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ABSTRACT Probabilistic load flow (PLF) is an important tool in power system planning and operation.
One limitation of conventional PLF is that only the probability information of random variables is obtained
as a reference for related analyses. Frequency and duration information often plays an important role in
power system assessment. In this paper, a frequency and duration method for PLF with wind farms (WFs) is
proposed based on Markov chains by using an improved probability-frequency distribution function (PFDF)
method. Random input variables, including intermittent loads, conventional generator (CG) power outputs
associated with CG failures, and WF power outputs associated with both wind speed uncertainties and
wind turbine failures, are modeled using corresponding PFDFs. With the proposed method, not only
probability information but also frequency and duration information of random PLF outputs are efficiently
and analytically computed through the operations of PFDFs of random inputs. Moreover, an optimal
decision-making model for determining the clustering number of random states is proposed to improve the
credibility of stochastic process modeling of Markov-chain-based random variables. The performance of the
proposed method is verified and compared with that of a sequential Monte Carlo simulation technique using
two modified IEEE test systems.

INDEX TERMS Frequency and duration method, Markov chain, probabilistic load flow (PLF),
probability-frequency distribution function (PFDF), wind farm.

I. INTRODUCTION
Power flow computation is one of the major tasks facing
power system planners and operators. Traditional determin-
istic load flow (DLF) finds nodal voltages and branch flows
only under specified operating conditions. Random factors,
such as intermittent loads, conventional generator (CG) fail-
ures (or deratings) and power outputs of renewable energy
sources, bring great challenges to power system planning
and operation. This is why the importance of probabilistic
tools for power system analysis is growing. Compared with
DLF, probabilistic load flow (PLF) [1]–[12] can provide
more comprehensive information regarding a power system
with random factors. For example, PLF can be used to
assess adequacy indexes such as the probability of a nodal
voltage being outside acceptable levels and the probabil-
ity of a branch flow being greater than its thermal rating,
which are extremely useful in the planning and operation
of power systems. From the first proposal in the 1970s [1],

numerous methodologies [2]–[12] have been presented for
PLF to determine the probability information (such as prob-
ability distributions, expected values (EVs), and standard
deviations) of desired variables (such as node voltages and
branch flows) in this problem.

Many PLF formulations use linear load flow equations
with which the output variables can be represented as a linear
combination of input variables [1]–[8]. With a linearization
method, non-sequential Monte Carlo simulation (NSMCS)
methods [2] and analytic methods, including the convolution
method [1], fast Fourier transformmethod [3], and cumulant-
based method [4], are commonly used to solve PLF prob-
lems. In [5] and [6], certain enhancements to the linearization
method for PLF were introduced to accommodate the spatial
correlation between random input variables. Reference [7]
extended the linearization method for PLF to address the
nonlinear effects of load flow equations through multilin-
earization. In [8], random branch outages were incorporated
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into the PLF. Moreover, the point estimate method [9], [10]
and Latin hypercube sampling method [11], [12] also deserve
special mention in the context of PLF studies. Furthermore,
some methods proposed for stochastic load flow [13], [14],
which is a subject related to PLF, can also be applied to PLF
problems.

However, one limitation of most existing PLF meth-
ods [1]–[14] is that only the probability information of
desired variables is obtained as a reference for related
analyses. Compared with probability information, frequency
and duration information can provide more insight into the
sequential behavior of randomvariables. Frequency and dura-
tion concepts were generally used in the field of power sys-
tem reliability evaluation [15]. In these concepts, the term
‘‘frequency’’ is used to denote the rate of encountering a
system state or subset of states, while the term ‘‘duration’’ is
used to denote the mean residence time in a state or subset
of states in one cycle. In practice, frequency and duration
concepts can be used in a wide range of power system appli-
cations. For example, whether a variable violation (such as
violation of voltage or branch flow) occurs once every day
(frequency information) with a ten-cycle duration (duration
information) or occurs ten times a day with a one-cycle
duration makes a difference [16], [17] even though the calcu-
lated probabilities of the violation are identical. In addition,
the direction of power flow may change when considering
random factors. The change frequency of power flow direc-
tion and the average duration of each change are intuitively
available to both system planners and operators. Although the
frequency and duration information of random variables in a
power system has showed practical value in many aspects,
only a few PLF studies [17] for voltage stability assessments
have considered it. Meanwhile, wind energy has been the
fastest growing source of energy among renewable energy
sources in the past decade. Since the great expansion of
wind power in power networks has increased the uncertainty
in power systems, many aspects of wind power penetration
in PLF considering the intermittent nature of wind speed
have been addressed recently [9]–[12], [17]–[21]. However,
the power output of awind farm (WF) is related not only to the
intermittent wind speed but also to the probabilistic behavior
of wind turbine (WT) failures (or deratings) [22]–[25]. This
condition increases the complexity of integrating wind power
into power systems in term of randomness modeling of WF
power outputs, particularly when the frequency and duration
information is considered.

A method used to calculate frequency and duration quan-
tities is generally referred to as a frequency and duration
method. In addition to [17], there were some other fre-
quency and duration methods for the assessments of volt-
age stability [16] and the reliability evaluation of power
systems [22]–[28], which may be applied to the PLF
with frequency and duration quantities. Among these meth-
ods, sequential Monte Carlo simulation (SMCS) [26]–[28]
is a traditional straightforward method to solve the fre-
quency and duration problem by simulating random factors

chronologically, but this method requires large computational
effort to achieve accurate results. Moreover, SMCS based
on a time-series method [26], [27], such as the autoregres-
sive moving average (ARMA) model, requires actual hourly
data (such as wind speed data and load data) collected over
many years for the particular geographic location to construct
a simulation model for the specific WF or load; however,
long-history time-series data are typically unavailable [27].
NSMCS is an alternative simulation method for PLF. The
detailed chronological nature needed for SMCS to describe
random factors is not required in NSMCS, and each random
factor can be represented by a probability distribution func-
tion (PDF). For example, wind speed probability distributions
are generally represented using Weibull distributions. There-
fore, NSMCS proves useful for cases lacking adequate histor-
ical data. However, NSMCS is not suitable for frequency and
duration problems since it does not consider the sequential
characteristics of random factors.

The other technique widely used to solve frequency and
duration problems is the Markov chain. A Markov chain can
be used to model the variations of a stochastic process as
Markov state transitions in which sequential characteristics
are contained. Moreover, a Markov chain requires far less
data for acceptable randomness modeling than the time-
series-based simulation method [24]. With consideration of
frequency and duration characteristics, various analytic meth-
ods based on Markov chains have been proposed for voltage
stability assessments [16], [17] and power outputs modeling
of WFs [22]–[25]. In [16], the intermittent nature of load
was modeled using a two-state Markov chain, and the fre-
quency and duration quantities of voltage drops in plants
with a large number of intermittent loads were calculated by
combining Markov chains of various loads. In [17], a similar
approach was proposed for PLF with WFs. In addition to
the load, a multistate Markov chain was used to model the
WF power output considering the intermittent nature of wind
speed. By combining Markov chains of all loads and all
WFs, the probability and the frequency and duration of the
power system operation states with voltage violations were
obtained to conduct the planning study. As mentioned above,
the randomness modeling of WF power outputs associated
with both wind speed uncertainties and WT failures deserves
attention in the context of PLF with WFs. Certain Markov
models for WFs have been previously proposed in [22]–[25].
In [22]–[24], a multistate Markov chain was used to obtain
the probability and the frequency and duration characteristics
of wind speed based on past wind speed observations, and
WT failure was represented using a two-state Markov chain.
The Markov chain of WF power output was constructed
by combining these two types of Markov chains. However,
if the number of random variables (such as loads, WFs,
and WTs in large-scale WFs) becomes large and the derated
states of units are considered [25], the randomness problem
in [16], [17], and [22]–[24] presents challenges when using a
full Markov model because the dimension of the state space
becomes extremely large. Consequently, equivalent Markov
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models were further developed in [16], [17], [22], and [24]
to improve the efficiency of analysis. In these equivalent
models, the number of Markov states was reduced by clus-
tering exact states into various approximate states based on
engineeringMarkov analysis. However, these state-clustering
methods are conducted by keeping track of all Markov states
and the corresponding transition rates, which can create
significant computational complexity when the number of
Markov states is large. In [25], multistate Markov chains for
WFs and CGs were presented with the consideration of unit
deratings. These models were integrated into the universal
generating function, which provides a practical approach to
determine the probability information of a power system.
However, the frequency and duration quantities were not
considered.

On the basis of Markov chains, the concepts of state prob-
ability and incremental frequency were introduced in [29]
to characterize the cumulative probability and frequency
of a conventional generation system. With these concepts,
the probability-frequency distribution function (PFDF) was
presented in [30] and [31] to represent the random model of
the CG, in addition to the load, which provides an efficient
method to calculate the probability and the frequency and
duration reliability indexes for a generation system. However,
the traditional PFDF method is not directly suitable for the
PLF problem. Certain improvements for the traditional PFDF
method were introduced in [32] to solve PLF problems with
wind power considering wind speed uncertainties. However,
the probabilistic behavior of WT failures (or deratings) was
not considered in [32], mainly due to the challenges asso-
ciated with randomness modeling of large WFs. Addition-
ally, Markov chain modeling is based on the hypothesis that
the distribution of residence time in any state is exponen-
tial [22]–[25], [32]. However, in the past, the credibility
of the exponential hypothesis has rarely been considered
whenmodeling sequential events ofMarkov-chain-based ran-
dom variables. The Kolmogorov-Smirnov (KS) test was used
in [33] to evaluate the credibility of Markov-chain-based
modeling of CG deratings. That test, however, is a post test;
thus, the credibility of the Markov chain is challenging to
guarantee or actively improve.

The main contributions of the present study for addressing
the issues mentioned above are identified as follows.

1) A frequency and duration method for PLF with WFs
is proposed based on Markov chains by using an improved
PFDF method. Random models of different input variables
in PLF problems are developed and represented as corre-
sponding PFDFs. With the proposed method, not only the
probability information but also the frequency and duration
information of random output variables in PLF problems can
be efficiently and analytically computed through the opera-
tions of PFDFs of random input variables.

2) A random model for large WFs is developed and rep-
resented as PFDF in which both wind speed uncertainties
andWT deratings are considered. With the proposed method,
the randomness modeling of large WFs becomes simple to

implement, and the PFDFs of corresponding WFs are inte-
grated with the PFDFs of conventional elements (including
CG and load) to obtain the probability and the frequency and
duration quantities in PLF problems.

3) An optimal decision-making model for determining
the clustering number of random states is presented to
improve the credibility of stochastic process modeling of
Markov-chain-based random variables.

The rest of the paper is organized as follows. Section II
introduces the PLF problem. Section III presents the optimal
decision-making model for the modeling of Markov-chain-
based random variables and proposes the improved PFDF
method. The randomness modeling of WF power output is
described in Section IV. The application of the proposed
PFDF method to the PLF problem is presented in Section V.
In Section VI, the proposed method is tested on the modified
IEEE-RTS79 and IEEE-300 node test grid with WFs, and
the results are compared to those of SMCS. Conclusions are
presented in Section VII. An appendix is included to provide
details regarding WF modeling.

II. PLF PROBLEM
A. LOAD FLOW EQUATIONS
The AC load flow equations for a power system can be
written as {

IAR = g (U)
T = h (U)

(1)

where IAR is the input vector of active and reactive power
injections (such as load demands and power generations of
CGs and WFs). U is the output vector of the nodal voltage
magnitude UM and angle. T is the output vector of the active
branch flow TP, and reactive branch flow TQ. g(U) and h(U)
are nonlinear functions.

In PLF studies, power injections IAR are treated as random
input variables. The task of PLF analysis is to characterize the
randombehavior of output variablesU andT from the random
information of IAR. It is preferable to apply linear approxima-
tion to (1) so that the output variables can be solved as a linear
combination of input variables, which allows us to solve PLF
through fast methods [1]–[8] (such as the convolution method
or cumulant-based method). By linearizing (1) around the EV
region, the output variables can be represented as [18], [19]

U−U0=C (A−A0)⇒U=CA+(U0−CA0)=UL+UC

(2)

T−T0=Z (A−A0)⇒T=ZA+(T0−ZA0)=TL+TC
(3)

where A is the input vector of nodal active power injections.
A0 is the EV of A. U0 and T0 are the values of U and T,
respectively, provided by substituting A0 into (1). C = J−1P ,
and Z = JhJ−1P . For AC load flow equations, Jh is the
Jacobian matrix that relates T to U, and JP is the Jacobian
matrix that relatesU toA.UL = CA andTL = ZA are vectors
represented as the linear combination of A. UC = U0−CA0
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and TC = T0 − ZA0 are vectors of constants corresponding
to EV. Reactive power injections are considered to be lin-
early related to active power injections, since most modern
WTs can control the power factor of the WF according to
economic incentives and the power factor of loads can be
considered constant [18], [19]. Alternatively, if the WF has a
variable output power factor that tracks the connection node,
then the node with the WF can be considered a PV node
with the assumption that the WF has its own voltage control
system, and new sensitivity matrixes C and Z can be given
accordingly.

In (2) and (3), the sensitivity matrixes C and Z are obtained
with the assumption that the swing bus absorbs all changes
due to uncertainties of nodal power injections. If dispatch
strategies for combined operation of several generators are
considered, the linear dispatching model proposed in [18]
and [19] can be used. Then, taking C as an example, the new
sensitivities can be easily calculated as

C ′mn = Cmn −
M∑
i=1

kinCmi (4)

where Cmn is the term (m, n) of the sensitivity matrix C.M is
the number of nodal injections. kin is the participation factor
of the regulating generator in node i to compensate the power
injection of node n. Thus, we obtain

UL = C ′A, UC =
(
U0 − C ′A0

)
(5)

where C ′ is the new sensitivity matrix with elements C ′mn.
Similarly, new sensitivities for Z′ can also be obtained.

B. SOLUTION METHOD
In most existing PLF studies, random input variables are
typically modeled using PDFs (e.g., load demands are com-
monly modeled as normal variables [5]–[8], and the Weibull
distribution is generally used to describe the probabilistic
behavior of wind speed [9]–[11], [19], [20]), and multiple
calculation methods [1]–[14], [18]–[20] have been proposed
for PLF to determine the probability information of desired
variables based on these known PDFs. However, the fre-
quency and duration information of variables has rarely been
considered. Relative to probability quantities, frequency and
duration quantities can provide more information regarding
system conditions. Since it is inadequate to represent the
sequential characteristics (such as frequency and duration
characteristics) of random variables by PDFs alone, suitable
random models for associated variables and a corresponding
calculation method are desired to solve the PLF problem with
frequency and duration quantities.

A Markov chain can perfectly replicate the probability
characteristics and the frequency and duration characteristics
found in the samples [22]–[25], [29]–[33] and requires far
less data for acceptable randomness modeling than the time-
series-based simulation method [24]. As a result, stochas-
tic processes of different random variables, such as the

load [16], [17], [32], WF output [22]–[25], and CG out-
put [29]–[33], are commonly modeled using corresponding
Markov chains. On the basis of Markov chains, an improved
PFDF method is introduced to solve the PLF problem with
frequency and duration quantities. In the proposed method,
the random models for WFs, CGs, and loads are devel-
oped and represented as corresponding PFDFs. In addition,
high-credibility modeling of Markov-chain-based random
variables is desired for the application of the PFDF method,
which is also discussed in this study.

III. MARKOV CHAIN AND PFDF
A. RANDOMNESS MODELING USING MARKOV CHAIN
1) BASIC PARAMETERS OF A MARKOV CHAIN
In the real world, every physical event that advances con-
tinuously and randomly in time and space can be modeled
approximately as a process with a continuous parame-
ter (time) space and a discrete state space [24]. A Markov
chain can be used to model the variations of a stochastic pro-
cess as transitions betweenMarkov states, with each state rep-
resenting a discrete value. Modeling a stochastic process by a
Markov chain requires that the state residence time follows
an exponential distribution [22]–[25]. With the hypothesis
that the state residence time of random variable X fol-
lows an exponential distribution, the transition rate between
states i and j of X , namely, λXij, can be given based on past
observations [24]:

λXij =
NXij
DXi

(6)

where NXij is the number of observed transitions from state i
to state j ofX , andDXi is the duration for state i ofX calculated
during the entire period.

Let λXi denote the departure rate for state i of X :

λXi =
∑

j 6=i,j∈BX

λXij (7)

where BX is the state set of X .
The probability of occurrence for state i of X , namely,

pXi, is given by

pXi =
DXi∑

k∈BX
DXk

(8)

2) OPTIMIZATION FOR CLUSTERING NUMBER
Because of the large number of variable states presented in
the observations, the representation of all of them in a model
can become unfeasible. Therefore, in the Markov modeling
of a random variable, it is necessary to answer the following
questions: (a) how are the Markov states chosen and (b) how
many states do we need in each model?

To choose the Markov states with discrete values, a tech-
nique for clustering observations into a smaller number of
states shall be adopted. The aim is to allocate elements of
certain common characteristics in clusters, where the step
length of discretization may be any desirable or available
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unit [22]–[25], [29]–[33]. Thek-means clustering algorithm
is an effective method for splitting data [23]. With the
k-means method, the clustering number can be adjusted con-
veniently. In this study, for random variable X , the k-means
clustering algorithm is used to find CX centroids based on
observations of X. These centroids are the required CX states
of the Markov chain of X , and their values act as quantization
levels for X and provide a quantized data set. This quantized
data set is then used to derive the transition rate and state
probability through (6)–(8). In most of the previous stud-
ies [22]–[25], [29]–[33], the number of Markov states was
arbitrary or depended only on the required accuracy of the
model. In general, k-means uses squared Euclidean distances.
With the state probability considered, the clustering accuracy
index JX for X is given by

JX =
∑
i∈BX

∑
xl∈Xi

pXi (xl − Xi)2 (9)

where BX = {1, 2, . . . ,CX} is the state set of X and CX is the
clustering number of random states of X . Xi is the centroid of
the i-th cluster of X and also denotes the value of X in state i.
xl is the l-th sample in the observations of X , and xl ∈ Xi
means that xl belongs to the i-th cluster ofX . According to (9),
the smaller JX is, the smaller the average within-cluster sum
of sample-to-centroid distance for X is.

Markov-chain-based modeling of a stochastic process is
based on the hypothesis that the state residence time fol-
lows an exponential distribution. In previous studies, how-
ever, the credibility of the exponential hypothesis was either
entirely ignored or simply checked using a post test [33].
Therefore, the credibility of stochastic process modeling
of Markov-chain-based random variables is challenging to
guarantee or actively improve. With the concept of signif-
icance level in the KS test [34], we propose an index HX
for measuring the credibility of the hypothesis that the state
residence time of X follows an exponential distribution.
HX is defined as

HX =
1
CX

∑
i∈BX

(1− αi) (10)

where αi is the significance level for the exponential dis-
tribution hypothesis of residence time in state i of X . The
detailed calculation method for αi can be found in [34]. Let
NXi =

∑
j 6=i,j∈BX

NXij denote the number of samples used to

construct the probability distribution of the residence time in
state i of X. When NXi is sufficiently large, then αi can be
approximately calculated as

αi =

+∞∑
j=1

2(−1)j−1 exp
(
−2NXij2K 2

i

)
(11)

Ki = max
t

(∣∣IXi_1(t)− IXi_2(t)∣∣) (12)

where IXi_1(t) = Prob(tXi ≤ t) is the empirical probability
that the residence time tXi in state i of X is less than or equal
to t , which is calculated using a statistical technique based

on the observations of X . IXi_2(t) = 1 − exp (−λXi · t) is
an exponential distribution function with parameter λXi given
by (7). According to (10)–(12) and [34], the smaller HX is,
the higher the credibility of exponential hypothesis for X is.

To improve the accuracy and credibility of the stochastic
process modeling of any Markov-chain-based random vari-
able X , an optimal decision-making model aiming the mini-
mization of JX and HX is proposed to determine the number
of Markov states and to answer question (b) mentioned at the
beginning of this section. Because JX and HX have differ-
ent dimensions, the two-objective optimal decision-making
model for determining the clustering number CX of X is
formulated as (13) based on entropy weight [35].

min
CX∈CFX

βJ
JX (CX )

max
CX∈CFX

(JX (CX ))
+ βH

HX (CX )
max

CX∈CFX
(HX (CX ))

(13)

where CFX , representing the range of CX , can be pre-set
according to the observations of X . βJ and βH are weighting
factors for JX and HX , respectively. In this study, βJ and βH
are given by the entropy weight method [35].

B. PFDF
1) TRADITIONAL PFDF
On the basis of Markov chains, the incremental frequency of
state i of X , namely, fXi_IN , can be given by [29], [30]

fXi_IN =
∑
j∈BUXi

fXij −
∑
k∈BLXi

fXki, ∀i ∈ BX

fXij = pXiλXij, fXki = pXkλXki

(14)

where BUXi and BLXi (B
U
Xi, B

L
Xi ⊆ BX ) are the upper and

lower state set for state i of X , respectively, which means that
Xj > Xi if j ∈ BUXi and that Xk < Xi if k ∈ BLXi.
The traditional PFDF of X is defined as [30]

S0X =
{
X, pX , f X_IN

}
(15)

where X is the vector of Xi (i ∈ BX ). pX is the vector of pXi
and can be regarded as the PDF of X . fX_IN is the vector
of fXi_IN and can be regarded as a frequency distribution
function (FDF) of X . Xi, pXi, and fXi_IN are of one-to-one
correspondence.

If random variables X and Y are independent of each other
and Z = X + Y , then S0Z can be determined by integrating S0X
with S0Y as follows:

S0Z = S0X ∗ S
0
Y =

{
Z, pZ , f Z_IN

}
(16)

pZ = pX ∗ pY (17)

f Z_IN =
(
pX ∗ f Y_IN

)
⊕
(
pY ∗ f X_IN

)
(18)

where ∗ denotes the convolution operation. ⊕ denotes the
addition operation of functions, which means the addition of
corresponding items of functions rather than the addition of
vectors. Z is given through the convolution with the consider-
ation of one-to-one correspondence among Z, pZ , and fZ_IN .
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2) IMPROVED PFDF
In PLF using a linearization method, the associated linear
combinations (i.e., (2) and (3)) are more complex than that
in (16). Therefore, certain improvements for the traditional
PFDF method are essential for solving PLF problems [32].

First, the decremental frequency of state i of X , namely,
fXi_DE , is defined as

fXi_DE =
∑
j∈BLXi

fXij −
∑
k∈BUXi

fXki, ∀i ∈ BX (19)

For X , the improved PFDF, which is referred to simply as
PFDF in the rest of this study, is defined as

SX =
{
X, pX , f X_IN , f X_DE

}
(20)

where fX_DE , i.e., the vector of fXi_DE corresponding to Xi,
can be regarded as the other FDF of X.
The rounding technique in [30] is used in this study to

process the PFDF of each random variable after the discrete
step length is determined; consequently, X, pX , fX_IN , and
fX_DE can be approximated by the rounded discrete values.
Furthermore, certain operations are defined. If a random
variable Z = aX where a is any real number, then the PFDF
of Z can be given by

SZ = SaX =
{
aX, pX , f X (a), f X (−a)

}
(21)

where fX (n) = f X_IN if n ≥ 0 and fX (n) = f X_DE if n < 0.
If Z = X + a, then SZ can be given by

SZ = SX+a =
{
X + aE, pX , f X_IN , f X_DE

}
(22)

where E is a vector of ones.
If variables X and Y are independent of each other and

Z = aX + bY , where b is another real number, then SZ is
given by

SZ = SaX ∗ SbY =
{
Z, pZ , f Z_IN , f Z_DE

}
(23)

where pZ is given by (17), while fZ_IN and fX_DE are given
as follows:

f Z_IN =
[
pX ∗ f Y (b)

]
⊕
[
pY ∗ f X (a)

]
(24)

f Z_DE =
[
pX ∗ f Y (−b)

]
⊕
[
pY ∗ f X (−a)

]
(25)

Equations (23)–(25) indicate that the computation for SZ
involves only convolution and addition operations of cor-
responding distribution functions, which is straightforward
to implement. With the fast Fourier transform method [3],
the computation burden of convolution can be greatly
relieved.

From SX , the probability PRX and frequency FRX of spec-
ified events of X that occur during the assessment period can
be efficiently obtained as follows:

PRupX (x) = Prob(X ≥ x) =
∑
Xi≥x

pXi (26)

PRlbX (x) = Prob(X ≤ x) =
∑
Xi≤x

pXi (27)

FRupX (x) = Freq(X ≥ x) =
∑
Xi≥x

fXi_DE (28)

FRlbX (x) = Freq(X ≤ x) =
∑
Xi≤x

fXi_IN (29)

where the superscript up (or lb) denotes the situations in
which X is greater (or less) than a certain value. For exam-
ple, PRupX (x) denotes the probability of X being greater
than or equal to x, and FRlbX (x) denotes the frequency of the
events causing X to be less than or equal to x.
Then, the average duration of corresponding events of X ,

namely, DUX , can be given by

DU lb(up)
X (x) =

PRlb(up)X (x)

FRlb(up)X (x)
(30)

Notably, the sum of pX should equal unity, and the sum
of either fX_IN or fX_DE should equal zero. Since the events
X ≤ x and X ≥ x are nearly complementary and frequency
balanced, we note that PRupX (x)+PRlbX (x) ≈ 1 and FRupX (x) ≈
FRlbX (x).

C. RANDOMNESS MODELING OF TRADITIONAL
INPUT VARIABLES
1) CG POWER OUTPUT
Random CG failures (or deratings) are generally considered
to be power injection uncertainties in PLF studies [1]–[8].
A CG can be modeled using a two-state or multistate Markov
chain depending on whether CG deratings are taken into
account [29]–[33]. Let Gmn denote the active power output
of the n-th CG at node m. Based on the generating capacity
process observations associated with the availability of the
corresponding CG, the PFDF of Gmn, namely, SGmn , can be
given by the method described in Sections III-A and B. Alter-
natively, this PFDF can be given based on the reliability data
of the corresponding CG when observations are unavailable.
In general, the failures of different CGs are considered to be
independent. Let Gm denote the total active power output of
CGs at node m. The PFDF of Gm can be given by (31) based
on (23).

SGm =
((
SGm1 ∗ SGm2

)
∗ · · ·

)
∗ SGmNGm (31)

where NGm is the number of CGs at node m.

2) LOAD DEMAND
In this study, the load series of the IEEE-RTS79 grid [36] are
used as load observations for each load bus independently.
The measurement interval is one hour, with a registration
of one year. The number of years is not sufficient to use
time-series-based simulation methods [26], [27] such as the
ARMA model. A Markov chain is commonly used to model
the stochastic processes of load demand [16], [17], [32].
Based on load observations, the Markov chain of the
load series is constructed through the method proposed in
Section III-A. Let Lm denote the load demand at node m.
With the method presented in Section III-B, the PFDF
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of Lm, namely, SLm , can be given based on the corresponding
Markov parameters.

IV. PFDF-BASED MODELING OF A WF
The randomness modeling of a WF is crucial in the context
of PLF with WFs. The active power output of a WF depends
on three factors: failures (or deratings) of WTs, wind speed,
and the relationship between the WT power output and wind
speed (i.e., the power curve). Therefore, the randomness
modeling of the WF power output is different from that of
a CG. To solve the PLF problem with frequency and duration
quantities, a random model for large WFs is developed and
represented as PFDF.

A. INFLUENCE FACTORS OF A WF POWER OUTPUT
1) WT FAILURES
A WF consists of multiple WTs that are subject to the same
wind regime. The failures of WTs affect the power output
of the WF. In most research works [22]–[24], a two-state
Markov chain is used to represent the failure behavior of
a WT. However, certain minor failures of the WTmay lead to
situations inwhich theWT continues to operate but at reduced
performance (i.e., deratings). Multistate Markov chains of
WTs are considered in recent research [25].

On the condition that wind speed is constant and rated,
a single WT is similar to a CG with derated states associated
with failures [25]. Let Wmrj denote the failure-associated
active power output of the j-th WT of type r in the WF
connected at node m. The PFDF of Wmrj, namely, SWmrj ,
can be given by the same approach as that outlined in the
modeling of SGmn . In general, the failures of different WTs
are considered to be independent. Let Wmr denote the total
active power output of type-r WTs in the WF at node m. The
PFDF of Wmr can be given by (32) based on (23).

SWmr =
((
SWmr1 ∗ SWmr2

)
∗ · · ·

)
∗ SWmrNr

(32)

where Nr is the number of type-r WTs in this WF.

2) WIND SPEED
In this study, the hourly wind speed series from Washington
during 2010 [37] are used as wind speed observations for
each WF independently. Similar to the load series mentioned
above, the time span of the wind speed observations is insuffi-
ciently lengthy to use time-series-based simulation methods.
A Markov chain is commonly used to model the stochastic
processes of wind speed [22]–[25]. To solve the PLF problem
with frequency and duration quantities, the Markov chain of
wind speed Vm for the WF at node m is constructed through
the method presented in Section III-A based on the wind
speed observations. Since the wind speed itself is not directly
involved in the PLF analysis, the PFDF of wind speed is not
essential.

3) POWER CURVE
The power curve can vary depending on the type of WT. The
power curve for a WT of type r can be characterized by

PW_r (V ) =


0, 0 ≤ V < VCI_r , V ≥ VCO_r(
Ar + BrV + CrV 2

)
PWN_r ,

VCI_r ≤ V < VN_r

PWN_r , VN_r ≤ V < VCO_r

(33)

where PW_r (V ) is the active power output of a type-r WT
under wind speed V . PWN_r , VCI_r , VN_r , and VCO_r are
the rated active power output, cut-in wind speed, rated wind
speed, and cut-out wind speed for the WT of type r , respec-
tively. The constantsAr ,Br , andCr are calculated fromVCI_r ,
VN_r , and VCO_r [38].

B. PFDF OF THE WF POWER OUTPUT
1) WITHOUT WT FAILURES CONSIDERED
For the WF at node m, let Vmi stand for the i-th state
value of the Markov chain of wind speed Vm modeled in
Section IV-A-2), and let F0

m denote the total active power
output of this WF without WT failures considered. If R types
of WTs exist in this WF, then the state value of F0

m under Vmi,
namely, F0

mi, is given by

F0
mi =

R∑
r=1

NrPW_r (Vmi), i ∈ BVm (34)

where BVm is the state set of Vm.
In practice, R andNr (r = 1, 2, ...,R) in (34) are constants.

Therefore, F0
mi and Vmi are of one-to-one correspondence.

By integrating (34) with the Markov chain of Vm, the PFDF
of F0

m can be expressed as

SF0
m
=

{
F0
m, pF0

m
, f F0

m_IN
, f F0

m_DE

}
(35)

2) WITH WT FAILURES CONSIDERED
On the condition that Vm is fixed at Vmi (∀i ∈ BVm ) and
only the failures of WTs are considered, let F im denote the
total active power output of the WF at node m. Since a WF
consists of multiple types of WTs that are subject to the same
wind regime, F im (∀i ∈ BVm ) is the parallel composition of
failure-associated active power output of each type of WT in
the corresponding WF. Consequently, the PFDF of F im can be
given by (36) based on (23), (32), and (33).

SF im =
((
Sb1iWm1 ∗ Sb2iWm2

)
∗ · · ·

)
∗ SbRiWmR

=

{
Fim, pF im , f F im_IN , f F im_DE

}
, i ∈ BVm

(36)

where SWmr is given by (32), and bri = PW_r (Vmi)/PWN_r
which can be obtained from (33).

Equation (36) is formulated by assuming that if the failure-
associated Markov chain of a WT under VN_r is given as
Fig. 1(a), then the failure-associatedMarkov chain of thisWT
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FIGURE 1. Failure-associated Markov chain of a type-r WT under
different wind speeds. (a) Failure-associated Markov chain of a type-r WT
under VN_r . (b) Failure-associated Markov chain of a type-r WT under Vmi .

under Vmi can be given as Fig. 1(b) [25]. In Fig. 1, there are K
Markov states for the WT, and PW1_r ,PW2_r , . . . ,PW (K−1)_r
are the derated outputs of this WT in various extents of
failures (the K -th state is the rated state).

For F im (i ∈ BVm ), a group of PFDFs exists, each repre-
senting the failure-associated WF active power output and
corresponding probability-frequency distribution under the
selected wind speed Vmi. In contrast, there is only one PFDF
for F0

m that represents the wind-speed-associated WF power
output without WT failures considered. Let Fm denote the
total active power output of the WF at node m, with all influ-
ence factors described in Section IV-A considered. By inte-
grating SF0

m
with SF im (i ∈ BVm ), the PFDF of Fm can be given

by (37)–(40) based on (35) and (36).

SFm =
{
Fm, pFm , f Fm_IN , f Fm_DE

}
(37)

pFm =
∑
i∈BVm

⊕

(
pF0

mi
pF im

)
(38)

f Fm_IN =
∑
i∈BVm

⊕

(
pF0

mi
f F im_IN ⊕ fF0

mi_IN
pF im

)
(39)

f Fm_DE =
∑
i∈BVm

⊕

(
pF0

mi
f F im_DE ⊕ fF0

mi_DE
pF im

)
(40)

where pF0
mi
, fF0

mi_IN
, and fF0

mi_DE
are the elements of pF0

m
,

f F0
m_IN

, and f F0
m_DE

corresponding to Vmi, respectively.∑
⊕ denotes the multiple addition operations of functions.

A detailed proof procedure for (37)–(40) is presented in the
Appendix.

Equations (37)–(40) combine the SF0
m
and SF im (i ∈ BVm )

into one PFDF (i.e., SFm ) in which the uncertainties of wind
speed and WT failure behavior are both considered. Notably,
the computation for SFm in (38)–(40) involves only addition
and scalar multiplication operations of associated PDFs and
FDFs, which simplifies the randomness modeling of the WF
power output with frequency and duration characteristics
considered.

V. PLF ANALYSIS
A. APPLICATION OF THE PFDF METHOD TO PLF
Uncertainties of nodal active power injections considered in
this study include random loads and active power outputs of
CGs and WFs. The total active power injection at node m is

Am = Gm + Fm − Lm, ∀m (41)

According to (23), the PFDF of Am can be expressed as

SAm =
(
SGm ∗ SFm

)
∗ S(−1)Lm , ∀m (42)

Then, the EV of A (i.e., A0 in (2) and (3)) can be calculated
using SAm , and the linear load flow equations (2)–(5) can be
obtained by linearizing (1) around the EV region.

Equations (2)–(5) state that UL = CA (or UL = C ′A) and
TL = ZA (or TL = Z′A). Let ULm denote the m-th element
ofUL , and let TLl stand for the l-th element of TL . According
to (23), the PFDFs of ULm and TLl can be calculated using
SAm as follows:

SULm =
((
SCm1A1 ∗ SCm2A2

)
∗ · · ·

)
∗ SCmMAM , ∀m (43)

STLl =
((
SZl1A1 ∗ SZl2A2

)
∗ · · ·

)
∗ SZlMAM , ∀l (44)

where Cmn (n = 1, 2, . . . ,M ) are the m-th row elements of C
(or C ′). Zln (n = 1, 2, . . . ,M ) are the l-th row elements of Z
(or Z′).

Equations (2) and (3) state Um = ULm + UCm and Tl =
TLl+TCl , whereUCm and TCl are the elements ofUC and TC
corresponding to Um and Tl , respectively. According to (22),
SUm and STl can be given as

SUm = SULm+UCm (45)

STl = STLl+TCl (46)

Consequently, the probability and the frequency and dura-
tion information of specified events of nodal voltages U and
branch flows T can be obtained from SUm and STl according
to (26)–(30).

The flowchart of the proposed PLF method in this study is
shown in Fig. 2.

B. SPATIAL CORRELATION AND NONLINEAR EFFECT
The calculations in (43) and (44) assume spatial indepen-
dence between components of A. In practice, both the cor-
relation of the random variables among one another for a
given time instant (spatial correlation) and the correlation
over time (temporal correlation) may exist at the same time.
In this study, the temporal correlation, which is essential for
solving the PLF problem with frequency and duration quan-
tities, is taken into account using different Markov chains to
model corresponding random variables. If only linear spatial
correlations among power injections A are considered, then
the method proposed in [5] can be directly incorporated
into the PFDF method to address the correlation problem.
In many studies, various loads andWFs are either close or far
away. Therefore, when the study period is short (e.g., in the
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FIGURE 2. Flowchart of the proposed PLF method.

study of system operation), the assumption of spatial inde-
pendence or linear spatial correlation among A is accept-
able. Similar to the initial cumulant-based method [4], one
drawback of the PFDF method is that it cannot directly
incorporate variables with general (not only linear) spatial
correlation. To overcome this drawback, an extension to the
cumulant-based PLF problem is presented based on orthog-
onal transformation [6]. This extension can also be incor-
porated into the PFDF-based method to handle the corre-
lation problem. First, let Fm = F0

m–(F
0
mi–F

i
m) (i.e., Am =

Gm + F0
m–(F

0
mi–F

i
m)–Lm), where (F0

mi–F
i
m) approximately

represents the effect of WT failures and can be regarded as
an independent injection with i (wind speed state) fixed. For
example, SF im can be modeled with Vmi fixed at the EV of
wind speed, and then the PFDF of (F0

mi–F
i
m) can be given

by (21) and (22) since F0
mi is a constant. In addition, the

observations ofF0
m can bemathematically obtained using (34)

to transform associated wind speed observations. Then, the
fictitious independent observations can be generated by an
orthogonal transformation [6] for original correlated obser-
vations of injections (including Lm and F0

m) at various nodes.
In this manner, the PFDFs of fictitious independent random
variables can be modeled using the method presented in
Sections III-A and B. Finally, SUm and STl can be obtained by
the calculation of the PFDFs of fictitious independent random
variables based on modified linear load flow equations [6]
reflecting the impact of spatial correlations. Essentially, this
orthogonalization approach [6] and the method in [5] model
spatially correlated variables as a function of several indepen-
dent ones. The spatial correlation is not included as part of the
PFDF method itself; rather, spatial correlation is addressed in
the variable modeling, which indicates the practicality of the
proposed method itself.

The multilinearization method proposed in [7] can be
incorporated into the proposed method to accommodate the
nonlinear effects of the load flow equations. With the mul-
tilinearization method, various points of linearization can be
determined, and the same linearization concept can be applied
to such points in addition to EVs. Then, a combination of
several PFDF solutions around various linearization points
can ensure satisfactory performance in terms of computation
time and accuracy.

Moreover, if the branch outages are considered, then the
method proposed in [8] can be tailored to solve this problem
by simulating branch outages as fictitious power injections.
More details of the above extension methods can be found
in [5]–[8]. Since the present study focuses on solving the
frequency and duration problem in PLF and because space
is limited, these extension methods are not discussed further.

VI. NUMERICAL TEST RESULTS
The performance of the proposed method was tested on the
IEEE-RTS79 grid and IEEE-300 node test system. Random
input variables, including intermittent loads, CG power out-
puts associated with CG failures, andWF power outputs asso-
ciated with both wind speed uncertainties and WT failures,
were considered in these tests. In all cases, the computa-
tions were performed on the MATLAB 7.1 platform using a
3.10-GHz Intel(R) Core(TM) i5-4440/4 GB RAM PC.

A. IEEE-RTS79 GRID
1) SYSTEM DATA
The proposed method was first tested on an IEEE-
RTS79 grid [36] that had been modified to include WFs.
In this test system, a swing bus absorbs all injection changes,
i.e., sensitivity matrixes C and Z are used in the calculations
of (43) and (44). A dispatching strategy was considered in the
other test (see Section VI-B).

FIGURE 3. Failure-associated Markov chain of a single WT.
(a) Failure-associated Markov chain of a single WT of type 1.
(b) Failure-associated Markov chain of a single WT of type 2.

In the test, two types of WTs are considered. For the WT
of type 1, PWN_1 = 1.5WM, VCI_1 = 4 m/s, VN_1 = 15 m/s,
and VCO_1 = 25 m/s. PWN_2 = 2 WM, VCI_2 = 3 m/s,
VN_2 = 12 m/s, and VCO_2 = 30 m/s for the WT of
type 2. Due to a lack of WT capacity process observations,
the failure-associated Markov chains of a single WT of each
type under VN_r (r = 1, 2) are assumed to be known as

74820 VOLUME 6, 2018



J. Zhu et al.: PLF With WFs Using a Frequency and Duration Method

shown in Fig. 3(a) and (b), in which the unit of transition
rate is occurrence/hour. Two 100 MW CGs at bus 7 and one
350 MW CG at bus 23 are replaced by two WFs. These two
WFs are connected at buses 3 and 8. TheWF at bus 3 contains
200 WTs of type 1. The WF at bus 8 contains 100 WTs of
each type (a total of 200 WTs). WT failures are assumed to
be independent. To simplify the analysis, the power factor
of each WF is assumed to be the same as that of the load
at the corresponding bus. If the power factor of the WF is
different from that of the corresponding load, a fictitious
node can be added to take the power injection of this WF,
and new sensitivity matrixes (i.e., C and Z) can be obtained
accordingly. Hourly wind speed observations measured in the
State ofWashington in theU.S. in 2010 [37] are used tomodel
the power output of each WF independently.

Due to a lack of CG observations, a two-state model
for each CG is used. The transition rates (occurrence/hour)
between two states are assumed to be known as outage
and repair rates, which are calculated by the mean time to
failure (MTTF) and the mean time to repair (MTTR) [36],
respectively. The system is assumed to be operating at the
annual peak loading level in the base case, and hourly peak
loads with 8736 sampling points expressed in terms of a per-
cent of the annual peak load [36] are used as load observations
for each load bus independently.

The actual value, instead of the per-unit value, is used in
the PFDF calculation of random variables. The discrete step
length in the PFDF calculation is set as 1X = 0.1 kV for
the voltage magnitude and 1X = 0.1 MW (or Mvar) for the
active (or reactive) power.

2) CLUSTERING RESULTS OF OPTIMAL DECISION-MAKING
For random variable X , the index JX in (9) and the index HX
in (10) may vary with the clustering number CX . For wind
speed V (i.e., X = V ), Fig. 4 shows the normalized JV and
HV as a function of the clustering number CV .

FIGURE 4. Normalized JV and HV with variations in CV .

JV decreases almost monotonically with increasing CV ,
and the decrease in JV becomes negligible whenCV increases
to a certain value (e.g., the decrease of JV can be ignored
when CV > 20). However, prominent fluctuations appear
in HV as CV increases. Both values of JV , corresponding
to CV = a and CV = b, are almost the same. How-
ever, HV corresponding to CV = a is smaller than that

corresponding to CV = b, i.e., the value of CV has a
detectable influence on HV even if its influence on JV is
slight. In the analysis of load L (i.e., X = L), a similar
influence of CL can also be found. The clustering number of
random states has a considerable influence on the credibility
of the Markov-chain-based modeling, and it is necessary to
optimize this parameter.

Since the wind speed model is designed to be as simple as
possible to improve computing efficiency, CV = 18 can be
given by solving (13) when setting CFV = [2, 25]. Similarly,
CL = 168 can be given for a load (X = L) when setting
CFL = [10, 200] in (13).

3) RESULTS OF PLF ANALYSIS
The PLF problem of (1)–(3) was solved using the proposed
PFDF method. A SMCS with 10 years (10× 8760 hours) of
simulation time was used as a reference to indicate the accu-
racy and effectiveness of the proposed method. In the SMCS,
the time series data of random input variables are generated
through the random residence time sampling technique based
on Markov chains [28] modeled above, and DLF is run for
each sample.

Equations (26)–(30) indicate that PRlbX (x), PRupX (x),
FRlbX (x), FR

up
X (x), DUlbX (x), and DU

up
X (x) of random variable

X may varywith the parameter x. For the active flow in branch
9–11 (i.e., X = TP9−11), Figs. 5(a)–(d) depict the associ-
ated PRlbX (x), FR

lb
X (x), DU

lb
X (x), and DUupX (x) as functions

of parameter x, respectively. The dashed line represents the
PFDF results, and the solid line represents the results obtained
fromSMCS.As stated in (30), the average duration is the ratio
of the probability to the frequency. Therefore, the calculation
error for DUlb(up)X (x) may be amplified when the correspond-
ingFRlb(up)X (x) in the denominator is excessively small. More-
over, in practice, events with a sufficiently low frequency
can be ignored. To limit the error amplification due to the
division operation in (30), a lower limit ofRF = 0.02 is set for
frequency. Only those DUlbX (x) and DU

up
X (x), corresponding

to FRlbX (x) ≥ RF and FRupX (x) ≥ RF for parameter x, respec-
tively, are calculated. Since the events X ≤ x and X ≥ x are
nearly complementary and frequency balanced as mentioned
in Section III-B-2), PRupX (x) and FRupX (x) can be derived from
PRlbX (x) and FR

lb
X (x), respectively, i.e., PR

up
X (x) ≈ 1–PRlbX (x),

and FRupX (x) ≈ FRlbX (x). For the sake of clarity, PR
up
X (x) and

FRupX (x) are not shown in the calculation results. Fig. 5 shows
that the results obtained from the proposed PFDF method
match closely with the corresponding SMCS results.

The randomness of loads and WF power outputs may
cause the power flow to change direction. TP9−11 is in the
positive direction when TP9−11 ≥ 0, i.e., the active flow in
branch 9–11 is from node 9 to node 11. Then, the probability,
frequency, and average duration of the events leading to a pos-
itive TP9−11 can be given as PRupX (0), FRupX (0), and DUupX (0)

(X = TP9−11), respectively. Accordingly, PRlbX (0), FR
lb
X (0),

andDUlbX (0) can provide associated information of the events
causing TP9−11 ≤ 0, which indicates that TP9−11 lies in the
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FIGURE 5. PRlb
X (x), FRlb

X (x), DUlb
X (x), and DUup

X (x) of TP9−11 in the
IEEE-RTS79 grid. (a) PRlb

X (x) of TP9−11. (b) FRlb
X (x) of TP9−11. (c) DU lb

X (x)
of TP9−11. (d) DUup

X (x) of TP9−11.

negative direction. For example, the PFDF result PRlbX (0) =
0.737 shown in Fig. 5(a) indicates that the probability of
TP9−11 lying in the negative direction is 0.737. Moreover,
the PFDF result FRlbX (0) = 0.122 hr/occ shown in Fig. 5(b)
indicates that the events leading to a negative TP9−11 may
occur 0.122 times an hour on average. Furthermore, the
PFDF result DUlbX (0) = 6.041 hr/occ shown in Fig. 5(c)
indicates that the average duration of TP9−11 lying in the
negative direction is 6.041 hours. Additionally, the PFDF
result DUupX (0) = 2.156 hr/occ shown in Fig. 5(d) indicates
that the average duration of TP9−11 lying in the positive
direction is 2.156 hours.

FIGURE 6. PRlb
X (x), FRlb

X (x), DUlb
X (x), and DUup

X (x) of UM3 in the
IEEE-RTS79 grid. (a) PRlb

X (x) of UM3. (b) FRlb
X (x) of UM3. (c) DU lb

X (x)
of UM3. (d) DUup

X (x) of UM3.

The randomness of loads and WF power outputs may
also cause the nodal voltages to be outside their acceptable
levels. Therefore, we provide accurate frequency and duration
assessments for these violation states to reflect the actual
operating behavior of a power system. Fig. 6 shows the

calculation results of the voltage magnitude at bus 3 (i.e., X =
UM3). It is known from [36] that the allowable voltage range
ofUM3 is (131.1, 144.9) kV. Then, the probability, frequency,
and average duration of UM3 (i.e., X = UM3) violating
its upper bound can be given as PRupX (144.9), FRupX (144.9),
and DUupX (144.9), respectively, where PRupX (144.9) ≈ 1–
PRlbX (144.9) and FR

up
X (144.9) ≈ FRlbX (144.9). For example,

the PFDF result PRupX (144.9) = 1 – PRlbX (144.9) = 0.158
(where PRlbX (144.9)= 0.842, as shown in Fig. 6(a)) indicates
that the probability of UM3 violating its upper bound is
0.158. Moreover, according to the PFDF result FRupX (144.9)
≈ FRlbX (144.9) = 0.054 occ/hr shown in Fig. 6(b), the vio-
lation of UM3 may occur 0.054 times an hour on average.
Furthermore, the PFDF result DUupX (144.9) = 2.926 hr/occ
shown in Fig. 6(d) indicates that the average duration for
which UM3 is in the violation state is 2.926 hours. Addi-
tionally, the PFDF result DUlbX (144.9) = 15.59 hr/occ shown
in Fig. 6(c) indicates that the average duration of UM3 being
in the normal state is 15.59 hours. Note that unlike PRlb(up)X (x)
or FRlb(up)X (x), DUlbX (x) and DU

up
X (x) cannot be derived from

each other directly.
Since the linear load flow equations (i.e., (2) and (3)) are

used in the proposed PFDF method, the distortion between
the SMCS and PFDF results may appear in the region away
from the linearization point, whereas the region near the point
of linearization shows minimal difference. Some accuracy
may be lost, but Figs. 5 and 6 verify that the shapes of lines
obtained from SMCS and PFDF remain similar. Moreover,
the following test establishes that the calculation efficiency
is significantly improved by the proposed method relative to
SMCS. Furthermore, the distortion caused by linearization
might be further reduced by the multilinearization method
proposed in [7]. With the multilinearization method, various
points of linearization can be determined, and the same lin-
earization concept can be applied to such points in addition to
EVs. Then, a combination of several PFDF solutions around
various linearization points can ensure satisfactory perfor-
mance in terms of computation time and accuracy.

4) ERROR MEASUREMENT
To prove the effectiveness of the proposed method,
the normalized sum of square error (NSSE) and average
NSSE (ANSSE) used in [39] are calculated to provide error
information using the result of SMCS as a reference.

NSSE =

∑
x∈CP

(SMCS(x)− PFDF(x))2∑
x∈CP

SMCS(x)2
(47)

ANSSE =

NC∑
i=1

NSSEi

NC
(48)

where PFDF(x) denotes the result value of probability, fre-
quency or average duration (hour/occurrence) calculated by
the proposed method, e.g., PFDF(x) can be replaced by
PRlbX (x), PR

up
X (x), FRlbX (x), FR

up
X (x), DUlbX (x) or DUupX (x).

74822 VOLUME 6, 2018



J. Zhu et al.: PLF With WFs Using a Frequency and Duration Method

SMCS(x) represents the value given by SMCS corresponding
to PFDF(x). CP is the set of x used for comparison, which
is evenly chosen from the range of x obtained by SMCS.
The interval between each two neighbouring chosen points is
set as 1X . NC varies with the object of study. When voltage
magnitude results are considered, NC denotes the number of
system nodes. When active or reactive branch flow results are
considered, NC denotes the number of system branches.

TABLE 1. NSSE for certain output variables in the IEEE-RTS79 grid.

Table 1 shows the NSSE for various output vari-
ables (including voltage magnitudes at some nodes and
active/reactive flows in some branches). Table 2 compares the
ANSSE for various output variables. The differences between
the results obtained by the proposed method and SMCS are
small and arise mainly from linearization. Because of the
higher nonlinearity of the involved equations, the ANSSE
for voltage magnitude or reactive branch flow is greater than
that for active branch flow. We take UM3 as a reference.
Although the NSSE for UM3 is relatively large in Table 1,
Fig. 6 indicates that the PFDF(x) and SMCS(x) of UM3 are
nevertheless close.

In each row of Table 1 or 2, the NSSE or ANSSE
for DUlbX (x) and DUupX (x) are larger than in the corre-
sponding PRlbX (x) or FRlbX (x), mainly because the divi-
sion operation in (30) may amplify calculation errors for
DUlbX (x) (orDU

up
X (x)), particularly whenPRlbX (x) (orPR

up
X (x))

becomes large and FRlbX (x) (or FR
up
X (x)) becomes small. Such

errors will decrease with increasing RF . Notably, the left side

TABLE 2. ANSSE for output variables in the IEEE-RTS79 grid.

of DUlbX (x) and the right side of DUupX (x), where errors are
generally small, as shown in Fig. 5 and 6, are the primary
concern for the assessment in the PLF problem. Therefore,
the effectiveness of the proposed method is confirmed.

B. IEEE-300 NODE GRID
1) SYSTEM DATA
To test the effects of system size on the performance of
the proposed method, another test using the IEEE-300 node
system was conducted. The IEEE-300 node test system
was also modified to include WFs. Conventional generation
(10,000 MW) has been reduced proportionally and replaced
by wind generation with the same capacity. In this test, all
CGs are assumed to have the same reliability data as the
100 MW CG in the IEEE-RTS79 grid. Three WFs are added
to share wind power and are connected at buses 37, 126, and
211. In the WF at bus 37, there are 200 WTs of type 1. The
WF at bus 126 has 100 WTs of each type (200 WTs in total).
The WF at bus 211 also has 100 WTs of each type (200 WTs
in total). To provide sufficient wind generation, the rated
active power output of each type of WT is set as 10 times
the original, i.e., PWN_1 = 15 WM, and PWN_2 = 20 WM.
Since the failures of WTs are simulated as random factors,
the computation time of SMCS becomes unacceptable when
the number of WTs becomes large. Therefore, PWN_r , rather
than the number of WTs, is increased to ensure the feasibility
of SMCS, which also indicates the deficiency of SMCS.

The hourly wind speed and load observations described
in Section VI-A are still used for each bus independently.
Because large fluctuations of power injections are caused in
this test by the variations of WF power outputs and loads,
a linear dispatching model shown in (4) and (5) is used to
obtain new sensitivity matrixes C ′ and Z′ for the calcula-
tions of (43) and (44). In the calculation of new sensitivities,
the fluctuation of a nodal power injection is assumed to
be compensated by all CGs except those connected at this
node, and the participation factor of a regulating generator is
assumed to be proportional to its reserve capacity.

2) RESULTS OF PLF ANALYSIS
The results of the proposed method are compared with those
from the SMCSwith 10 years (10×8760 hours) of simulation
time for computational accuracy verification. Table 3 presents
the ANSSE for various output variables.
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TABLE 3. ANSSE for output variables in the IEEE-300 node grid.

FIGURE 7. PRlb
X (x), FRlb

X (x), DUlb
X (x), and DUup

X (x) of UM37 in the
IEEE-300 node grid. (a) PRlb

X (x) of UM37. (b) FRlb
X (x) of UM37. (c) DU lb

X (x)
of UM37. (d) DUup

X (x) of UM37.

As an example, Fig. 7 depicts the associated PFDF(x) and
SMCS(x) of the voltagemagnitude at bus 37 (i.e.,X = UM37),
of which the upper bound is 121.9 kV. The PFDF result
PRupX (121.9) = 1 – PRlbX (121.9) = 0.391 (where PRlbX (121.9)
= 0.609, as shown in Fig. 7(a)) indicates that the probabil-
ity of UM37 violating its upper bound is 0.391. Moreover,
according to the PFDF result FRupX (121.9) ≈ FRlbX (121.9) =
0.1 occ/hr shown in Fig. 7(b), the violation of UM37 may
occur 0.1 times an hour on average. Furthermore, the PFDF
result DUupX (121.9) = 3.911 hr/occ shown in Fig. 7(d) indi-
cates that the average duration for which UM37 is in the
violation state is 3.911 hours. Additionally, the PFDF result
DUlbX (121.9)= 6.089 hr/occ shown in Fig. 7(c) indicates that
the average duration of UM37 being in the normal state is
6.089 hours.

For the active flow in branch 127–134 (i.e., X =

TP127−134), Fig. 8 depicts the associated PFDF(x) and
SMCS(x). TP127−134 is in the positive direction when
TP127−134 ≥ 0, i.e., the active flow in branch 127–134 is from
node 127 to node 134. Accordingly, TP127−134 ≤ 0 indicates
that TP127−134 lies in the negative direction.
The PFDF result PRlbX (0) = 0.61 (where X = TP127−134)

shown in Fig. 8(a) indicates that the probability of TP127−134
lying in the negative direction is 0.61. Moreover, the PFDF
result FRlbX (0) = 0.145 hr/occ shown in Fig. 8(b) indicates
that the events leading to a negative TP127−134 may occur
0.145 times an hour on average. Furthermore, the PFDF

FIGURE 8. PRlb
X (x), FRlb

X (x), DUlb
X (x), and DUup

X (x) of TP127−134 in the
IEEE-300 node grid. (a) PRlb

X (x) of TP127−134. (b) FRlb
X (x) of TP127−134.

(c) DUlb
X (x) of TP127−134. (d) DUup

X (x) of TP127−134.

result DUlbX (0) = 4.207 hr/occ shown in Fig. 8(c) indicates
that the average duration of TP127−134 lying in the nega-
tive direction is 4.207 hours. Additionally, the PFDF result
DUupX (0) = 2.69 hr/occ shown in Fig. 8(d) indicates that the
average duration of TP127−134 lying in the positive direction
is 2.69 hours.

Figs. 7 and 8 show that the results obtained from the pro-
posed PFDF method match closely with the corresponding
SMCS results. The results shown in Table 3 and Figs. 7 and 8
indicate that the proposed method satisfactorily estimates
the load flow solution information (including the probabil-
ity, frequency, and duration information), even for a large
system.

Let TA represent the total active flows of all branches of the
test system. The second termination criterion of SMCS is the
standard deviation of the expectation estimate of TA less than
1MW. For the proposed method and SMCS based on tow ter-
mination criteria, Table 4 lists the average computation time
on different test systems. Since the number of Markov states
for random variables should be optimized before applying the
Markov-chain-based method, the time spent on optimizing
the state number for the proposed method is the same as that

TABLE 4. Computation time comparison.
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for the Markov-chain-based SMCS and is not included in the
computation time listed in Table 4.

The proposed method requires much less computational
effort than the SMCS method when both methods have
similar computational accuracy, and the computational per-
formance of the proposed method is not degraded with
increasing system size.Moreover, the computation time of the
proposed method using the convolution operation decreases
exponentially with increases of the discrete step length 1X
within acceptable accuracy. For example, if 1X is set as
0.5, then the TM3 for the IEEE-300 node system decreases
from 163 s to 56 s. Moreover, the computational burden of
convolution can be greatly relieved using the fast Fourier
transform method [3].

VII. CONCLUSION
Conventional PLF methods do not take the frequency and
duration information of random variables into account. Here,
we propose a frequency and duration method for PLF with
WFs. An improved PFDF method is introduced to solve PLF
problemswith frequency and duration quantities. The random
models of WFs, CGs, and loads are developed and repre-
sented as corresponding PFDFs based on Markov chains,
of which the credibility is improved using the proposed
optimal decision-making model to determine the clustering
number. With the proposed method, the randomness mod-
eling of the WF power output with frequency and duration
characteristics considered becomes straightforward to imple-
ment. In addition, the probability, frequency, and duration
information of desired variables, such as voltages and branch
flows, are computed simply through convolution and addition
operations (also including scalar multiplication) of PFDFs.

Our test results indicate the necessity of optimizing the
clustering number of random states, which has a considerable
influence on the credibility of the Markov-chain-based mod-
eling. Associated probability, frequency, and duration infor-
mation results of random output variables using the proposed
method are compared against the results from SMCS on two
IEEE test systemswithWFs. The proposedmethod simplifies
the computation process and yields a substantial reduction
in computational expense while maintaining a high level of
accuracy.

APPENDIX
Let F represent the total active power output of a WF at
node m (omitting subscript m below). Considering the uncer-
tainties of WT failures and wind speed V , the state space for
F is shown in Fig. 9.

In Fig. 9, λVik is the transition rate between states i and
k of V , and λWjk denotes the transition rate between various
states associated with WT failures. The transitions between
nonadjacent states are not shown in Fig. 9 for the sake of
clarity. The state probabilities pF ij and pF0

i
are the probability

of the corresponding row (WT-failure-associated) state and
the column (wind-speed-associated) state, respectively.

FIGURE 9. State space for the power output of a WF.

Based on the total probability formula, the probability of
F = a can be given by

p(F = a) =
∑
i∈BV

pF0
i
pF ij , F ij = a, i ∈ BV (49)

Then, (38) is proved according to the nature of the addition
operation of functions.

Assuming that F0
k ≤ F0

i when k < i, the incremental
and decremental frequencies corresponding to F0

i in (35) are
given by

fF0
i _IN
=

∑
k>i

pF0
i
λVik −

∑
k<i

pF0
k
λVki (50)

fF0
i _DE

=

∑
k<i

pF0
i
λVik −

∑
k>i

pF0
k
λVki (51)

Assuming that F ik ≤ F ij when k < j, the incremental
and decremental frequencies corresponding to F ij in (36) are
given by

fF ij _IN =
∑
k>j

pF ij λWjk −
∑
k<j

pF ikλWkj (52)

fF ij _DE =
∑
k<j

pF ij λWjk −
∑
k>j

pF ikλWkj (53)

Assuming that the order between Fkj and F ij is the same as
that between F0

k and F0
i , i.e., F

k
j ≤ F ij when k < i for any j,

the incremental and decremental frequencies corresponding
to F ij , considering both WT failures and the variation of wind
speed, are given by

f ′
F ij _IN

=

∑
k>i

pF0
i
pF ij λVik +

∑
z>j

pF0
i
pF ij λWjz

−

∑
k<i

pF0
k
pF ij λVki −

∑
z<j

pF0
i
pF izλWzj (54)

f ′
F ij _DE

=

∑
k<i

pF0
i
pF ij λVik +

∑
z<j

pF0
i
pF ij λWjz

−

∑
k>i

pF0
k
pF ij λVki −

∑
z>j

pF0
i
pF izλWzj (55)
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Only when the difference between power curves of differ-
ent types of WTs is significant and the proportion of failure
WTs in state j is sufficiently large may the assumption for the
order between Fkj and F

i
j in (54) and (55) produce error due to

transitions between the states of V < VCO_r and V ≥ VCO_r
near VCO_r . In practice, the power curves of various types
of WTs in the same WF are typically similar, the probability
of failure of large-scale WTs is small, and the probability of
V ≥ VCO_r should also be small for the case of practical WF
planning. Therefore, such error is negligible.

By substituting (50) and (52) into (54) and substituting (51)
and (53) into (55), it can be derived that

f ′
F ij _IN

= pF0
i
fF ij _IN + fF0

i _IN
pF ij (56)

f ′
F ij _DE

= pF0
i
fF ij _DE + fF0

i _DE
pF ij (57)

Thus, the incremental and decremental frequencies corre-
sponding to the state of F = a are

fIN (F = a) =
∑
i∈BV

f ′
F ij _IN

, F ij = a, i ∈ BV (58)

fDE (F = a) =
∑
i∈BV

f ′
F ij _DE

, F ij = a, i ∈ BV (59)

Consequently, (39) and (40) are proved based on the nature
of the addition operation of functions.
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