
Received September 5, 2018, accepted October 23, 2018, date of publication October 30, 2018, date of current version December 3,
2018.

Digital Object Identifier 10.1109/ACCESS.2018.2878777

Highly Efficient Implementation of
NIST-Compliant Koblitz Curve for 8-bit
AVR-Based Sensor Nodes
SEOG CHUNG SEO 1, (Member, IEEE), AND HWAJEONG SEO 2
1The Affiliated Institute of ETRI, Daejeon 305-600, South Korea
2IT Convergence Division, Hansung University, Seoul 02860, South Korea

Corresponding author: Hwajeong Seo (hwajeong84@gmail.com)

This work was supported by ETRI.

ABSTRACT This paper presents an efficient implementation of elliptic curve cryptography (ECC) over
the National Institute of Standards and Technology (NIST) K-233 curve for 8-bit AVR microcontrollers
commonly used for sensor nodes in wireless sensor networks. Until now, several ECC implementations
over NIST-compliant curves have been presented on 8-bit sensor nodes. However, most of them do not
provide 112-bit security level currently recommended by NIST. Although some works provide more
than 112-bit security level, their performance needs to be improved in order to be executed properly on
resource-constrained sensor nodes. For optimizing the performance of ECC, we focus on the efficiency of
field arithmetics and propose several optimization techniques. First, we present a novel polynomial multi-
plication technique based on multiplier encoding. The proposed method significantly reduces the required
number of registers for a multiplier, which allows the larger block size for the Karatsuba Block-Comb
method. The proposed method provides around 17.05% of improvement compared with the best result
previously presented. Second, we optimize modular squaring and reduction algorithms considering the
features of 8-bit AVR, and each of them provides around 21.86% and 3.7% improvements compared with
the related works. With proposed methods, we present two versions of ECC implementation: (highly fast)
HF and (highly secure) HS over NIST K-233 curve on an 8-bit ATmega128. Especially, HF version
outperforms the best result previously implemented on the same curve by 18.6% and 34.5% for a variable
and a fixed-based scalar multiplication, respectively. Furthermore, on the 8-bit AVR platform, our ECC
implementation shows the best performance compared with other existing implementations over both
NIST-standardized prime or binary curves.

INDEX TERMS Polynomial multiplication, elliptic curve cryptography, software implementation, simple
power analysis, wireless sensor networks, NIST curves, 8-bit AVR, Koblitz curves.

I. INTRODUCTION
Wireless sensor networks (WSNs) are ad-hoc networks com-
posed mainly of hundreds or thousands of tiny sensor nodes
and they have been widely used for various applications such
as monitoring services, battlefield reconnaissance, emer-
gency rescue operations, and so on, in the recent past. Sensor
nodes use wireless channel which is considered to be easy to
eavesdrop or change messages and WSNs are often deployed
in unattended environments where they can be easily captured
or compromised by adversaries. That is why security mech-
anism is an integral factor for ensuring reliable and secure
services on WSNs. However, achieving security on WSNs is
not easy because sensor nodes in WSNs are battery-powered

and very resource-constrained with respect to computing
and memory capabilities. For example, MICAz mote, one
of the most widely used sensor motes, equips an 8-bit AVR
ATmega128microcontroller, which is clocked at 7.3728MHz
and has 4Kbytes of RAM and 128Kbytes of ROM.

In early days, it had been thought that Public-Key Cryp-
tosystems (PKCs) were infeasible in resource-constrained
sensor nodes and thus, many symmetric-key-based security
protocols were proposed for securing communications on
WSNs. However, they have several limitations such as ineffi-
cient key management, complex key exchange structure, and
so on. Thus, many researches have been tried to apply PKCs
such as RSA, DSA, and elliptic curve cryptography (ECC)

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

67637

https://orcid.org/0000-0001-8016-2808
https://orcid.org/0000-0003-0069-9061

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

for secure key establishment and efficient key management to
WSNs. ECC has been regarded as a better choice for WSNs
than conventional PKCs such as RSA, DSA, and DH (Diffie-
Hellman), because it provides equivalent security with much
smaller key sizes. For example, the security level of 160-bit
key in ECC is equivalent to that of 1024-bit key in RSA. Thus,
using ECC results in lower memory and bandwidth consump-
tion on WSNs. Furthermore, through many researches, it is
known that a scalar multiplication, the most expensive part
of all ECC-based protocols, takes only 5% to 10% of the
execution time of a modular exponentiation needed for RSA
at the same security level [1], [2].

Recently, many ECC implementations over NIST-
compliant curves on 8-bit sensor motes have been reported
in the literature and their main purpose is to optimize the
performance of a scalar multiplication, which is the most
time-consuming part of ECC-based protocols [1]–[12]. Even
though they could prove the feasibility of using ECC on
8-bit AVRmicrocontrollers bymaking full use of well-known
optimization algorithms at each level of ECC implementation
hierarchy (We will cover the detail about the ECC implemen-
tation hierarchy in Section II), most of them do not provide
112-bit security level currently recommended by U.S. NIST
(National Institute of Standards and Technology). Accord-
ing to the recommended key sizes from NIST [13], [14],
ECC implementations providing at least 112-bit security
should be used from 2016 to 2030. Therefore, we present
an optimized ECC implementation over NIST-compliant
K-233 curve providing 112-bit security on the popular 8-bit
AVR ATmega128 microcontroller. To optimize the perfor-
mance of the scalar multiplication, we focus on developing
efficient field arithmetic algorithms in polynomialmultiplica-
tion, modular squaring, and reduction. In particular, since the
polynomial multiplication occupies almost 80% of a scalar
multiplication, it is crucial to optimize the performance of
the polynomial multiplication for efficiency.

A. ECC IMPLEMENTATIONS ON 8-bit AVR
MICROCONTROLLERS
In the past decades, several ECC implementations have
been presented on 8-bit AVR microcontrollers. They can be
divided into two types of implementation: one over prime
curves and the other over binary curves. In this section,
we use cc notation for clock cycles timing.

1) ECC IMPLEMENTATIONS OVER PRIME CURVES
Gura et al. [3] presented the first implementation results of
prime field ECC and RSA on 8-bit AVR microcontrollers.
The work demonstrated that if traditional PKCs were effi-
ciently implemented considering the characteristics of tar-
get devices, they can be feasible for resource-constrained
devices. For optimizing the performance of PKCs, they
focused on the underlying field multiplication occupying
around 80% of PKC operation such as an exponentiation
in RSA or a scalar multiplication in ECC. Then they pro-
posed the new hybrid multiplication method, which makes

full use of available registers on 8-bit AVR by combining
the row-wise and the column-wise multiplication methods.
Gura et al.’s implementation over NIST P-224 curve could
compute a scalar multiplication within 17,520,000 cc on
8-bit AVR microcontroller clocked at 8MHz. TinyECC [4]
was the first well-known classic cryptographic library for
8-bit AVR-based, 16-bit MSP-based, and 32-bit ARM-based
sensor nodes. TinyECC supports several NIST-recommended
elliptic curve domain parameters, ranging from P-128
to P-192. For efficiency, TinyECC applied several well-known
optimization techniques such as hybrid multiplication for
field multiplication and sliding window methods for scalar
multiplication. In case of P-192, TinyECC could compute a
scalar multiplication within 21,381,120 cc. Uhsadel et al. [5]
presented an estimated timing of 5,603,328 cc for comput-
ing a scalar multiplication over P-160 curve on an 8-bit
AVRmicrocontroller running at 7.3728MHz. The latest work
regarding ECC implementation over NIST prime curve on
8-bit AVR microcontroller is from [1] and [2]. Namely,
Liu et al. implemented all primitives for ECDH and ECDSA
protocols over NIST P-192 on 8-bit ATmega128 processor
and got timings of 3,460,000 cc and 8,620,000 cc for a
fixed-base scalar multiplication and a variable-base scalar
multiplication, respectively.

Recently, several new types of ECC curves such
as Curve25519 [15], MoTE Curve [16], [17], Kummer
surface [18], and FourQ [19] have been developed for high
security level. Hutter and Schwabe [20] presented the first
result of the Networking and Cryptography library (NaCl)
on the 8-bit AVR family of microcontrollers. They included
Curve25519 curve providing 128-bit security as an ECC
primitive in NaCl, and a scalar multiplication on the
curve consumed 22,791,579 cc. DÃĳll et al. also opti-
mized X25519 key-exchange protocol over Curve25519 for
8-bit AVR, 16-bit MSP430X, and 32-bit ARM Cortex-
M0 microcontrollers, and they achieved 13,900,397 cc for
8-bit ATmega2560 processor [21]. Renes et al. presented
µKummer implementation on 8-bit AVR ATmega and got a
timing of 9,513,536 cc for a full scalar multiplication. In [17],
Liu et al. presented ECC implementations over MoTE
curves [16], the next generation lightweight curves, on 8-bit
AVR and 16-bit MSP processors. On 8-bit ATmega128 pro-
cessor, their implementation over P223 MoTE curve con-
sumes 6,048,000 cc and 12,879,000 cc for a fixed-base
scalar multiplication and a variable-base scalar multiplica-
tion. Among the new types of aforementioned curves on
8-bit AVR platforms, FourQ provides the best performance.
Liu et al. presented highly optimized FourQ implementation
on 8-bit AVR ATxmega256A3 microcontroller and their
implementation consumed 3,007,300 cc and 6,561,500 cc for
a fixed-base scalar multiplication and a variable-base scalar
multiplication [22].

In summary, with regard to NIST prime curves pro-
viding at least 112-bit security on 8-bit AVR platforms,
Liu et al.’s work over NIST P-192 curve provides the best per-
formance as 3,460,000 cc and 8,620,000 cc for a fixed-base

67638 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

scalar multiplication and a variable-base scalar multiplica-
tion, respectively [2]. Regarding the new types of curves,
FourQ implementation provides the best performance as
3,007,300 cc and 6,561,500 cc for each of a fixed-base and a
variable-base scalar multiplication [22].

2) ECC IMPLEMENTATIONS OVER BINARY CURVES
Compared to ECC implementations over prime curves on
8-bit AVR platforms, the number of ECC implementations
over binary curves is relatively small. This is because the
most time-consuming operation in ECC operations is poly-
nomial multiplication, and 8-bit AVR does not provide
a generic carryless multiplier for polynomial multiplica-
tion.1 Therefore, multiplication over binary fields is much
slower than that over prime fields on 8-bit AVR platforms.
Malan et al. [6] implemented ECC over 163-bit binary curve
for ECDH key agreement protocol. However, their imple-
mentation showed that the computation cost of 251,862,220
cc was expensive for the embedded processors. Yan and Shi
implemented ECC over GF(2163) and it computed a scalar
multiplication over 163-bit binary curve in 111,183,513
cc [7], which was still high to be used on 8-bit AVR.
Eberle et al. implemented ECC over GF(2163) in Assem-
bly language and obtained a timing of 331,20,000 cc for
computing a scalar multiplication [8]. NanoECC showed that
a scalar multiplication over K-163 curve could be com-
puted in 15,925,248 cc on 8-bit MICAz sensor clocked at
7.3728MHz [9]. For efficiency of polynomial multiplication,
they utilized López-Dahab’s LUT-based polynomial multipli-
cation method (so-called wLtR comb method) and Karatsuba
method [23]. Seo et al. [10] presented TinyECCK, which is
the first ECC implementation over K-163 Koblitz curve on
8-bit ATmega128. They showed that the ECC implemen-
tation over binary Koblitz curve can be faster than that
over prime curve if it is optimized properly by improving
the performance of field arithmetics such as polynomial
multiplication and reduction. For efficiency of polynomial
multiplication, they optimized wLtR comb method by reduc-
ing the number of redundant memory accesses, and they
replaced computation of ECDBL with cheap field squarings
by utilizing the property of Koblitz curves. Finally, they
achieved a timing of 8,404,992 cc for a scalar multiplication.
Kargl et al. implemented a scalar multiplication over
GF(2167) optimal extension field (OEF) with Montgomery
Ladder for SPA-resistance and got a timing of 6,100,462
cc on an 8-bit AVR clocked at 8MHz [24]. Aranha et al.
presented highly optimized ECC implementations over
Koblitz curves [11]. They implemented K-163 and K-233
Koblitz curves on an 8-bit ATmega128 processor clocked
at 7.3728MHz, and they achieved timings of 2,138,112 cc
(resp. 4,866,048 cc) and 2,359,296 cc (resp. 5,382,144 cc)
for a fixed-base scalar multiplication and a variable-base

1Recently, a carryless multiplier for polynomial multiplication has been
included in Intel processors and ARM processors. However, until now, 8-bit
AVR does not include such a multiplier.

scalar multiplication over K-163 curve (resp. K-233 curve).
For efficiency, they introduced a rotating register mecha-
nism for López et al.’s LUT-based polynomial multiplication.
Seo et al. [12] optimized the polynomial multiplication over
GF(2163) with their proposed Karatsuba Block-Comb (KBC)
multiplication method, and achieved a timing of 2,138,112 cc
for a variable-base scalar multiplication over K-163 Koblitz
curve on 8-bit AVR.
In summary, with respect to K-163 curve providing 80-bit

security level on 8-bit AVR platforms, Seo et al.’s work pro-
vides the best performance as 2,138,112 cc for a variable-base
scalar multiplication [12]. Regarding to K-233 curve provid-
ing 112-bit security level, Aranha et al.’s work achieved the
best timing result as 4,866,048 cc and 5,382,144 cc for a
fixed-base scalar multiplication and a variable-base scalar
multiplication, respectively [11].

B. OUR CONTRIBUTIONS
The contributions of this paper are summarized as follows:
• Presenting a novel polynomial multiplication. We pro-
pose a new method which can significantly improve the
performance of Block-Comb (BC)-based polynomial
multiplication. Through the proposed multiplier encod-
ing, the proposed multiplication method significantly
reduces the required number of registers for a multi-
plier from O(n) to O(1). The method scans the multi-
plier in bit-wise rather than traditional byte-wise, which
increases the size of block and significantly reduces the
number of partial products. The method is also well
integrated with Karatsuba method. Finally, the poly-
nomial multiplication over GF(2233) requires only
6,896 and 6,248 clock cycles for w/ and w/o encoding,
which achieves 17.05% and 24.84% of improvements
compared with the best result previously presented,
respectively.

• Optimized Modular Squaring and Reduction. We also
present optimized implementations of modular squaring
and reduction forGF(2233) on 8-bit AVR. The proposed
modular squaring and reduction could achieve around
21.86% and 3.7% of improvements compared with the
previous best results over GF(2233).

• Developing two versions of HF (Highly-Fast) and HS
(Highly-Secure) ECC implementation. We present two
versions of ECC implementation.HF version focuses on
performance and it outperforms the previous best results
on the same curve by 18.6% and 34.5% for a variable and
a fixed-based scalar multiplication, respectively. TheHS
ensures security against Simple Power Analysis (SPA)
and Differential Power Analysis (DPA) by using regu-
lar wTNAF method and randomized coordinate system,
respectively.

The remainder of this paper is organized as follows.
In Section II, we briefly introduce the basic of ECC including
Koblitz curves and its implementation hierarchy, and we also
describe the main features of the 8-bit AVR ATmega128
processor. Section III overviews the previous state-of-art

VOLUME 6, 2018 67639

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

implementations of polynomial multiplication over 8-bit
AVR platforms. In Section IV, we describe the proposed
field arithmetic algorithms, especially the proposed poly-
nomial multiplication technique, optimized for 8-bit AVR
processors. Section V describes the rationale for the selec-
tion of proper algorithms at an elliptic curve operation
level. Section VI describes our approaches for SCA secu-
rity. Section VII compares our implementation with other
existing ECC implementations over 8-bit AVR platforms.
Finally, we conclude the paper with some future works
in Section VIII.

II. PRELIMINARIES
In this section, we describe the overview of ECC over
GF(2m), its implementation hierarchy, and the characteristics
of 8-bit AVR microprocessors.

A. ELLIPTIC CURVE CRYPTOGRAPHY
AND KOBLITZ CURVES
Elliptic Curve Cryptography (ECC) [25]–[27], introduced by
Neal Koblitz and Victor S. Miller in 1985, is one of the most
widely used Public Key Cryptosystems (PKCs). The security
of ECC is based on the hardness of ECDLP (Elliptic Curve
Discrete Logarithm Problem), and it is believed that ECC
provides an equivalent security level of existing PKCs such
as RSA and DSA with a much smaller key size.2 An elliptic
curve E over a field K is a set of solutions (x, y) ∈ K × K
which satisfies following Weierstrass equation

E/K : y2 + a1xy+ a3y = x3 + a2x2 + a4x + a6 (1)

where a1, a2, a3, a4, a6 ∈ K and the curve discriminant
is 1 6= 0; together with a point at infinity denoted by O.
If K is GF(2m), then the curve is called a binary curve.
Koblitz curves [25], [26], [28] are special curves among
binary curves, and they are defined as a following equation.

y2 + xy = x3 + ax2 + 1 (2)

where a ∈ {0, 1}.
Given an elliptic point P = (x, y) ∈ GF(2m) and an

integer k , the operation k · P is called scalar multiplica-
tion (SM). Since SM is a computationally dominant oper-
ation in ECC-based security protocols, such as ECDH key
agreement, ECIES encryption, and ECDSA signature algo-
rithms, it needs to be computed efficiently. Computing k · P
(σm−1i=0 ki2iPwhere ki is i-th bit of k) is composed of two types
of elliptic curve operations: Elliptic Curve Point Addition
(ECADD) which adds two different points such as (P1 + P2)
and Elliptic Curve Point Doubling (ECDBL) which doubles a
point such as (2P1).3 Unlike ordinary binary curves, Koblitz
curves have an advantage such that ECDBL can be replaced
by efficiently computable Frobenius map τ (x, y) = (x2, y2),

2It is known that ECC using about 160-bit key provides equivalent security
level to RSA using 1024-bit key.

3ECDBL is computed at each bit and ECADD is computed when the bit is
set to 1 [26].

τ (∞) = ∞ with τ expansion of scalar k . Thus, the per-
formance of SM on Koblitz curves can be much improved
compared with that on ordinary binary curves.

We target on the efficient ECC implementation over
K-233 Koblitz curve recommended by NIST standard. This
curve provides at least 112-bit security satisfying the cur-
rent key size recommended by NIST [13], [14]. Indeed,
K-233 curve is currently included in approved algorithm
list of NIST CAVP (Cryptographic Algorithm Validation
Program) [29] in CMVP (Cryptographic Module Valida-
tion Program) [30] and thus, it is widely used in cer-
tificated cryptographic modules including OpenSSL and
BouncyCastle [31].

FIGURE 1. The implementation hierarchy of ECC over Koblitz curves.

B. IMPLEMENTATION HIERARCHY OF KOBLITZ CURVES
In order to implement ECC protocols, three levels of opera-
tions are required. Fig. 1 describes the implementation hier-
archy of Koblitz curve-based ECC and its corresponding
arithmetic algorithms. Since the selections of algorithms at
each level directly affect the performance of ECC implemen-
tation, it is necessary to carefully select proper algorithms to
implement them considering the features of target platforms
in terms of instruction sets, memory sizes, and a length of
register files (In Section V, we will describe our selection of
proper algorithms for an optimal performance in detail).

A scalar multiplication (SM) which computes k · P for
given a scalar k and point P is a computationally dom-
inant operation in ECC-based security protocols. An SM
requires elliptic curve point arithmetics such as ECADDs and
ECDBLs. Many optimization algorithms including sliding
window [32], Comb-based method [33], wTNAF [28] have
been proposed for optimizing the performance of SM, and
their aim is to reduce the number of ECADDs when comput-
ing an SM (Note that with wTNAF, ECDBL can be replaced
by efficiently computable Frobenius map).
ECADD and ECDBL are composed of field arithmetics

such as field multiplication, squaring, reduction, addition,
and inversion. Especially, each of ECADD and ECDBL in
an affine coordinate system requires operating a field inver-
sion, and this is the most expensive operation in field arith-
metics (It is known that I

M > 30 on 8-bit AVR platforms).
To replace field inversion with other relatively cheap field
arithmetics, efficient coordinate systems, such as projective,

67640 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

Jacobian, and López–Dahab (LD), and mixed coordinate
systems [26], [34], have been proposed. Except for field
inversion, field multiplication (polynomial multiplication in
GF(2m)) is the most expensive operation when computing
an SM (it occupies almost 80% of computational overhead).
Thus, the main purpose in this paper is to develop an efficient
polynomial multiplication method by maximizing the use of
available registers in 8-bit AVR platforms. Field squaring and
reduction need to be carefully implemented because they are
also one of the most frequently used operations in elliptic
curve operations.

C. 8-bit AVR MICROCONTROLLER
Nowadays, 8-bit AVR microprocessors are widely used for
various applications such as smartcards and sensor nodes
in WSN. An 8-bit AVR, such as Atmel ATmega128, has
32 general-purpose registers (R31, . . . ,R1,R0) and six of
them are used for memory address pointers (Each pair of
(R26,R27), (R28,R29), and (R30,R31) are aliased as X , Y ,
and Z pointer register, respectively) [35]. The AVR micro-
processors have separate memory areas and buses for pro-
gram and data in a simple single-issue pipeline. It has a
total of 133 instructions, and each instruction has a fixed
latency. For example, the arithmetic/logical instructions (e.g.
arithmetic add ADD, bit-wise XOR EOR, logical shift left
LSL and so on) are executed in a single clock cycle, while
memory access instructions (e.g. load LD, store ST and so on)
take two clock cycles [35]. 8-bit AVR has limited computa-
tion and memory capabilities. For example, in case of 8-bit
Atmega128, it has only 4Kbytes of RAM and 128Kbytes of
ROM, and it runs at 7.3728MHz.

III. POLYNOMIAL MULTIPLICATION
ON 8-bit AVR PLATFORMS
Since polynomial multiplication is the most performance-
critical operation when computing an SM, many stud-
ies for optimizing an arithmetic on 8-bit AVR platforms
have been conducted [10]–[12], [36]–[39]. They are mainly
divided into two categories: LUT-based methods (known
as wLtR Comb) [10], [11], [36], [37] and Block-Comb
(BC)-based methods [12], [38], [39]. Since the number of
available registers is limited on 8-bit AVR (only 26 general
purpose registers, except for 6 memory address pointer reg-
isters, are available), a number of memory accesses occur
when computing polynomial multiplication. For example,
at least 120 registers are required to hold a whole set of a
multiplicand, a multiplier, and a result of polynomial multi-
plication overGF(2233). However, since only 26 registers are
available, only some parts of operands can be maintained in
the registers, which results in a number of redundant memory
accesses. Thus, themain concern of researches on polynomial
multiplication on 8-bit AVR microcontrollers is to minimize
the number of redundant memory accesses by optimizing the
use of available registers.

Before describing our proposed polynomial multiplication
method, this section briefly describes existing polynomial

multiplication methods and some notations on 8-bit AVR
platforms.

A. POLYNOMIAL MULTIPLICATION
AND SOME NOTATIONS
Polynomial multiplication is A · B where A =

∑m−1
i=0 aizi,

B =
∑m−1

i=0 bizi ∈ GF(2m). A and B mean a multiplicand
and a multiplier, and the result of polynomial multiplication
C can be expressed as C =

∑m−1
i=0 A · bizi. The most basic

polynomial multiplication algorithm is shift-and-addmethod.
It scans the multiplier from 0-th bit to (m− 1)-th bit. At each
iteration, multiplicand A is left-shifted such as A · z, and if the
bit of multiplier B is set 1, then the left-shifted multiplicand
is XORed with the accumulator (Namely, if i-th bit of the
multiplier is set 1, then, A·zi is XORed with the accumulator).
Comb method, the basic algorithm for LUT-based methods
and Block Comb method, improves the performance of poly-
nomial multiplication by utilizing the fact that if A · zk has
been computed for some k ∈ [0,W − 1] (in case of 8-bit
AVR platforms, W is 8), A · zWj+k can be easily obtained
by appending j zero words to the right of the vector repre-
sentation of A · zk . Thus, it can reduce the number of shift
operations compared with the basic shift-and-add algorithm.
There are two types of Combmethods: LtRCombmethod and
RtL Comb method. While LtR Comb method proceeds from
MSB (Most Significant Bit) to LSB (Least Significant Bit),
RtL Comb method operates from LSB to MSB [26], [36].

Throughout the paper, we will use following notations. Ri
means the i-th general purpose register where 0 ≤ i ≤ 31.
The operators ⊕,�, and� denote XOR, logical left shifts,
and logical right shifts. A[i] means the i-th byte (or word)
of A and it is composed of eight bits like (a8i+7, . . . , a8i).
Finally, A[i, . . . , j] represents bytes (words) from A[j] to A[i],
respectively.

B. LOOK-UP TABLE METHOD
Look-Up Table (LUT)-based polynomial multiplication,
originally introduced by Hankerson et al. [26] and López and
Dahab [36], is an extension of LtR Comb method (so-called
wLtR Comb method), and it executes polynomial multiplica-
tion by w-bit unit rather than single bit unit at the expense of
a precomputation table, which results in the reduction of the
number of bit operations such as shift and XOR operations.
It first builds a precomputation table about all possible results
of A · u(z) for all polynomials u(z) of degree at most w − 1.
Then, it scansmultiplierB byw-bit unit at a time fromMSB to
LSB and takes the corresponding value from the precomputa-
tion table, and the value is XORedwith the intermediate result
without computing it. On 8-bit AVR platforms, it is known
that 4-bit is the optimal width w for LUT-based method,
which requires 16×m-bit of RAMmemory for accommodat-
ing a table composed of 16 polynomials from 0·A to (z3+z2+
z+1)·A. LUT-basedmethod has been widely implemented on
8-bit AVR platforms [10], [11], [37]. Seo et al. implemented
163-bit polynomial multiplication with NesC language on

VOLUME 6, 2018 67641

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

8-bit ATmega128 microcontroller, and they improved the
original LUT-based method by reducing the number of
redundant memory accesses by combining two iterations
of the main loop into one [10]. Aranha et al. [11] and
Oliveira et al. [37] introduced a rotating register mech-
anism which could significantly reduce the number of
memory accesses for LUT-based polynomial multiplica-
tion method. They implemented the proposed method in
Assembly language and achieved timings of 4,508 cc, 8,314
cc, and 11,727 cc for computing each polynomial multi-
plication over GF(2163), GF(2233), and GF(2271), respec-
tively. Even though LUT-based methods provide good per-
formance, they are inherently vulnerable to side channel
analysis (SCA) usingmemory-address information [40], [41]
due to huge memory accesses. Furthermore, they require
relatively large RAM consumption considering the limited
RAM size of 4Kbytes on 8-bit AVR platforms.

C. BLOCK-COMB METHOD
As an alternative to LUT-based methods, Block-Comb (BC)
method was firstly introduced in [38] for efficient poly-
nomial multiplication of ηT pairing computation on 8-bit
Atmega128 microcontroller. In BC method, a multiplier and
a multiplicand are divided into equal-sized blocks of s-byte,
and partial products of divided multiplicands and multipliers
are computed in a column-wise fashion. In other words, inBC
method, the available registers are divided into three parts:
s registers for a block-sized multiplicand, s registers for a
block-sizedmultiplier, and 2s+1 for the result of partial prod-
ucts. Since the intermediate results are maintained in 2s + 1
working registers, the results of partial products belonging
to the same column can be directly updated to the registers
without accessing memory, which reduces the number of
redundant memory accesses. Shirase et al. [38] concluded
that the optimal block size s is 6 because (4s + 1) < 26.
The original BC computes a polynomial multiplication over
GF(2239) within 9,511 clock cycles (cc).

Seo et al. extended the size of block from 6 to 7 by suggest-
ing Unbalanced Block-Comb method (UBC) for GF(2163)
multiplication [39]. They utilized the fact that the tested bits
of a multiplier are no longer necessary during the process
of a partial product, and recycled this register for holding
the Most Significant Byte of the multiplicand. As a result,
the extended block size reduces the number of partial prod-
ucts from 16 to 9 when computing a polynomial multi-
plication over GF(2163) (Note that 7-word (resp. 6-word)
block size divides 163-bit polynomial into three blocks (resp.
four blocks)). Afterward, Seo et al. proposed Karatsuba
Block-Combmethod by combiningKaratsuba techniquewith
Block-Comb [12], which reduces the number of partial prod-
ucts further from 9 to 6 at the expense of several cheap field
additions when computing a polynomial multiplication over
GF(2163).

From these researches, it is widely believed that the maxi-
mum block size in BC-base methods is 7 (56-bit). However,
we need to extend the block size for efficient polynomial

multiplication over larger fields for providing at least 112-bit
security.

IV. PROPOSED FIELD ARITHMETIC ALGORITHMS
In this section, we describe our optimization strategies for
efficient arithmetics in multiplication, squaring, and reduc-
tion over GF(2233) on 8-bit AVR platform. Especially, with
respect to polynomial multiplication, our method breaks the
common idea that the maximum block size of BC-based
methods on 8-bit AVR microcontrollers is 7-byte.

Algorithm 1 Block-Comb Method for 56-bit Polynomial Multipli-
cation on 8-bit AVR Microcontroller (Sets of Registers (R13, . . . ,R0),
(R21, . . . ,R14), and (R28, . . . ,R22) Are Reserved for Holding an Accumu-
lator C , a Multiplicand A, and a Multiplier B, Respectively)

Require: Two seven 8-bit operands A and B.
Ensure: C(112 bit) = A · B.
1: for l = 0 to 13 do
2: Load Rl ← 0
3: end for
4: for l = 0 to 6 do
5: Load R14+l ← A[l]
6: Load R22+l ← B[l]
7: end for
8: R21 ← 0
9: for l = 0 to 7 do
10: for m = 0 to 6 do
11: if the l-th bit of R22+m == 1 then
12: for n = 0 to 7 do
13: Rm+n ← Rm+n ⊕ R14+n
14: end for
15: end if
16: end for
17: if l 6= 7 then
18: (R21, . . . ,R14)← (R21, . . . ,R14)� 1
19: end if
20: end for
21: Return C

A. PROPOSED POLYNOMIAL MULTIPLICATION METHOD
1) BLOCK-COMB METHOD WITH MULTIPLIER-ENCODING
Our proposed polynomial multiplication method is basically
based on BC method, and its main idea is reordering the
process of BC method. Alg. 1 describes the basic of BC
method for 56-bit polynomial multiplication [12], [39].4 The
sets of registers are reserved for holding a multiplicand
(R21, . . . ,R14), a multiplier (R28, . . . ,R22), and an accumula-
tor (R13, . . . ,R0). Step 4–7 loadmultiplicandA andmultiplier
B and Step 9–20 compute partial products with RtL (Right-
to-Left) Comb fashion5 [26]. In the main loop of the product,
l-th bit of the registers holding the bit of the multiplier is
tested from l = 0 to l = 7. In other words, l-th bit of each
register (R22+m, 0 ≤ m ≤ 6) for the multiplier is tested and if
the bit is set, the multiplicand is XORed with the accumulator
through Step 12–14. In particular, the multiplier should be
maintained in the set of registers, since every register in
this set is scanned during each loop of the partial product

4In case of 233-bit polynomial multiplication, each of a multiplicand and
a multiplier are divided into five 56-bit blocks and each of 25 partial products
is computed with Alg. 1.

5RtL means that the partial product proceeds as scanning the multiplier
from LSB to MSB.

67642 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

FIGURE 2. Proposed multiplier encoding(Left: an original multiplier, Right: the encoded multiplier).

computation. In the proposed method, on the other hand,
only one register is required for maintaining the multiplier
in the process of partial product through multiplier-encoding.
Thus, the proposed Block-Combmethod can extend the block
size of BC method with the saved registers and significantly
reduces the number of partial products required for comput-
ing polynomial multiplication.

In order to encode the bits of multiplier B, the following
Equation 3 is required.

E(i) = {[(i mod 64)× 8] mod 63+ [(i� 6)× 64]} (3)

The Equation moves the i-th bit of the multiplier to E(i)-
th bit position in the encoded multiplier. Each bit column
of eight-byte groups in the original multiplier is packed
and transposed into a byte row in the encoded multiplier.
On 8-bit AVR microcontroller, this encoding process can
be efficiently implemented with lsr (logical shift right)
and ror (rotate right) instructions. Alg. 2 shows the pro-
posed encoding method over GF(2233) on 8-bit AVR micro-
controller.6 The original 233-bit multiplier is divided into
four groups, consisting of 8-byte, as on the left side of
Figure 2. Each group ranging from 0 to 2 has 8-byte, but
Group 3 has 6-byte because the multiplier is in GF(2233),
which only occupies 233-bit. This is why the encoding pro-
cess for Group 3 is slightly different from that for Group 0, 1,
and 2. In Alg. 2, each byte of a group is right-shifted for pack-
ing each bit column of bytes groups with a lsr instruction and
the packed bits are held in R8 register with a ror instruction.
The encoded multiplier is stored in EB and the size of EB is
slightly larger than B (The size of EB is 32-byte while the size
of B is 30-byte). The right side of Figure 2 shows the result
of the proposed multiplier encoding over GF(2233).

6Since the proposed method is generic, the method can be applied to the
other bit lengths and microprocessors with simple modifications.

Algorithm 2 ProposedMultiplier EncodingOverGF(2233) on 8-bit AVR
Microcontroller

Require: Multiplier B over GF(2233).
Ensure: Encoded multiplier EB.

(Encoding from Group 0 to Group 2)
1: for i = 0 to 3 do
2: Load R7, . . . ,R0← B[8i+ 7, . . . , 8i]
3: for j = 0 to 7 do
4: clr R8
5: for k = 0 to 7 do
6: lsr Rk
7: ror R8
8: end for
9: Store R8 at EB[8i+ j]
10: end for
11: end for

(Encoding Group 3)
12: Load R5, . . . ,R0← B[29, . . . , 24]
13: clr R8
14: for j = 0 to 7 do
15: clr R8
16: for k = 0 to 4 do
17: lsr Rk
18: ror R8
19: end for
20: if j == 0 then
21: lsr R5
22: end if
23: for k = 5 to 7 do
24: ror R8
25: end for
26: Store R8 at EB[24+ j]
27: end for
28: return (EB)

In Alg. 3, the proposed Block-Comb multiplication algo-
rithm for computing a 64-bit partial product is described.
It computes a partial product with RtL Comb fashion using
the encoded multiplier EB. In particular, it only uses a sin-
gle register for holding target bits of the multiplier, since
each byte of EB contains each bit column of the original

VOLUME 6, 2018 67643

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

Algorithm 3 Proposed Block-Comb Multiplication on
64-bit With Multiplier Encoding in Register Level, Where (R15, . . . ,R0),
(R24, . . . ,R16), and R25 Are Reserved for an Accumulator, a Multiplicand,
and a Multiplier

Require: Two eight 8-bit multiplicand A and encoded
multiplier EB.

Ensure: C(128-bit) = A · B.
(Initializing accumulator)

1: for j = 0 to 15 do
2: Rj ← 0
3: end for

(Loading multiplicand)
4: for l = 0 to 7 do
5: Load R16+l ← A[8j+ l]
6: end for
7: for l = 0 to 7 do
8: R25 ← EB[8k + l] // (Loading multiplier)
9: for m = 0 to 7 do
10: if the m-th bit of R25 == 1 then
11: for n = 0 to 8 do
12: Rm+n ← Rm+n ⊕ R16+n
13: end for
14: end if
15: end for

(Shifting multiplicand)
16: if l 6= 7 then
17: (R24, . . . ,R16)← (R24, . . . ,R16)� 1
18: end if
19: end for

multiplier’s eight-byte groups (Alg. 3 reserves 16 registers,
9 registers, and a single register for holding an accumula-
tor, a multiplicand, and a multiplier during the process of
computing partial products, respectively). Thus, the proposed
method reduces the number of required registers for holding
a multiplier of n words from O(n) to O(1). With the proposed
Block-Comb, a polynomial multiplication overGF(2233) can
be computed with sixteen 64-bit partial products.

2) INTEGRATION WITH KARATSUBA TECHNIQUE
The number of partial products is optimized again by
applying Karatsuba method. Since the size of the proposed
Block-Comb method is 8 words (64-bit) on 8-bit AVR
microcontroller, the operands over GF(2233) are divided into
four-term polynomials so that a multiplicand A(x) = A3x3 +
A2x2 + A1x1 + A0 and a multiplier B(x) = B3x3 + B2x2 +
B1x1+B0 where x is 264. The detailed computations are given
in Equation 4.

A(x) · B(x)
= (M3x3 +M2x2 +M1x +M0) · (x3 + x2 + x + 1)
+M8x3 + (M5x2 +M4) · (x3 + x)
+ (M7x +M6) · (x3 + x2)

M0 = A0 ×64−bit B0,M1 = A1 ×64−bit B1,
M2 = A2 ×64−bit B2,M3 = A3 ×64−bit B3,
M4 = (A1 ⊕ A0)×64−bit (B1 ⊕ B0),
M5 = (A3 ⊕ A2)×64−bit (B3 ⊕ B2),
M6 = (A2 ⊕ A0)×64−bit (B2 ⊕ B0),
M7 = (A3 ⊕ A1)×64−bit (B3 ⊕ B1),
M8 = (A3⊕A2⊕A1⊕ A0)×64−bit (B3 ⊕ B2 ⊕ B1 ⊕ B0) (4)

Algorithm 4 Proposed Karatsuba Block-Comb Multiplication (A, B in
GF(2233))
Require: Binary polynomial A = (A29, . . . ,A0),

B = (B29, . . . ,B0) where A, B in GF(2233)).
Ensure: (C58, . . . ,C0) = AB.

(Encoding Multiplier B by calling Alg. 2 and
storing the encoded multiplier at EB)

1: C = A[7 · · · 0] ×64−bit EB[7 · · · 0]
2: C = C ⊕ A[15 · · · 8] ×64−bit EB[15 · · · 8]
3: C = C ⊕ A[23 · · · 16] ×64−bit EB[23 · · · 16]
4: C = C ⊕ A[29 · · · 24] ×64−bit EB[31 · · · 24]
5: C = C ⊕ (C � 64) ⊕ (C � 128) ⊕ (C � 192)
6: C = C ⊕ [(A[7 · · · 0]) ⊕ A[15 · · · 8] ⊕ A[23 · · · 16] ⊕ A[29 · · · 24])
×64−bit
(EB[7 · · · 0])⊕ EB[15 · · · 8]⊕ EB[23 · · · 16]⊕ EB[31 · · · 24])]

7: T = (A[29 · · · 24] ⊕ A[23 · · · 16]) ×64−bit (EB[31 · · · 24] ⊕
EB[23 · · · 16])

8: T = T ⊕ [(A[15 · · · 8]⊕A[7 · · · 0])×64−bit (EB[15 · · · 8]⊕EB[7 · · · 0])]

9: C = C ⊕ (T � 64) ⊕ (T � 192)
10: T = (A[29 · · · 24]⊕A[15 · · · 8])×64−bit (EB[31 · · · 24]⊕EB[15 · · · 8])

11: T = T ⊕ [(A[23 · · · 16] ⊕ A[7 · · · 0]) ×64−bit (EB[23 · · · 16] ⊕
EB[7 · · · 0])]

12: C = C ⊕ (T � 128) ⊕ (T � 192)
13: return (C)

Algorithm 5 Regular Window TNAF (wTNAF) Method [46]

Require: n-bit scalar k = (kn−1, . . . , 1, 0)2, point P ∈ E(F2m)
Ensure: R = k · P.

1: Compute the width-w regularwTNAF of ŕ0+ŕ1τ as
∑d n+3w−1 e

i=0 uiτ i(w−1)

2: Generate look-up table T consisting of points Pu = αuP, for
{±1,±3, . . . ,±(2w−1 − 1)}

3: R←∞
4: for i from l − 1 downto 0 do
5: R← τw−1R
6: R← R+ Pui
7: end for
8: R← R− (ŕ0 − r0)P− (ŕ1 − r1)τP
9: Return R

Note that×64−bit means the proposed Block-Comb multipli-
cation on 64-bit (Alg. 3) in the Equation.

Alg. 4 shows the proposed Karatsuba-based Block-Comb
multiplication method. In order to utilize the Karatsuba
technique, the original multiplier B is firstly turned into
the encoded multiplier EB by calling Alg. 2. Afterward,
Karatsuba is performed according to Equation 4. Note that
unlike the original Karatsuba formula, the proposed method
makes use of the encoded multiplier EB like EB[7 . . . 0],
EB[15 . . . 8], EB[23 . . . 16], and EB[31 . . . 24].

3) COMPARISON TO OTHER POLYNOMIAL
MULTIPLICATION METHODS
Table 1 compares the proposed method with other BC-based
methods with respect to the block size and the required num-
ber of block-wise partial products when computing a poly-
nomial multiplication over different bit lengths. Compared
with BC , UBC , and KBC , the proposed method requires
much reduced number of block-wise partial products by up-to
77%, 73%, and 30%, respectively. In Table 2, the required
number of registers for a multiplicand, a multiplier, and an

67644 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

TABLE 1. Comparison of BC-based methods on 8-bit AVR microcontroller
with respect to the number of partial products (BC, UBC, and KBC
represent Block-Comb [38], Unbalanced Block-Comb [39], and Karatsuba
Block-Comb [12], respectively).

TABLE 2. The number of required registers for BC-based methods
(BC, UBC, and KBC represent Block-Comb [38], Unbalanced
Block-Comb [39], and Karatsuba Block-Comb [12], respectively.
acc means the number of registers for an accumulator) when computing
each partial product in the process of polynomial multiplication over
GF (2233) on 8-bit AVR microcontroller.

TABLE 3. Execution time of polynomial multiplication over GF (2233)
(cc means clock cycles). The timing results of our works include function
call overheads such as register POP/PUSH instructions.

accumulator is given when computing each partial product
in the process of polynomial multiplication. The proposed
method reduces the number of registers from 29 to 26 with
even smaller number of block-wise partial products than the
previous works do.

We have implemented the proposed multiplication
method with AVR assembly language on 8-bit AVR
ATmega128 microcontroller. Table 3 compares the perfor-
mance with the previous state-of-art results over GF(2233).
The proposed multiplication algorithm shows about 27.49%
better performance than the original BC method [38] com-
puting binary field multiplication overGF(2239). This perfor-
mance enhancement can be further optimized by using offline

FIGURE 3. Example of one byte modular squaring by
f233(z) = z233 + z74 + 1.

encoding for certain fixed parameters.7 The method without
encoding requires 34.3% lesser than the original BC . The
proposed method with (resp. without) the encoding process
also provides about 22.53% (resp. 29.81%) of improved per-
formance compared with KBC [12]. Note that the proposed
multiplication method with (resp. without) the encoding
process provides about 17.05% (resp. 24.84%) of enhanced
performance compared with the previous best-known result
from [11].

B. OTHER FIELD ARITHMETICS PROPOSED
Modular squaring and reduction operations are also one of
the most frequently used operations during scalar multiplica-
tion. Thus, we additionally optimize them by considering the
characteristics of the underlying field and by maximizing the
use of registers on 8-bit AVR microcontrollers.

1) OPTIMIZATION OF FIELD SQUARING
To optimize the modular squaring, we propose table-based

modular squaring, which combines squaring and reduction
processes. Our method makes use of two kinds of tables:
8-bit wise ordinary squaring table T8 and 8-bit wise modu-
lar squaring table TR8. T8 outputs two bytes of the squar-
ing result as one byte input. For example, if 8-bit input is
(a7, a6, . . . , a0), the result of T8 is (0, a7, 0, a6, . . . , 0, a0).
Thus, T8 requires 512 bytes. While ordinary squaring table
T8 is constant regardless of the base field, modular squaring
table needs to be carefully constructed considering the prop-
erty of the used irreducible polynomial. The implementation
for 8-bit modular squaring with f233(z) = z233 + z74 + 18

requires five bytes for one byte modular squaring. Figure 3
shows the example of one byte modular squaring with f233(z).
In the figure, one byte C[18] = (c151z151 + . . . + c144z144)
is squared and then reduced by f233(z). The result of squaring
is two bytes C[18]2 = (0 · z303 + c151z302 + . . .+ c144z288).
Since the result of C[18]2 is larger than f233(z), each bit of
C[18]2 is reduced. From the figure, we find that the reduced
bytes are XORed with six bytes (Namely, C[18]2 is XORed
with upper three bytes (C[19], C[18], and C[17]) and lower

7For example, when computing two binary field multiplications such as
X1 · Y and X2 · Y , only one multiplier encoding for Y is required and the
encoded multiplier can be shared in two multiplications.

8K-233 curve uses this irreducible polynomial for field reduction.

VOLUME 6, 2018 67645

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

Algorithm 6 Proposed Modular Squaring Over GF(2233) on 8-bit AVR
Microprocessor

Require: An operand A over GF(2233).
Ensure: C = A2 mod f (z) where f (z) = z233+z74+1. (Table-based

squaring)
1: C[39 · · · 18]← T8[A[19 · · · 9]] (Handling A29)
2: T ← A[29]
3: C[38]← C[38]⊕ T � 1
4: C[28]← C[28]⊕ T � 7

(Table-based modular squaring (handling
A28-A24))

5: j = 36, k = 26
6: for i = 28 downto 24 do
7: C[j+ 1, j]← C[j+ 1, j]⊕ TR8H [A[i]]
8: C[k + 2, k + 1, k]← C[k + 2, k + 1, k]⊕ TR8L[A[i]]
9: j −= 2, k −= 2
10: end for

(Table-based modular squaring (handling
A23-A20))

11: j = 26, k = 16, l = 8
12: for i = 23 downto 20 do
13: C[j+ 1, j]← C[j+ 1, j]⊕ TR8H [A[i]]
14: C[k + 1, k]← T8[A[l]]
15: C[k + 2, k + 1, k]← C[k + 2, k + 1, k]⊕ TR8L[A[i]]
16: j −= 2, k −= 2, l −= 1
17: end for

(On the fly reduction (handling C39-C30))
18: j = 18, k = 8, l = 4
19: for i = 38 downto 30 do
20: C[j+ 2]← C[j+ 2]⊕ (C[i+ 1]� 7)
21: C[j+ 1]← C[j+ 1]⊕ (C[i+ 1]� 1)⊕ (C[i]� 7)
22: C[j]← C[j]⊕ (C[i]� 1)
23: C[k + 1, k]← T8[A[l]]
24: C[k + 2]← C[k + 2]⊕ (C[i+ 1]� 1)
25: C[k + 1]← C[k + 1]⊕ (C[i+ 1]� 7)⊕ (C[i]� 1)
26: C[k]← C[k]⊕ (C[i]� 7)
27: j −= 2, k −= 2, l −= 1
28: end for

(Handling C29)
29: T ← C[29]&0xFE
30: C[10]← C[10]⊕ T � 7
31: C[9]← C[9]⊕ T � 1
32: C[0]← C[0]⊕ T � 1
33: C[29]← C[29]&0x01
34: Return (C[29], . . . ,C[0])

three bytes (C[8], C[7], and C[6])). We can reduce the size
of one byte modular squaring from six bytes to five bytes
by using the fact that MSB (Marked as red-colored zero) of
squaring is always zero (Refer to the upper reduction process
in Figure 3). In our implementation, modular squaring table
TR8 is composed of an upper part (TR8H) and a lower part
(TR8L). TR8H and TR8L contain elements to be XORed with
upper two bytes and lower three bytes, respectively. Thus,
the modular squaring table in our implementation requires
1,280 bytes. Since our strategy requires relatively large table
(1,792 bytes in total), we make use of FLASH instead of
RAM similar to the works from [12].

Figure 4 depicts the detailed execution of the proposed
modular squaring mechanism including register arrangement
for accumulator C . In the figure, a set of register files
(R21, . . . ,R0) is used to hold accumulator C containing the
intermediate reduction result with the rotating register man-
ner. It mainly consists of table-based squaring, table-based
modular squaring, and on-the-fly reduction. With respect

to squaring and modular squaring, it makes use of T8,
TR8H , and TR8L tables. When computing table-based mod-
ular squaring, the upper two bytes and the lower three bytes
are XORed with TR8H and TR8L as A[i] index. Note that
in our implementation the accumulator is accommodated
within general-purpose registers. Since the number of regis-
ters is limited, we extend the concept of the rotating register
mechanism in [11] to our implementation to keep the values
of accumulator C . Since C[39], . . . ,C[30] are larger than
degree z233, they need to be reduced once again. Our imple-
mentation reducesC[39], . . . ,C[30] in an on-the-flymanner.
Note that since C[39], . . . ,C[30] are kept in the registers,
on-the-fly reduction can be faster than table-based reduction
(They are kept in registers from R21 to R12). For reducing the
number of redundant Store operations, our implementation
reduces them by two words. In the figure, registers marked
by yellow color are stored in accumulator C at each step. The
detailed algorithm description is given in Appendix (Refer to
Alg. 6 in Appendix).

2) OPTIMIZATION OF FIELD REDUCTION
With respect to field reduction over GF(2233), we extend the
rotating register mechanism in [11] by maximizing the use of
registers on 8-bit AVR microcontroller to reduce the number
of redundant memory accesses. When an 8-bit word C[i]
where i > 30 is reduced by f233(z), four bytes of C[i] � 7,
C[i]� 1, C[i]� 1, and C[i]� 7 are XORed at C[i− 19],
C[i−20],C[i−29], andC[i−30] positions, respectively.With
respect to byte reduction, C[i] where i ≤ 28 is XORed with
four bytes of C[i] = C[i]⊕{(C[i+30]� 7)⊕ (C[i+29]�
1)⊕ (C[i+ 20]� 1)⊕ (C[i+ 19]� 7)}. Thus, we maintain
the shifted values and the intermediate reduction results in
the available registers to reduce redundant LOAD operations,
and combine the three bytes reduction processes into one for
reducing redundant STORE operations. Thus, the two-byte
results are stored in memory at each step of our reduction
mechanism. Then, the registers used to keep the shifted values
and the intermediate results are assigned for reducing the next
three bytes. Figure 5 describing the detailed process of the
proposed reduction method is given in Appendix.
We have implemented the proposed modular squaring and

reduction mechanisms with AVR assembly language on 8-
bit ATmega128 microcontroller. Table 4 compares the per-
formance of the proposed modular squaring and reduction
with the best results previously published. The proposed
modular squaring and reduction achieve 21.86% and 3.7% of
improvements compared to the work from [11], respectively.

V. OPTIMIZATION OF ECC IMPLEMENTATION
In addition to the proposed methods in the field arithmetic
level, we apply well-known state-of-the-art algorithms in
the ECC level for optimizing the performance of scalar
multiplication. We target the ECC implementation over
NIST-compliant K-233 Koblitz curve. This curve provides at
least 112-bit security satisfying the currently recommended
key size by NIST [13], [14], and it is currently included in

67646 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

FIGURE 4. Strategy for efficient modular squaring over GF (2233) on 8-bit AVR microcontroller (Ai and A[i] mean i -th byte in A. Ri
denotes i -th register in register files).

FIGURE 5. Proposed reduction method with f (z) = z233 + z74 + 1 on 8-bit AVR.

an approved algorithm list of NIST CAVP (Cryptographic
Algorithm Validation Program) [29] in CMVP (Crypto-
graphic Module Validation Program) [30]. Even though
many new ECC curves including Curve25519 [15], Kum-
mer surface [18], FourQ [19] have been developed recently,
NIST curves are still widely used in the industrial area
world. Furthermore, since on Koblitz curves, unlike other
binary field curves, elliptic curve point doubling (ECDBL)

can be computed with efficient computable Frobenius map
such as τ (x, y) = (x2, y2), τ (∞) = ∞ with τ expan-
sion of scalar k , the ECC implementation over those curves
can have a benefit of efficiency compared with other
curves.

Following subsections describe our optimization strategies
in elliptic curve operation levels to improve the performance
of scalar multiplication.

VOLUME 6, 2018 67647

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

TABLE 4. Comparison of execution time for modular squaring and
reduction over GF (2233) (Timing is measured by clock cycles). The timing
results of our works include function call overheads such as register
POP/PUSH instructions.

TABLE 5. Performance result of HF version (k · G and l · P mean
fixed-base scalar multiplication and variable-base scalar multiplication,
respectively). Timing is measured by clock cycles.

TABLE 6. Performance result of HS version (k · G and l · P mean
fixed-base scalar multiplication and variable-base scalar multiplication,
respectively). Timing is measured by clock cycles.

A. SELECTION OF COORDINATE SYSTEM
Scalar multiplication consists of elliptic curve operations,
ECADD and ECDBL. ECADD and ECDBL in an affine
coordinate system require 1I + 2M (I = field inversion,
M = field multiplication). Since the field inversion is the
most expensive operation in field arithmetics, it is prefer-
able to reduce the number of field inversions when com-
puting elliptic curve operations. Efficient coordinate sys-
tems such as projective, Jacobian, López–Dahab (LD), and
mixed coordinate systems, have been presented [26], [34].
It is known that if the condition (I > 7M) is met on the target
platform, using LD coordinate is more suitable than using
affine coordinate (LD requires 14M and 4M for ECADD and
ECDBL, respectively). The cost for the finite field inversion
using Extended Euclidean Algorithm (EEA) on 8-bit AVR
microcontroller is 142,986 cycle [11], and its cost is much
higher than that for modular field multiplication (IM > 20).
Thus, our implementation uses LD coordinate systems with
the mixed addition method [26], [34]. In our implementation
using LD coordinate system with the mixed addition method
over Koblitz curves, ECADD and ECDBL9 require 8M + 5S
and 3S, respectively.

B. SELECTION OF SCALAR MULTIPLICATION ALGORITHM
The scalar multiplication (computing kP, where a k is scalar
and P is a point on the curve) is the most time-consuming

9ECDBL is computed with efficiently computable Frobenius map
τ (x, y, z) = (x2, y2, z2), τ (∞) = ∞.

part of ECC-based cryptographic protocols and it is com-
posed of a sequence of ECDBL and ECADD. Since ECDBLs
in scalar multiplication can be replaced with the efficiently
computable Frobenius map, the main concern for improv-
ing the performance of scalar multiplication on Koblitz
curves is reducing the number of ECADDs. We utilize
wTNAF [26], [42] for optimizing the performance of scalar
multiplication. wTNAF is a windowing method of TNAF
and it requires a precomputation table composed of (2w−2 −
1) points. wTNAF computes a scalar multiplication with
m

w+1 · ECADDs excluding the cost for building a precompu-
tation table, where m is the bit-length of the scalar’s TNAF
expression.

There are two types of scalar multiplication in ECC-based
applications: fixed-base scalar multiplication and variable-
base scalar multiplication. In the fixed-base scalar multipli-
cation, the input point is fixed and known beforehand. The
typical case of fixed-base scalar multiplication is an ECC
key generation process using the recommended base point,
and ECIES and fixed-ECDH require the fixed-base scalar
multiplication in its encryption/decryption process and key
agreement process, respectively. In the variable-base scalar
multiplication, the input point is variable and not given.
The variable-base scalar multiplication can be found in an
encryption process of ECIES, sign/verify of ECDSA, and
a key agreement process of ephemeral-ECDH. The differ-
ence between fixed-base and variable-base is whether to
build a precomputation table online or not. In other words,
variable-base scalar multiplication includes the cost for build-
ing a precomputation table. Thus, we need to find the optimal
width w of wTNAF for both cases.10 From our experiments,
we find that each optimal width w of wTNAF is 5 and 6
for a variable-base multiplication and a fixed-base scalar
multiplication on the 8-bit AVR ATmega128 microcontroller
running at 7.3728MHz. The use of width 5 and 6 requires 7
and 15 precomputed points, respectively.

When constructing a precomputation table, the points need
to be stored in the affine coordinate system in order to com-
pute scalar multiplication with the mixed coordinate system.
Since elliptic curve operations in the affine coordinate system
require field inversion, our implementation firstly computes
the precomputed points in LD coordinate system, and then
converts them into the affine coordinate system [44]. Con-
verting n precomputed points in LD coordinate system into
the affine coordinate system requires n field inversion oper-
ations. Thus, we apply Montgomery trick [45] for efficient
computation of field inversions such that a−1 and b−1 are
computed as a−1 = (ab)−1 · b and b−1 = (ab)−1 · a where a,
b ∈ GF(2m).

10In case of the fixed-base scalar multiplication, Hanser and Wagner [43]
reported that τ -comb method could achieve performance improvement over
thewTNAFmethod of up-to 25% onNISTK-233 curve on Java environment
running on PC. However, through performance profiling, we find out that
wTNAF provides better performance than τ -comb when they use the same
number of precomputed points.

67648 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

VI. CONSIDERATION OF SIDE CHANNEL ANALYSIS
A. FIELD INVERSION
Even though field inversion is the most expensive arithmetic,
a few inversions need to be executed as in computing a
precomputation table and coordinate conversion from LD
coordinate to affine coordinate. For efficient computation of
inversion, Extended Euclidean Algorithm (EEA) has been
widely used. However, EEA operates irregularly depending
on the input data. Since the precomputation table does not
include secret information, the use of EEA does not affect the
security of implementation. However, the use of basic EEA
affects the security of scalar multiplication when computing
the final inversion for coordinate conversion [47]. To defend
this kind of attack, Fermat-based inversion or a random
multiplicative masking method can be used [48]. Even if
Fermat-based inversion, i.e. a−1 = ap−2 mod p, allows one
to achieve constant execution time, it is significantly slower
than the EEA. Thus, our implementation utilizes a simple
multiplicative masking method. This multiplicative masking
method uses EEA and requires two additional modular multi-
plications. For example, when computing inverse of x, instead
of inverting x directly, we first multiply x by random value r ,
and then invert the product X = r · x using the EEA to obtain
X−1, and finally multiply the inversion result X−1 by r to
get x−1 = X−1 · r . Since the attacker does not know r ,
he/she is not able to get the actual value of x. In summary,
our HF (Highly-Fast) version uses the basic EEA, and HS
(Highy-Secure) version utilizes the multiplicative random
masking method for computing the final inversion. Note that
two versions use EEA when computing the precomputation
table.

B. SIDE-CHANNEL RESISTANCE FOR
SCALAR MULTIPLICATION
Typical wTNAF is vulnerable to side channel
attacks [49], [50], such as TA (Timing Attack) and SPA
(Simple Power Analysis), because point addition is omitted
whenever the value of the tested window is zero, which
leaks sensitive information. Oliveira et al. [46] proposed
a regular wTNAF-based scalar multiplication method on
Koblitz curves. Alg. 5 computes scalar multiplication with
a regular pattern, which always conducts (w − 1) Frobenius
maps and single ECADD regardless of the scalar value.
With the regular wTNAF method, the length of the scalar
is d1 + m+2

w−1 e and the density of nonzero is 1
w−1 [46].

For finding the optimal window size on the target device,
we tested the performance of regular wTNAF and found that
5 and 6 are the optimal window widths for a variable-base
scalar multiplication and a fixed-base scalar multiplication,
respectively.

Furthermore, our implementation applies the random-
ized projective coordinate system [50] to the scalar multi-
plication process in order to randomize the timing differ-
ence in field multiplication. For example, when computing
field multiplication of ECADD, our implementation uses the

randomized coordinates as its multiplier. Thus, the attacker
cannot distinguish the real value of the multiplier with
TA or SPA. This approach also provides resistance against
DPA (Differential Power Analysis) and CPA (Correlation
Power Analysis) since the attacker cannot determine the inter-
mediate result of the scalar multiplication [50].

VII. PERFORMANCE ANALYSIS AND COMPARISON
We have implemented full scalar multiplication over NIST
K-233 curve on 8-bit AVRAtmega128microcontroller. Actu-
ally, we provide two versions: HF (Highly-Fast) and HS
(Highly-Secure). We have optimized the performance of
field level arithmetics in polynomial multiplication, modular
squaring, field addition, and reduction by AVR assembly
language. The elliptic curve arithmetics including ECADD,
ECDBL, and scalar multiplication have been implemented
with C language.

Table 5 shows the performance ofHF (Highly-Optimized)
version of our ECC implementation using the proposed algo-
rithms. Since this version uses typical wTNAF and EEA as
its scalar multiplication method and field inversion method,
it does not provide TA (Timing Attack) and SPA (Sim-
ple Power Analysis) resistance. When using 4TNAF,11 with
respect to fixed and variable-based scalar multiplication, our
software provides about 16.68% and 15.56% of improved
performance compared with the work from [11], respectively.
Note that in case of fixed-base (resp. variable-base) scalar
multiplication, our software using 6TNAF (resp. 5TNAF)
provides about 34.5% (resp. 18.6%) better performance than
that from [11].

Table 6 shows the performance of HS (Highly-Secure)
version of our ECC implementation using the proposed algo-
rithms. Since this version uses regular wTNAF in Alg. 5
and applies multiplicative masked inversion instead of typical
EEA, it provides resistance against both TA (Timing Attack)
and SPA (Simple Power Analysis). Furthermore, we utilize
the randomized coordinate system to protect timing attack
on the field multiplication, which requires only three addi-
tional field multiplications. When using 4TNAF, the perfor-
mance of HS version is lower than that from [11]. This is
because HS version utilizes the regular wTNAF providing
SPA-resistance, while the work in [11] did not. From our
experiments, HS version provides the best performance of
fixed-base and variable-base scalar multiplicationwhen using
regular 6TNAF and regular 5TNAF, respectively. At this time,
our implementation provides about 16.63% improved perfor-
mance when computing a fixed-base scalar multiplication.
However, in case of the variable-base scalar multiplication,
its performance becomes about 4.89% lower than that in [11].

Table 7 compares our implementation with other ECC
implementations over NIST standard-compliant curves pro-
viding more than 80-bit security with respect to SCA
resistance, performance, code size, and stack usage.
Among implementations without SPA-resistance mecha-

11The work in [11] utilizes 4TNAF for computing scalar multiplication.

VOLUME 6, 2018 67649

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

TABLE 7. Comparison to other ECC implementations over NIST-compliant curves on 8-bit AVR microcontroller (k · G and l · P mean fixed-base scalar
multiplication and variable-base scalar multiplication, respectively). Timing is measured by clock cycles. KB and B mean KBytes and Byte, respectively.

TABLE 8. Comparison to other implementations on recently developed new curves on 8-bit AVR microcontroller (k · G and l · P mean fixed-base scalar
multiplication and variable-base scalar multiplication, respectively). Timing is measured by clock cycles.

nisms, HF version provides the best performance. Fur-
thermore, HS also provides the best performance among
implementations equipped with SPA-resistance mechanisms.
Regarding code size and stack usage, even though our imple-
mentation requires slightly larger code size than that in [11]
because the proposed polynomial multiplication algorithm
is implemented with a loop unrolling manner, it uses much
reduced stack usage. Since ATmega128 has limited RAM
size as 4Kbyte, RAM usage needs to be optimized. Thus, our
implementation requires reasonable amounts of code size and
stack usage compared to other ECC implementations over
NIST-compliant curves.

Table 8 compares our implementation with other state-of-
art ECC implementations over new curves. In case of the
fixed-base scalar multiplication, since FourQ implementa-
tion [22] utilizes 80 precomputed points, we apply 8TNAF
to the scalar multiplication, which requires 63 precomputed
points.Without a dedicated hardware multiplier on 8-bit AVR
microcontroller, our software provides competitive perfor-
mance compared with other state-of-art implementations.

VIII. CONCLUSIONS
In this paper, we presented a highly efficient ECC imple-
mentation over NISTK-233 curve, providing 112-bit security
recommended by NIST, on an 8-bit AVR ATmega128 pro-
cessor. For optimizing the performance of ECC, we focus
on improving the underlying field arithmetics and propose
several optimization techniques. Particularly, we propose a
novel polynomial multiplication method based on multiplier-
encoding, and it significantly reduces the required number of
registers for a multiplier, which allows a larger block size

for Karatsuba Block-Comb (KBC) method. The proposed
method provides around 17.05% of improvement compared
with the previous best result, and it can be used for poly-
nomial multiplication in ECC over larger fields as GF(2283)
providing a 128-bit security level. With the proposed meth-
ods, we present two versions of ECC implementation: HF
(Highly-Fast) and HS (Highly-Secure) equipped with some
SCA countermeasures. HF version provides the best perfor-
mance compared with other existing ECC implementations
over NIST-compliant curves, and HS version also achieves
the best performance among ECC implementations equipped
with SCA countermeasures. In the future, we will apply the
proposed polynomial multiplication method to ECC over
K-283 curve for 128-bit security.

ACKNOWLEDGMENT
This work was supported by ETRI.

REFERENCES
[1] Z. Liu, H. Seo, J. Großchädl, and H. Kim, ‘‘Efficient implementation

of NIST-compliant elliptic curve cryptography for sensor
nodes,’’ in Proc. Int. Conf. Inf. Commun. Secur. Springer, 2013,
pp. 302–317.

[2] Z. Liu, H. Seo, and J. Großchädl, and H. Kim, ‘‘Efficient implementation
of NIST-compliant elliptic curve cryptography for 8-bit AVR-based sensor
nodes,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 7, pp. 1385–1397,
Jul. 2016.

[3] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, ‘‘Com-
paring elliptic curve cryptography and RSA on 8-bit CPUs,’’ in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. Springer, 2004,
pp. 119–132.

[4] A. Liu and P. Ning, ‘‘TinyECC: A configurable library for
elliptic curve cryptography in wireless sensor networks,’’ in
Proc. 7th Int. Conf. Inf. Process. Sensor Netw., Apr. 2008,
pp. 245–256.

67650 VOLUME 6, 2018

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

[5] L. Uhsadel, A. Poschmann, and C. Paar, ‘‘Enabling full-size public-key
algorithms on 8-bit sensor nodes,’’ in Proc. Eur. Workshop Secur. Ad-Hoc
Sensor Netw. Springer, 2007, pp. 73–86.

[6] D. J. Malan, M. Welsh, and M. D. Smith, ‘‘A public-key infrastructure
for key distribution in TinyOS based on elliptic curve cryptography,’’ in
Proc. 1st Annu. IEEE Commun. Soc. Conf. Sensor Ad Hoc Commun. Netw.
(SECON), Oct. 2004, pp. 71–80.

[7] H. Yan and Z. J. Shi, ‘‘Studying software implementations of elliptic curve
cryptography,’’ in Proc. IEEE 3rd Int. Conf. Inf. Technol., New Generat.
(ITNG), Apr. 2006, pp. 78–83.

[8] H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, and V. Gupta, ‘‘Archi-
tectural extensions for elliptic curve cryptography over GF(2µm) on 8-
bit microprocessors,’’ in Proc. 16th IEEE Int. Conf. Appl.-Specific Syst.,
Archit. Processors (ASAP), Jul. 2005, pp. 343–349.

[9] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R.
Dahab, ‘‘NanoECC: Testing the limits of elliptic curve cryptography
in sensor networks,’’ in Wireless Sensor Networks. Springer, 2008,
pp. 305–320.

[10] S. C. Seo, D.-G. Han, H. C. Kim, and S. Hong, ‘‘TinyECCK: Effi-
cient elliptic curve cryptography implementation over GF(2m) on 8-bit
micaz mote,’’ IEICE Trans. Inf. Syst., vol. E91-D, no. 5, pp. 1338–1347,
2008.

[11] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira, ‘‘Efficient imple-
mentation of elliptic curve cryptography in wireless sensors,’’ Adv. Math.
Commun., vol. 4, no. 2, pp. 169–187, 2010.

[12] H. Seo, Z. Liu, J. Choi, and H. Kim, ‘‘Karatsuba–block-comb technique
for elliptic curve cryptography over binary fields,’’ Secur. Commun. Netw.,
vol. 8, no. 17, pp. 3121–3130, 2015.

[13] Nist sp 800-131a rev1, Transitions: Recommendation for Transitioning
the use of Cryptographic Algorithms and key Lengths. [Online]. Avail-
able: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
131Ar1.pdf

[14] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. Smid, ‘‘Recom-
mendation for key management,’’ NIST, Gaithersburg, MD, USA, NIST
SP 800-57 Part 1: Revision 4, Jan. 2016.

[15] D. J. Bernstein, ‘‘Curve25519: New diffie-hellman speed records,’’ in
Proc. Int. Workshop Public Key Cryptogr. New York, NY, USA: Springer,
Apr. 2006, pp. 207–228.

[16] Z. Liu, E. Wenger, and J. Großschädl, ‘‘MoTE-ECC: Energy-scalable
elliptic curve cryptography for wireless sensor networks,’’ in Proc. Int.
Conf. Appl. Cryptogr. Netw. Secur. Springer, 2014, pp. 361–379.

[17] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo, and L. Zhou, ‘‘On emerging
family of elliptic curves to secure Internet of Things: ECC comes of
age,’’ IEEE Trans. Depend. Sec. Comput., vol. 14, no. 3, pp. 237–248,
Jun. 2017.

[18] J. W. Bos, C. Costello, H. Hisil, and K. E. Lauter, ‘‘Fast cryptography in
genus 2,’’ inProc. 32nd Annu. Int. Conf. Theory Appl. Cryptograph. Techn.,
Athens, Greece: Springer, May 2013, pp. 194–210.

[19] C. Costello and P. Longa, ‘‘FouQ: Four-dimensional decompositions on a
Q-curve over the mersenne prime,’’ in Proc. 21st Int. Conf. Theory Appl.
Cryptol. Inf. Secur., Auckland, New Zealand: Springer, Nov./Dec. 2015,
pp. 214–235.

[20] M. Hutter and P. Schwabe, ‘‘NaCl on 8-Bit AVR microcontrollers,’’ in
Proc. Int. Conf. Cryptol. Africa. Springer, 2013, pp. 156–172.

[21] M. Düll et al., ‘‘High-speed Curve25519 on 8-bit, 16-bit, and 32-bit
microcontrollers,’’ Des., Codes Cryptogr., vol. 77, nos. 2–3, pp. 493–514,
2015.

[22] Z. Liu, P. Longa, G. Pereira, O. Reparaz, and H. Seo, ‘‘FourQ on embedded
devices with strong countermeasures against side-channel attacks,’’ in
Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst. Taipei, Taiwan:
Springer, Sep. 2017, pp. 665–686.

[23] J. López and R. Dahab, ‘‘Improved algorithms for elliptic curve arith-
metic in GF(2n),’’ in Proc. Int. Workshop Sel. Areas Cryptogr. Springer,
pp. 201–212, 1998.

[24] A. Kargl, S. Pyka, and H. Seuschek, ‘‘Fast arithmetic on ATmega128
for elliptic curve cryptography,’’ IACR Cryptol. ePrint Arch., Tech. Rep.,
2008, p. 442. [Online]. Available: http://eprint.iacr.org/2008/442

[25] N. Koblitz, ‘‘Elliptic curve cryptosystems,’’ Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[26] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer, 2006.

[27] V. S. Miller, ‘‘Use of elliptic curves in cryptography,’’ in Proc. Conf.
Theory Appl. Cryptograph. Techn., Santa Barbara, CA, USA: Springer,
Aug. 181985, pp. 417–426.

[28] J. A. Solinas, ‘‘Efficient arithmetic on koblitz curves,’’ Des. Codes Cryp-
togr., vol. 19, nos. 2–3, pp. 195–249, 2000.

[29] CAVP: Cryptographic Algorithm Validation Program. [Online]. Available:
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-
Program.

[30] CMVP: Cryptographic Module Validation Program. [Online]. Available:
https://csrc.nist.gov/projects/cryptographic-module-validation-program

[31] Cryptographic Module Validation Program: Validated Modules.
[Online]. Available: https://csrc.nist.gov/Projects/Cryptographic-Module-
Validation-Program/Validated-Modules

[32] B. Möller, ‘‘Fractional windows revisited:Improved signed-digit represen-
tations for efficient exponentiation,’’ in Proc. 7th Int. Conf. Inf. Secur.
Cryptol. (ICISC). Seoul, South Korea: Springer, Dec. 2004, pp. 137–153.

[33] C. H. Lim and P. J. Lee, ‘‘More flexible exponentiation with precom-
putation,’’ in Proc. Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA:
Springer, Aug. 1994, pp. 95–107.

[34] H. Cohen, A. Miyaji, and T. Ono, ‘‘Efficient elliptic curve exponentiation
using mixed coordinates,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf.
Secur. Beijing, China: Springer, Oct. 1998, pp. 51–65.

[35] Atmel, AVR Instruction set Manual. [Online]. Available: http://ww1.
microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-
manual.pdf

[36] J. López and R. Dahab, ‘‘High-speed software multiplication in f2m,’’ in
Proc. Int. Conf. Cryptol. India. Springer, 2000, pp. 203–212.

[37] L. B. Oliveira et al., ‘‘TinyPBC: Pairings for authenticated identity-based
non-interactive key distribution in sensor networks,’’ Comput. Commun.,
vol. 34, no. 3, pp. 485–493, 2011.

[38] M. Shirase, Y. Miyazaki, T. Takagi, D.-G. Han, and D. Choi, ‘‘Efficient
implementation of pairing-based cryptography on a sensor node,’’ IEICE
Trans. Inf. Syst., vol. E92-D, no. 5, pp. 909–917, 2009.

[39] H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim, ‘‘Binary and prime field mul-
tiplication for public key cryptography on embedded microprocessors,’’
Secur. Commun. Netw., vol. 7, no. 4, pp. 774–787, 2014.

[40] C.-N. Chen, ‘‘Memory address side-channel analysis on exponentiation,’’
in Proc. Int. Conf. Inf. Secur. Cryptol. Springer, 2014, pp. 421–432.

[41] Z. Liu et al., ‘‘Secure GCM implementation on AVR,’’ Discrete Appl.
Math., vol. 241, pp. 58–66, May 2018.

[42] J. A. Solinas, ‘‘An improved algorithm for arithmetic on a family of
elliptic curves,’’ in Proc. Annu. Int. Cryptol. Conf. Springer, 1997,
pp. 357–371.

[43] C. Hanser and C. Wagner, ‘‘Speeding up the fixed-base comb method
for faster scalar multiplication on koblitz curves,’’ in Proc. Int. Conf.
Availability, Rel., Secur. Springer, 2013, pp. 168–179.

[44] W. R. Trost and G. Xu, ‘‘On the optimal pre-computation of window τNAF
for koblitz curves,’’ IEEE Trans. Comput., vol. 65, no. 9, pp. 2918–2924,
Sep. 2016.

[45] H. Cohen, ACourse in Computational Algebraic Number Theory, vol. 138.
Springer, 2013.

[46] T. Oliveira, D. F. Aranha, J. López, and F. Rodríguez-Henríquez, ‘‘Fast
point multiplication algorithms for binary elliptic curves with and without
precomputation,’’ in Proc. Int. Workshop Sel. Areas Cryptogr. Springer,
2014, pp. 324–344.

[47] D. Naccache, N. P. Smart, and J. Stern, ‘‘Projective coordinates leak,’’
in Proc. Int. Conf. Theory Appl. Cryptograph. Techn. Springer, 2004,
pp. 257–267.

[48] Z. Liu and J. Großschädl, L. Li, and Q. Xu, ‘‘Energy-efficient
elliptic curve cryptography for MSP430-based wireless sensor
nodes,’’ in Proc. Australas. Conf. Inf. Secur. Privacy Springer, 2016,
pp. 94–112.

[49] P. C. Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in Proc.
Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA: Springer, Aug. 1999,
pp. 388–397.

[50] J.-S. Coron, ‘‘Resistance against differential power analysis for
elliptic curve cryptosystems,’’ in Proc. Int. Workshop Cryptograph.
Hardw. Embedded Syst. Worcester, MA, USA: Springer, Aug. 1999,
pp. 292–302.

[51] E. Wenger, T. Unterluggauer, and M. Werner, ‘‘8/16/32 shades of elliptic
curve cryptography on embedded processors,’’ in Proc. Int. Conf. Cryptol.
India. Springer, 2013, pp. 244–261.

[52] J. Renes, P. Schwabe, B. Smith, and L. Batina, ‘‘µ Kummer: Effi-
cient hyperelliptic signatures and key exchange on microcontrollers,’’ in
Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst. Springer, 2016,
pp. 301–320.

VOLUME 6, 2018 67651

S. C. Seo, H. Seo: Highly Efficient Implementation of NIST-Compliant Koblitz Curve

SEOG CHUNG SEO received the B.S. degree in
information and computer engineering from Ajou
University, Suwon, South Korea, in 2005, the M.S.
degree in information and communications from
the Gwangju Institute of Science and Technology
(GIST), Gwangju, South Korea, in 2007, and the
Ph.D. degree at Korea University, Seoul, South
Korea, in 2011. He was a Research Staff Member
at the Samsung Advanced Institute of Technol-
ogy and the Samsung DMC R&D Center from

2011 to 2014. He has been with The Affiliated Institute of ETRI, South
Korea, since 2014. His research interests include public-key cryptography,
its efficient implementations on various IT devices, cryptographic module
validation program, network security, and data authentication algorithms.

HWAJEONG SEO received the B.S.E.E., M.S.,
and Ph.D. degrees in computer engineering from
Pusan National University. He is currently an
Assistant Professor with Hansung University. His
research interests include Internet of Things and
information security.

67652 VOLUME 6, 2018

	INTRODUCTION
	ECC IMPLEMENTATIONS ON 8-bit AVR MICROCONTROLLERS
	ECC IMPLEMENTATIONS OVER PRIME CURVES
	ECC IMPLEMENTATIONS OVER BINARY CURVES

	OUR CONTRIBUTIONS

	PRELIMINARIES
	ELLIPTIC CURVE CRYPTOGRAPHY AND KOBLITZ CURVES
	IMPLEMENTATION HIERARCHY OF KOBLITZ CURVES
	8-bit AVR MICROCONTROLLER

	POLYNOMIAL MULTIPLICATION ON 8-bit AVR PLATFORMS
	POLYNOMIAL MULTIPLICATION AND SOME NOTATIONS
	LOOK-UP TABLE METHOD
	BLOCK-COMB METHOD

	PROPOSED FIELD ARITHMETIC ALGORITHMS
	PROPOSED POLYNOMIAL MULTIPLICATION METHOD
	BLOCK-COMB METHOD WITH MULTIPLIER-ENCODING
	INTEGRATION WITH KARATSUBA TECHNIQUE
	COMPARISON TO OTHER POLYNOMIAL MULTIPLICATION METHODS

	OTHER FIELD ARITHMETICS PROPOSED
	OPTIMIZATION OF FIELD SQUARING
	OPTIMIZATION OF FIELD REDUCTION

	OPTIMIZATION OF ECC IMPLEMENTATION
	SELECTION OF COORDINATE SYSTEM
	SELECTION OF SCALAR MULTIPLICATION ALGORITHM

	CONSIDERATION OF SIDE CHANNEL ANALYSIS
	FIELD INVERSION
	SIDE-CHANNEL RESISTANCE FOR SCALAR MULTIPLICATION

	PERFORMANCE ANALYSIS AND COMPARISON
	CONCLUSIONS
	REFERENCES
	Biographies
	SEOG CHUNG SEO
	HWAJEONG SEO

