accordingly, the developed algo-
rithms provide higher precision than conventional sculling
algorithms in the SINS in which the employed gyro has an
angular rate output. Our novel sculling velocity algorithm
thus has great useful value in such cases.

APPENDIX:
THE DERIVATION OF DUALITY EQUIVALENCY BETWEEN
CONING INTEGRAL AND SCULLING INTEGRAL
Let us define a vectorU1 to be the integral of the cross product
of two vectors V1 and v1:

U1 =

∫
(V1 × v1)dt (A1)

whereV1 =
∫
v1dt . Similarly, letU2 be the integral ofV2×v2,

where v2 is another arbitrary vector:

U2 =

∫
(V2 × v2)dt (A2)

where V2 =
∫
v2dt . Because U1 and U2 have identical

mathematical forms, U2 equals U1 when v1 in U1 is replaced
by v2.

Now define the following:

v3 ≡ v1 + v2U3 =

∫
(V3 × v3)dt (A3)

where:

V3 =
∫
v3dt =

∫
(v1 + v2)dt =V1 + V2,

U3 =

∫
(V3 × v3)dt = U1 + U2 +

∫
(V1 × v2)dt

+

∫
(V2 × v1)dt (A4)

Let:

U4 =

∫
[(V1 × v2)+ (V2 × v1)]dt (A5)

Comparing Eq.(A5) with Eqs.(A1)-(A3) gives:

U4 = U3 − U1 − U2 (A6)

Then U4 can be represented as:

U4 = U1(v3→ v1)− U1 − U1(v2→ v1) (A7)
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where ‘‘A→B’’ represents the ‘‘B replaced by A’’. For exam-
ple, ‘‘v3→ v1’’ means that v1 is replaced by v3.
Let us also define Û1 to be a digital integration algorithm

for U1. Similarly, Û2 for U2, Û3 for U3, and Û4 for U4. It can
be followed from Eqs.(A6)-(A7) that:

Û4 = Û3−Û1−Û2 = Û1(v3→ v1)−Û1 − Û1(v2→ v1)

(A8)

Let:

v1 = ω, v2 = f , v3 = ω + f ,V1 =
∫
v1dt = 1θ (t),

V2 =
∫
v2dt = 1V (t),V3 = 1θ (t)+1V (t) (A9)

Then we can get:

18̂ =
1
2

∫
[1V (t)× ω(t)]dt =

1
2
Û1

1V̂sculm =
1
2

∫
[1θ (t)× f +1V (t)× ω]dt =

1
2
Û4

(A10)

Substituting Eq.(A8) into 1V̂sculm of Eq.(A10) can obtain
the coning integral value:

1V̂sculm =
1
2
Û4 =

1
2
[Û1(v3→ v1)− Û1 − Û1(v2→ v1)]

(A11)

Substituting Eqs.(A9)-(A10) into Eq.(A11) gives:

1V̂sculm = 18̂([ω + f ]→ ω)−18̂−18̂(f → ω)

(A12)
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