
Received September 12, 2018, accepted October 14, 2018, date of publication October 30, 2018,
date of current version November 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2876460

Discharging Approach for Double Roman
Domination in Graphs
ZEHUI SHAO 1,2, PU WU1, HUIQIN JIANG2, ZEPENG LI3, JANEZ ŽEROVNIK 4,5,
AND XIUJUN ZHANG 2
1Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
2School of Information Science and Engineering, Chengdu University, Chengdu 610106, China
3School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
4Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
5Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

Corresponding author: Zehui Shao (zshao@gzhu.edu.cn)

The work of Z. Shao was supported in part by the National Key Research and Development Program under Grant 2017YFB0802300 and in
part by Applied Basic Research (Key Project) of Sichuan Province under Grant 2017JY0095. The work of Z. Li was supported in part by
the National Natural Science Foundation of China under Grant 61802158 and Grant 61672050 and in part by the Fundamental Research
Funds for the Central Universities under Grant lzujbky-2018-37. The work of X. Zhang was supported by the Key Project of the Sichuan
Provincial Department of Education under Grant 17ZA0079.

ABSTRACT The discharging method is most well-known for its central role in the proof of the Four
Color Theorem. This proof technique was extensively applied to study various graph coloring problems,
in particular on planar graphs. In this paper, we show that suitably altered discharging technique can also
be used on domination-type problems. The general discharging approach for domination-type problems
is illustrated on a specific domination-type problem, the double Roman domination on some generalized
Petersen graphs. By applying this approach, we first prove that γdR(G) ≥ (3n/1(G)+ 1) for any connected
graph G with n ≥ 2 vertices. As examples, we also determine the exact values of the double Roman
domination numbers of the generalized Petersen graphs P(n, 1) and the double generalized Petersen graphs
DP(n, 1). The obtained results imply that P(n, 1) is double Roman if and only if n 6≡ 2 (mod 4) andDP(n, 1)
is double Roman if and only if n ≡ 0 (mod 4).

INDEX TERMS Discharging approach, double Roman domination, generalized Petersen graph, double
generalized Petersen graph, double Roman graph.

I. INTRODUCTION
For a vertex v in a graph G, the open neighborhood of v in G
is denoted by N (v), i.e. N (v) = {u|uv ∈ E(G)} and the closed
neighborhood N [v] of v inG is defined as N [v] = {v}∪N (v).
The degree of a vertex v is denoted by d(v), i.e. d(v) = |N (v)|,
and the maximum degree of a graph G by 1(G). A graph is
called k-regular if each vertex has degree k . We denote by Pn
and Cn the path and the cycle of n vertices, respectively. For a
positive integer n, we write [n] = {1, 2, · · · , n}. We also use
‘‘iff’’ to denote ‘‘if and only if’’.

A subsetW of vertices of a graphG is said to be a dominat-
ing set if each vertex outside W has at least one neighbor in
W . The domination number γ (G) is the minimum cardinality
of a dominating set of G. A dominating set with cardinality
γ (G) is also called a γ -set of G.
An efficient dominating set in G is a subset W of vertices

such that W is independent and each vertex outside W has

exactly one neighbor in W [9]. Let f : V (G) → {0, 1} be
a function such that f (v) = 1 iff v ∈ D. We say f is a
dominating (resp. an efficient dominating) function respect to
D of G iff D is a dominating (resp. an efficient dominating)
set of G.
The domination of graphs and its variations have attracted

considerable attention in the past [7], [16]. Among many
domination type graph invariants, Roman domination and
double Roman domination have recently been studied
extensively [1], [2], [4], [8], [11]–[14]. While the original
motivation, defending the Roman Empire, may be a popular
motivation [17], there are many practical problems related
to Roman domination, for example positioning emergency
services such as fire brigades, in optimal way when limited
resources are available. In the original problem, a province
may be defended by using one of the two armies from a
neighboring province, thus possibly covering the empire with
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less armies than provinces. When a huge fire emerges, more
than one fire brigade may be needed in the proximity, hence
double or even multiple Roman domination may be a relevant
model.

A double Roman dominating function (DRDF) on a graph
G is a mapping f : V (G)→ {0, 1, 2, 3} such that: (1) every
vertex assigned 0 has at least one neighbor assigned 3 or two
neighbors assigned 2, and (2) every vertex u assigned 1 has
at least one neighbor assigned 2 or 3. The weight ω(f ) of a
DRDF f is the value ω(f ) =

∑
u∈V (G) f (u). The minimum

weight over all DRDFs of a graph G is called the double
Roman domination number γdR(G) of G. A DRDF f of G
with ω(f ) = γdR(G) is said to be a γdR-function of G.

Beeler et al. [2] initiated the investigation of the dou-
ble Roman domination. They demonstrated that γdR(G) lies
between 2γ (G) and 3γ (G), and defined the concept of a
double Roman graph G that it satisfies γdR(G) = 3γ (G), and
proved
Proposition 1 [2]: In a DRDFwith weight γdR(G), no ver-

tex needs to be labeled 1.
Using Proposition 1, we will later be able to restrict atten-

tion only to DRDFs in which no vertex assigned 1.
Given a DRDF f of a graph G, let (V f

0 ,V
f
1 ,V

f
2 ,V

f
3 ) be the

partition such that V f
t = {x | f (x) = t}. It can be seen that

there will be a 1-1 mapping between f and (V f
0 ,V

f
1 ,V

f
2 ,V

f
3 ).

Hence, we can simplify f = (V f
0 ,V

f
1 ,V

f
2 ,V

f
3 ) as f =

(V0,V1,V2,V3).
Petersen graphs are among the most interesting examples

when considering nontrivial graph invariants. The domina-
tion and its variations on generalized Petersen graphs have
attracted considerable attention, see [3], [5], [6], [11], [15],
[18]–[21]. Let n and k be integers, and n ≥ 2k + 1 ≥ 3.
The vertex set of the generalized Petersen graph P(n, k) is
{u1, u2, · · · , un} ∪ {v1, v2, · · · , vn}. The edges of P(n, k) are
uiui+1, uivi, vivi+k for 1 ≤ i ≤ n, where subscripts are com-
puted modulo n (see [20] and e.g. (n, k) ∈ {(9, 3), (10, 1)}
in Fig. 1). Note that generalized Petersen graphs are 3-regular
graphs.

Kutnar and Petecki [10] proposed the double general-
ized Petersen graphs and studied their automorphisms and
structural properties.

FIGURE 1. (a) P(9, 3); (b) P(10, 1).

Given an integer n ≥ 3 and 1 ≤ k ≤ n − 1, the double
generalized Petersen graph DP(n, k) has vertex set

V (DP(n, k)) = {xi, yi, ui, vi | i ∈ [n]}

and its edge set is the union E(DP(n, k)) = E1 ∪ E2 ∪ E3,
where

E1 = {{yi, yi+1}, {xi, xi+1}|i ∈ [n]},

E2 = {{xi, ui}, {yi, vi}|i ∈ [n]},

E3 = {{vi, ui+k}, {ui, vi+k}|i ∈ [n]},

and the subscripts are reduced modulo n (see e.g. (n, k) ∈
{(8, 3), (10, 1)} in Fig. 2).

FIGURE 2. (a) DP(8, 3); (b) DP(10, 1).

In graph theory, the discharging approach was first pro-
posed to successfully attack the famous Four-Color Theo-
rem with the aid of computers. Since then it was extensively
studied and applied to study various graph coloring problems
on planar graphs. In this paper, we provide a general discharg-
ing method for domination type problems which is much
different from that for graph coloring problems. By using the
discharging method, we first prove that γdR(G) ≥ 3n

1(G)+1 for
any connected graph G with at least two vertices. Moreover,
it is shown that if γdR(G) = 3n

1(G)+1 , then either G ∈ {Pn,Cn}
or G is a double Roman graph. In addition, the exact values
of the double Roman domination numbers of P(n, 1) and
DP(n, 1) are determined. It is also shown that that P(n, 1)
is double Roman iff n 6≡ 2 (mod 4) and DP(n, 1) is double
Roman iff n ≡ 0 (mod 4).

II. SOME PROPERTIES OF DOUBLE ROMAN GRAPHS
Lemma 1: A graph G is double Roman iff it has a γdR-

function (V0,∅,V2,V3) with |V2| = 0.
Proof: (⇐) Suppose that f = (V0,∅,V2,V3) is a γdR-

function on G such that |V2| = 0. Then γdR(G) = 3|V3| and
V3 is a dominating set of G. So we have γ (G) ≤ |V3| =
γdR(G)/3. Since γdR(G) ≤ 3γ (G), we can obtain γdR(G) =
3γ (G). Hence, G is a double Roman graph.
(⇒) Suppose to the contrary that for any γdR-function

(V0,∅,V2,V3) of G we have |V2| > 0.
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Let f = (V0,∅,V2,V3) be a γdR-function of G with
minimum |V2|. Then we have

γdR(G) = 2|V2| + 3|V3|. (1)

Furthermore, we have
Claim 1: V2 ∪ V3 is a γ -set of G.

Suppose that there is a γ -setD ofG such that |D| < |V2∪V3|.
Let f ′ = (V ′0,∅,V

′

2,V
′

3) with V
′

2 = ∅ and V ′3 = D. Then
f ′ = (V ′0,∅,V

′

2,V
′

3) is a DRDF of G and

|V ′3| = |D| = γ (G) (2)

SinceG is double Roman, we have 3γ (G) = γdR(G). Then
by Eqs. (1) and (2),

3|V ′3| = 3γ (G) = γdR(G) = 2|V2| + 3|V3|

So we have ω(f ) = ω(f ′) = γdR(G), but V ′2 = ∅. That is
to say, we find a γdR-function (V ′0,∅,V

′

2,V
′

3) with V
′

2 = ∅, a
contradiction. Hence V2 ∪ V3 is a γ -set, as claimed.
Thus we have γ (G) = |V2| + |V3| and so

3(|V2| + |V3|) = 3γ (G) = γdR(G) = 2|V2| + 3|V3|

implying |V2| = 0, which is a contradiction. �
Now we introduce the discharging approach.
Discharging Procedure A: Let f be a DRDF of a graph

G. The initial charge of every vertex x ∈ V (G) is set to be
s(x) = f (x). We apply the discharging procedure defined by
applying the following rules:
R1: Every vertex x with s(x) = 3 sends 3

1(G)+1 charge to
each adjacent vertex in V0.

R2: Every vertex x with s(x) = 2 sends 3
2(1(G)+1) charge to

each adjacent vertex in V0.
Theorem 1: For any connected graph G with n ≥ 2 ver-

tices, we have

γdR(G) ≥
3n

1(G)+ 1
.

Moreover, if γdR(G) = 3n
1(G)+1 , then G ∈ {Pn,Cn} or G is

double Roman.
Proof: Let f = {V0,∅,V2,V3} be a γdR-function of G.

We will prove that ω(f ) ≥ 3n
1(G)+1 . If 1(G) = 1, then n = 2

and γdR(G) = 3 = 3n
1(G)+1 . Obviously, G is double Roman.

Now we assume 1(G) ≥ 2 and proceed the proof by using
Discharging Procedure A for f on G. Then we have:
• For each vertex v ∈ V3, since it sends charges to at most
dG(v) vertices, byR1we can obtain that the final charge
s′(v) ≥ s(v)− dG(v) · 3

1(G)+1 ≥ 3− 31(G)
1(G)+1 =

3
1(G)+1 ;

• For each vertex v ∈ V2, since it sends charges to at most
dG(v) vertices, byR2we can obtain that the final charge
s′(v) ≥ s(v)−dG(v)· 3

2(1(G)+1) ≥ 2−1(G)· 3
2(1(G)+1) ≥

3
1(G)+1 ;

• For each vertex v ∈ V0, by the definition of double
Roman domination, v has a neighbor u assigned 3 or
two vertices assigned 2. Hence, byR1 orR2, v receives

3
1(G)+1 charge from u or from u1 and u2. So s′(v) ≥

3
1(G)+1 .

From the above analysis, we know that s′(v) ≥ 3
1(G)+1 for

any v ∈ V (G). Because the discharging procedure does not
change the total value of charge in G, we get∑
x∈V (G)

s(x) =
∑

x∈V (G)

s′(x) ≥
∑

x∈V (G)

3
1(G)+ 1

=
3n

1(G)+ 1
.

Hence, we have γdR(G) = ω(f ) ≥ 3n
1(G)+1 .

Moreover, if ω(f ) = 3n
1(G)+1 , then s

′(v) = 3
1(G)+1 for any

v ∈ V (G). We will prove that G ∈ {Pn,Cn} or G is a double
Roman graph. If f (v) 6= 2 for any v ∈ V (G), then by Lemma 1
we obtain that G is a double Roman graph. If there is a vertex
w ∈ V (G) assigned 2, then by R2, s′(w) ≥ 2 − 31(G)

2(1(G)+1) =
3

1(G)+1 +
1(G)−2

2(1(G)+1) . Hence,
1(G)−2

2(1(G)+1) = 0 and 1(G) = 2,
namely, G ∈ {Pn,Cn}. �

III. DOUBLE ROMAN DOMINATION IN
3-REGULAR GRAPHS
In the following, for convenience we write f (·) = q+ instead
of f (·) ≥ q. We call a path v1v2 · · · vk to be a path of type
c1 − c2 − · · · − ck if f (vi) = ci for i ∈ [k]. Let H be a
subgraph of a graph G induced by four vertices u1, u2, u3, u4
with u1u2, u1u3, u1u4 ∈ E(H ), satisfying f (u1) = 0, f (u2) =
a, f (u3) = b and f (u4) = c, then we call H to be a subgraph
of type 0− (a, b, c).
By Theorem 1, we have
Corollary 1: Suppose G is a 3-regular graph, then

γdR(G) ≥ d
3|V (G)|

4 e.
By using Discharging Procedure A, we get
Lemma 2: Let f = (V0,∅,V2,V3) be a γdR-function of a

3-regular graph G. If we use Discharging Procedure A for f
on G, then
a) if ∃v ∈ V (G) such that f (v) = 2, then s′(v)− 3

4 ≥
1
8 ,

b) if ∃P of type 2− 2, then
∑

v∈V (P)(s
′(v)− 3

4 ) ≥ 1,
c) if ∃P of type 2+ − 3, then

∑
v∈V (P)(s

′(v)− 3
4 ) ≥

5
4 ,

d) if ∃P of type 2− 2− 2+, then
∑

v∈V (P)(s
′(v)− 3

4 ) ≥
15
8 ,

e) if ∃P of type 2− 0− 3, then
∑

v∈V (P)(s
′(v)− 3

4 ) ≥
1
2 ,

f) if ∃P of type 3− 0− 3, then
∑

v∈V (P)(s
′(v)− 3

4 ) ≥
3
4 ,

g) if ∃H of type 0 − (2+, 2+, 2+), then
∑

v∈V (H )(s
′(v) −

3
4 ) ≥

3
4 ,

h) if ∃H of type 0− (2, 3, 3), then
∑

v∈V (H )(s
′(v)− 3

4 ) ≥
5
4 .

Proof: (a) Since v has at most 3 neighbors in V0, by R2,
we obtain that the final charge s′(v) ≥ 2−3× 3

8 =
7
8 . Hence,

s′(v)− 3
4 ≥

1
8 .

(b) Let P = xy. Since each v ∈ {x, y} has at most
2 neighbors in V0, by R2, we have

∑
v∈V (P)(s

′(v) − 3
4 ) ≥∑

v∈V (P)(2− 2× 3
8 −

3
4 ) = 1.

(c) If P is a path of type 2 − 3, then by R1 and R2,∑
v∈V (P)(s

′(v)− 3
4 ) ≥ (2−2× 3

8 −
3
4 )+ (3−2× 3

4 −
3
4 ) =

5
4 .

If P is a path of type 3−3, then by R1,
∑

v∈V (P)(s
′(v)− 3

4 ) ≥∑
v∈V (P)(3− 2× 3

4 −
3
4 ) =

3
2 >

5
4 .

(d) Let P = xyz. Since y has at most one neighbor in V0
and each vertex in {x, z} has at most 2 neighbors in V0, byR1
and R2, we have

∑
v∈V (P)(s

′(v) − 3
4 ) ≥ (2 − 2 × 3

8 −
3
4 ) +

(2− 3
8 −

3
4 )+min{2− 2× 3

8 −
3
4 , 3− 2× 3

4 −
3
4 } =

15
8 .
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(e) By R1 and R2, we have
∑

v∈V (P)(s
′(v)− 3

4 ) ≥ (2−2×
3
8 −

3
4 )+ ( 38 +

3
4 −

3
4 )+ (3− 3× 3

4 −
3
4 ) =

1
2 .

(f) By R1, we have
∑

v∈V (P)(s
′(v) − 3

4 ) ≥ (3 − 3 × 3
4 −

3
4 )+ ( 34 +

3
4 −

3
4 )+ (3− 3× 3

4 −
3
4 ) =

3
4 .

(g) By R1 and R2, we have
∑

v∈V (H )(s
′(v) − 3

4 ) ≥ 3 ×
min{2− 2× 3

8 −
3
4 , 3− 2× 3

4 −
3
4 } −

3
4 =

3
4 .

(h) ByR1 andR2, we have
∑

v∈V (H )(s
′(v)− 3

4 ) ≥ (2−2×
3
8 −

3
4 )+ 2× (3− 2× 3

4 −
3
4 )−

3
4 =

5
4 . �

A. DOUBLE ROMAN DOMINATION IN P(n, 1)
In [5], it was proved that
Theorem 2: [5] Let n ≥ 3. Then we have

γ (P(n, 1)) =

d
n
2
e, n ≡ 0, 1, 3 (mod 4)

n
2
+ 1, n ≡ 2 (mod 4)

An analogous result for double Roman domination is given
by Theorem 3 that we will prove in this section.
Theorem 3: Let n ≥ 3. Then we have

γdR(P(n, 1)) =


3n
2
, n ≡ 0 (mod 4)

3n+ 3
2

, n ≡ 1, 3 (mod 4)
3n+ 4

2
, n ≡ 2 (mod 4)

Together with Theorem 2, Theorem 3 directly implies
Corollary 2: Let n ≥ 3. Then P(n, 1) is double Roman iff

n 6≡ 2 (mod 4).
Now, we will prove Proposition 2 and several Lemmas that

together imply Theorem 3.
Proposition 2: Let n ≥ 3. Then we have

γdR(P(n, 1)) ≤


3n
2
, n ≡ 0 (mod 4)

3n+ 3
2

, n ≡ 1, 3 (mod 4)
3n+ 4

2
, n ≡ 2 (mod 4)

Proof: Since γdR(G) ≤ 3γ (G) for any G, together with
Theorem 2, we have the desired upper bound if n 6≡ 2 (mod
4).
Assume n ≡ 2 (mod 4) and let

P =
[
0 0 3 0 0 2
3 0 0 0 3 0

]
,

where P defines f by

P =
[
f (u1) f (u2) f (u3) f (u4) f (u5) f (u6)
f (v1) f (v2) f (v3) f (v4) f (v5) f (v6)

]
.

Then, by repeating the leftmost 4 columns of P, we obtain
a DRDF with weight 3n+4

2 and the desired upper bound is
established. �
By Corollary 1, we have
Lemma 3: Let n ≥ 3, n ≡ 0 (mod 4) and f be a γdR-

function of P(n, 1). Then ω(f ) ≥ 3n
2 .

Lemma 4: Assume n ≥ 3, n ≡ 1, 3 (mod 4) and f is a
γdR-function of P(n, 1). Then we have ω(f ) ≥ 3n+3

2 .

Proof: Suppose that there is a γdR-function f of P(n, 1)
for which ω(f ) = 3n+1

2 . If we use Discharging Procedure A
for f on P(n, 1), then we get∑

x∈V (P(n,1))

(s′(x)−
3
4
) =

∑
x∈V (P(n,1))

(s(x)−
3
4
)

= ω(f )−
3|V (P(n, 1))|

4

=
1
2

(3)

Claim 2: There is no path P of type 2+ − 2+ or 3− 0− 3
and no subgraph H of type 0− (2+, 2+, 2+).
The Claim 2 easily follows from Lemma 2 and Eq.(3).

Since n ≡ 1, 3 (mod 4), we can assume that n = 2k + 1,
where k ≥ 1. Then ω(f ) = 3n+1

2 = 3k + 2. Hence, there
is at least one vertex ui ∈ V (P(n, 1)) for which f (ui) = 2.
By Claim 2, we have f (vi) = f (ui±1) = 0. Since ui+1
must be double Roman dominated and by Claim 2, we have
(f (vi+1), f (ui+2)) ∈ {(2, 0), (0, 2+), (3, 0)}.
• If (f (vi+1), f (ui+2)) = (2, 0), then we have f (vi+2) = 0 and
f (ui+3) = 3. Since vi+2 must be double Roman dominated,
we get f (vi+3) ≥ 2. Then vi+3ui+3 is a path of type 2+ − 2+,
contradicting Claim 2.
• If (f (vi+1), f (ui+2)) = (0, 2+), then because vi+1 must be
double Roman dominated, we obtain that f (vi+2) = 3. Then
vi+2ui+2 is a path of type 2+ − 3, a contradiction.
• If (f (vi+1), f (ui+2)) = (3, 0), then uiui+1vi+1 and
uivivi+1 are both paths of type 2 − 0 − 3, and we have∑

v∈{vi,ui+1}(s
′(v)− 3

4 ) ≥
3
4 , a contradiction with Eq. (3).

This assertion completes the proof of Lemma 4. �
Lemma 5: Suppose n ≥ 3, n ≡ 2 (mod 4) and f is a γdR-

function, then we have ω(f ) ≥ 3n+4
2 .

Proof: Suppose that there is a γdR-function f of P(n, 1)
with ω(f ) = 3n+2

2 . We use Discharging Procedure A for f on
P(n, 1). Then∑

x∈V (P(n,1))

(s′(x)−
3
4
) =

∑
x∈V (P(n,1))

(s(x)−
3
4
)

= ω(f )−
3|V (P(n, 1))|

4
= 1 (4)

Observe that the condition Eq.(4) and Lemma 2 directly
imply Claim 3.
Claim 3: There is no path P of type 2+− 3 or 2− 2− 2+,

and no subgraph H of type 0− (2, 3, 3).
Claim 4: There is no path of type 2− 2.

Suppose to the contrary that there exists a path P = uv of
type 2 − 2. Then by Lemma 2 (b) and Eq.(4), we can obtain
that s′(x)− 3

4 = 0 for any x ∈ V (P(n, 1)) \ V (P). Obviously,
by Lemma 2 (a), there exists no vertex x ∈ V (P(n, 1)) \V (P)
such that f (x) = 2. Let w ∈ N (u) \ {v}. Since there is no path
of type 2 − 2 − 2+, we have f (w) = 0. Hence, in order to
double Roman dominate w, we know that w has a neighbor y
with f (y) = 3, implying that s′(w)− 3

4 ≥
3
8 , a contradiction.
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Since n ≡ 2 (mod 4), we can assume that n = 4k + 2,
where k is an integer with k ≥ 1. Then ω(f ) = 3n+2

2 =

3(2k + 1) + 1. Hence, there exists at least one vertex ui ∈
V (P(n, 1)) such that f (ui) = 2. By Claim 4, we have
f (vi) = f (ui±1) = 0. Since ui+1 should be double Roman
dominated and by Claim 3, we have (f (vi+1), f (ui+2)) ∈
{(2, 0), (0, 2+), (2, 2), (3, 0), (2, 3), (3, 2)}.
Now, we consider five cases.
Case 1: (f (vi+1), f (ui+2)) = (2, 0).

Since there exists no path of type 2 − 2+, we have
f (vi+2) = 0. As ui+2 and vi+2 should be double Roman
dominated, we have f (ui+3) = 3 and f (vi+3) ≥ 2. Then there
exists a path of type 2+ − 3, contradicting Claim 3.
Case 2: (f (vi+1), f (ui+2)) = (0, 2+).

Since vi+1 must be double Roman dominated, we have
f (vi+2) = 3. Then there is a path of type 2+−3, contradicting
Claim 3.
Case 3: (f (vi+1), f (ui+2)) = (2, 2).

Since there exists no path of type 2 − 2+, we get
f (vi+2) = f (ui+3) = 0. Then f (vi+3) = 0, otherwise,
if f (vi+3) ≥ 2 then

∑
v∈A(s

′(v) − 3
4 ) ≥

5
4 , where A =

{vi, vi+1, vi+2, vi+3, ui, ui+1, ui+2, ui+3}, a contradiction with
Eq. (4). Note that vi+3 and ui+3 need to be double Roman
dominated, we have f (vi+4) = 3 and f (ui+4) ≥ 2. Then there
is a path of type 2+ − 3, contradicting Claim 3.
Case 4: (f (ui+2), f (vi+1)) ∈ {(2, 3), (3, 2)}.

In this case, let A = {vi, vi+1, vi+2, ui, ui+1, ui+2}. Then∑
v∈A(s

′(v)− 3
4 ) ≥ 7− 3

8 −
3
4 − 6× 3

4 =
11
8 , a contradiction

with Eq. (4).
Case 5: (f (vi+1), f (ui+2)) = (3, 0).

By the proofs of Cases 1-4 and the symmetry, we get
(f (vi−1), f (ui−2)) = (3, 0). Let A = {vi−1, vi, vi+1, ui−1, ui,
ui+1}. Then

∑
v∈A(s

′(v) − 3
4 ) ≥ 8 − 3

4 −
3
4 − 6 × 3

4 = 2,
a contradiction with Eq. (4).

This completes the proof of Lemma 5. �

B. DOUBLE ROMAN DOMINATION IN DP(n, 1)
Lemma 6: Let n ≥ 4. Then

γ (DP(n, 1)) =

n, n ≡ 0 (mod 4)

n+ 1, otherwise

Proof: Suppose f is a γ -function of DP(n, 1) with
n ≥ 4. First, we will show that γ (DP(n, 1)) ≥ n. Since
γ (G) ≥ |V (G)|

1+1 , we have γ (DP(n, 1)) ≥ |V (DP(n,1))|
1+1 =

4n
3+1 =

n, with equality iff DP(n, 1) has an efficient dominating
set.

Next, we will demonstrate that γ (DP(n, 1)) ≥ n + 1, for
n 6≡ 0 (mod 4). Suppose that γ (DP(n, 1)) ≤ n, for n 6≡
0 (mod 4). Then there exists an efficient dominating function
f of DP(n, 1).

First observe that we must have f (xi) = 1 for some i ∈ [n].
Otherwise, to dominate xi, f (ui) = 1 for i ∈ [n]. But n
vertices ui do not dominate any of yi, for i ∈ [n], and hence
|{w | f (w) = 1}| > n, so f is not an efficient dominating

function, a contradiction. So we may assume that f (xi) = 1
and we have f (xi−1) = f (xi−2) = f (ui−1) = f (xi+1) =
f (xi+2) = f (ui+1) = f (ui) = f (vi+1) = f (vi−1) = 0. Now,
to dominate vi, we consider the following two cases.
• If f (vi) = 0, we have f (yi) = 1 and f (yi−1) =

f (yi−2) = f (vi−1) = f (yi+1) = f (yi+2) = f (vi+1) = 0. To
dominate ui±1 and vi±1, we have f (ui±2) = f (vi±2) = 1. It is
now straightforward that f (xj) = f (xj+4), f (uj) = f (uj+4),
f (vj) = f (vj+4) and f (yj) = f (yj+4) for any j. Therefore,
an efficient dominating function f exists only if n ≡ 0 (mod
4), a contradiction.
• If f (vi) = 1, then analogous as before, the assumption that
f is an efficient dominating function implies that f (ui+2) = 1
and f (yi+2) = 1, forcing in turn f (xi+4) = 1 and f (vi+4) = 1,
leading to contradiction when n 6≡ 0 (mod 4).

Now we show the upper bounds, and we will use a pattern
with 4 rows and n columns to represent a DRDF as follows.

f (V (DP(n, 1))) =


f (x1) f (x2) · · · f (xn)

f (u1) f (u2) · · · f (un)

f (v1) f (v2) · · · f (vn)

f (y1) f (y2) · · · f (yn)


For ` ≥ 1, let

f (V (DP(4`, 1))) =


1 0 0 0

− 0 0 1 0

0 0 1 0

1 0 0 0

,

f (V (DP(4`+ 1, 1))) =


1 0 0 0 1

− 0 0 1 0 0

0 0 1 0 0

1 0 0 0 1

,

f (V (DP(4`+ 2, 1))) =


1 0 0 0 1 0

− 0 0 1 0 0 0
1 0 0 0 1 0
0 0 1 0 0 1

,

f (V (DP(4`+ 3, 1))) =


0 0 1 0 0 1 0

− 1 0 0 0 1 0 0
1 0 0 0 1 0 0
0 0 1 0 0 1 0

,
where ‘‘−’’ means that we repeat the leftmost four columns

of the corresponding pattern at most ` − 1 times. Then f
induces a dominating set of DP(n, 1). Therefore, we have
γ (DP(n, 1)) ≤ n if n ≡ 0 (mod 4) and γ (DP(n, 1)) ≤ n+ 1,
otherwise. This assertion completes the proof.

�
Proposition 3: Let n ≥ 4. Then

γdR(DP(n, 1)) =
{
3n, n ≡ 0 (mod 4)
3n+ 2, otherwise

Proof: We first show the upper bounds. If n ≡ 0
(mod 4), we have γdR(DP(n, 1)) ≤ 3γ (DP(n, 1)) = 3n,
as desired.
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Therefore we can assume that n > 4 in the rest of the proof.
For ` ≥ 0, let

f (V (DP(4`+ 5, 1))) =


0 0 3 0 0 0 0 3 0

− 3 0 0 0 3 3 0 0 0
0 0 3 0 0 0 0 3 0
3 0 0 0 3 0 2 0 0

,

f (V (DP(4`+ 6, 1))) =


0 0 3 0 0 0 2 0 3 0

− 3 0 0 0 3 2 0 0 0 0
0 0 3 0 0 0 0 2 3 0
3 0 0 0 3 0 2 0 0 0

.
For ` ≥ 1, let

f (V (DP(4`+ 3, 1))) =


0 0 3 0 0 3 0

− 3 0 0 0 3 0 2
0 0 3 0 0 0 0
3 0 0 0 3 0 0

.
Then f induces a DRDF of DP(n, 1) with weight 3n + 2 if
n 6≡ 0 (mod 4). Therefore, we have γdR(DP(n, 1)) ≤ 3n + 2
if n 6≡ 0 (mod 4).

Now we will show the lower bounds. First, by Proposi-
tion 1, we have γdR(DP(n, 1)) ≥ 3n. Hence, it is sufficient
to prove γdR(DP(n, 1)) ≥ 3n+ 2 for n 6≡ 0 (mod 4).
Suppose that γdR(DP(n, 1)) ≤ 3n + 1 for n 6≡ 0 (mod 4)
and we assume f is a DRDF with ω(f ) = 3n + 1. By
applying Discharging Procedure A, we have s′(v) ≥ 3

4 for
any v ∈ V (DP(n, 1)). Recalling Proposition 1 we have∑

v∈V (DP(n,1))

(s′(v)−
3
4
) ≤ 1. (5)

Lemma 2 directly implies
Claim 5: There exists no path of type 2+−3 or 2−2−2+.
The next claim follows by an argument, similar as used in

the proof of Claim 4.
Claim 6: There exists no path of type 2− 2.
Since ω(f ) = 3n + 1 = 3|V3| + 2|V2|, we have |V2| =

3k + 2 for some k ∈ Z. By Lemma 2(a), we have |V2| ≤ 8.
So |V2| = 2, 5 or 8. Now, we consider two cases.
Case 1: |V2| = 2.
In this case, let u2 = {u, v}. Then by Claim 6, u is not a

neighbor of v. Hence, there would exist at least two paths of
type 2− 0− 3 started at u: P1 = ux1y1 and P2 = ux2y2, and
at least two paths of type 2 − 0 − 3 started at v: P3 = vx3y3
and P4 = vx4y4. Consequently,∑
v∈V ′

(s′(v)−
3
4
) ≥ 2× (8−

3
8
− 4×

3
4
− 5×

3
4
) =

7
4
> 1,

where V ′ = V (P4) ∪ V (P3) ∪ V (P2) ∪ V (P1), which is a
contradiction with Eq. (5).
Case 2: |V2| = 5 or 8.
In this case, there would exist at least three mutu-

ally disjoint paths P1,P2,P3 of type 2 − 0 − 3. Hence,∑
v∈V (P1)∪V (P2)∪V (P3)

(s′(v) − 3
4 ) ≥ 3 × 1

2 > 1, a contradiction

with Eq. (5).
This completes the proof of proposition. �

To provide a complete answer, we need the following fact
that can easily be proved as an exercise
Fact 1: γdR(DP(3, 1)) = 11.
From Fact 1 and Propositions 1 and 3 we conclude
Theorem 4: Let n ≥ 3.

γdR(DP(n, 1)) =

{
3n, n ≡ 0 (mod 4)
3n+ 2, otherwise

Corollary 3: If n ≥ 3, then DP(n, 1) is double Roman iff
n ≡ 0 (mod 4).

IV. CONCLUSION
The discharging method is most well-known for its central
role in the proof of the Four Color Theorem. This proof
technique was extensively applied to study various graph
coloring problems, in particular on planar graphs. In this
paper, we show that suitably altered discharging technique
can also be used on domination type problems. The gen-
eral discharging approach for domination type problems is
illustrated on a specific domination type problem, the double
Roman domination on some generalized Petersen graphs.

This discharging approach is promising and effective for
processing other types of domination, such as Roman dom-
ination and independent domination, on many other inter-
esting classes of graphs, e.g. regular graphs and Cartesion
product of paths and cycles.
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