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ABSTRACT To make the welding robot more reasonable and furthermore improve the productivity and
reduce costs, two intelligent algorithms for welding path optimization, genetic algorithm (GA) and discrete
particle swarm optimization, are proposed to optimize the welding robot path. Through the improved
selection of the operator, the GA achieves the fastest iterative efficiency. By introducing the ‘‘swap operator’’
and ‘‘swap sequence’’ in the particle swarm optimization algorithm, the PSO algorithm is improved for
the solution of the discrete problem (welding robot path planning) which is superior to the continuous
optimization problem. Besides, for the better iterative efficiency of PSO, the parameters of traditional
inertia weight are determined by a linear inertia weigh, which can improve the convergence performance
of the algorithm. The modeling and solutions of the two algorithms are discussed in detail to illustrate
the applications in the welding robot path optimization. In order to compare the pros and cons of the two
algorithms, the same welding tasks are presented, and Matlab simulation is carried out. The simulation
results show that both genetic algorithm and particle swarm optimization algorithm can obtain the optimal
or near-optimal welding path by iterative calculations.

INDEX TERMS Discrete particle swarm optimization algorithm, genetic algorithm, Matlab, welding path
optimization, welding robot.

I. INTRODUCTION
Welding robots play a significant role in industrial produc-
tion. In a large-scale welding operation, a lot of welding
joints need to weld with irregular distribution. The welding
path will directly influence the efficiency of robots [1]. Path
planning of robots, is to seek the optimal or suboptimal path
of a robot from the initial position to the target position
with some optimization criteria (such as the minimum of
working costs, shortest route, shortest running time, obstacles
avoidance etc.). According to the start-stop movement in
drilling/spot welding task, the path planning problem can be
converted into a traveling salesman problem (TSP) [2]. Home
and abroad experts have made significant studies of TSP
problems. Goldberg first applied genetic algorithms (GAs)
for TSP, and achieved a short tour [3]. Wang [4] used natural
number coding genetic algorithms for TSP and found the
global optimum. A new crossover mechanism called Same
Adjacency (SA) for GA with variable-length chromosomes

for path optimization problem was proposed, which can out-
performGAwith SP by a better search capability as the math-
ematical analysis shows [5]. Kennedy and Eberhart [6] firstly
proposed a Discrete Particle Swarm Optimization (DPSO)
to solve combinatorial optimization problems of engineer-
ing practice. Clerc [7] promoted researches of DPSO for
solving TSP with the definition of velocity as a ‘‘swap
sequence’’ as well as other variables and rules, and achieved
good results. Çunkaş and Özsaglam [8] redefined PSO oper-
ators for TSP problems by ‘‘Swap operator’’ and ‘‘Swap
sequence’’. To solve the problem of premature, a new PSO
algorithm by combining the random learning mechanism and
Levy flight was developed, which can increase the diversity of
the population by learning from random particles and random
walks in Levy flight [9].

For solving urban search and rescue problems or some spe-
cial work, the robot is used widely for favor. Zhang et al. [10]
a proposed a multi-robot cooperation method based on
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niching particle swarm optimization formultiple odor sources
localization. Geng et al. [11] presented amodified centralized
algorithm based on particle swarm optimization (MCPSO)
to solve the task allocation problem in the search and
rescue domain, which provides a benchmark against dis-
tributed algorithms in search and rescue application area.
Gong et al. [12] proposed a modified particle swarm opti-
mization (PSO) algorithm for robots cooperation to search for
an odor source. The difficulties of these researches lie in the
3D planning, obstacle avoidance and collaboration. For the
research presented here, due to that the welded workpiece is
large thin-walled part (the dimension is small in one direc-
tion), the path planning can be considered as TSP problem,
which is a 2D planning. Therefore, the 3D planning, obstacle
avoidance and collaboration will not be considered for single
robot welding.

Besides, different from the researches, which focused on
robot joint control belonging to trajectory planning, this
paper focuses on path planning, emphasis on the trajectory
of the welding robot’s end gun instead of the trajectory of
each joint [13]. Two bionic optimization algorithms, genetic
algorithm and particle swarm optimization algorithm, are
researched for robot path optimization. For better iterative
efficiency and performance, the operator selection of GA
is improved as well as the PSO algorithm with improved
inertia weight determination, and the ‘‘swap operator’’ and
‘‘swap sequence’’ introduced into the solution of the discrete
problem (welding robot path planning). In the next section,
the welding robot path planning problem and mathematical
model are described in detail. Welding path optimization
based on the genetic algorithm and Discrete Particle Swarm
Optimization are discussed separately in Sects. 3 and 4.
Comparisons of the two optimization algorithms for welding
robot path optimization is presented in Sects. 5. Finally, the
conclusion is summarized.

II. PROBLEM DESCRIPTION AND MODELING
A. PROBLEM DESCRIPTION
Welding path planning aims to search a shortest path through
each joint once and only once in the robot working area.

Suppose that a set V = {v1, v2, · · · , vn} contains n dif-
ferent joints to be welded, and a set A = {aij|vi, vj ∈ V }
represents the distance between any two welding joints of V.
Path optimization problems in directed graph G = (V ,A),
means to seek the shortest Hamiltonian circuit of a integer
subset X = {x1, x2, · · · , xn} (X represents a full array of the
n different points) with a minimum total path length of the

robot. That is the path length function fx =
n−1∑
i=1

d(xi, xi+1)+

d(xn, x1) obtains the minimum, where d(xi, xj) represents the
distance of the welding joint from pi to pj [14].
Usually the shortest welding path can be determined empir-

ically when with less welding spots. However, with the
increasedwelding spots, it is difficult tomake a combinatorial
explosion. Therefore, it is of great importance to utilize some
intelligent algorithms to rapidly find the optimal path.

B. MATHEMATICAL MODELING
In this research, welding path optimization can be descri-
bed as: Robots need to weld n spots with known position,
under rational planning welding sequences with the shortest
welding path length. Below are some constraints [15]:

(1) The welding path with the same starting point and end;
(2) Each welding spot must be welded and only once.
The proposed mathematical model can be expressed as

follows:

min
∑
i6=j

dijxij (1)

s.t.
n∑

j=1,j 6=i

xij = 1, i = 1, 2, 3, · · · , n (2)

n∑
i=1,i 6=j

xij = 1, j = 1, 2, 3, · · · , n (3)

∑
i,j∈s

xij ≤ |s| − 1, 2 ≤ |s| ≤ n, s ⊂ {1, 2, 3, · · · , n}

(4)

xij ∈ {0, 1}, i, j = 1, 2, 3, · · · , n, i 6= j (5)

Where dij denotes the distance between the welding
spot i and j, xij is the bound variable (1 for the welding path
from the welding spot i to j and 0 for the welding path not
from the welding spot i to j), s denotes the set of joints which
have been welded, and |s| denotes the number of elements in
the set s.

III. WELDING PATH OPTIMIZATION BASED
ON THE GENETIC ALGORITHM
A. ENCODING AND INITIAL POPULATION
In general, the encoding of GAs for solution space is mostly
binary-coded [16]. However, due to robot path planning are
permutation problems, binary-coded expression requires spe-
cial patching. Because a single bit change may result in an
illegal path, nature number code (a chromosome gene that
represents the welding path is the sequence of the welding
joint in the path.) is selected [4].

B. FITNESS FUNCTION
For the welding robot path optimization, the evaluation func-
tion is the length of each legitimate weld path. The smaller
the length, the individual is better [17].

So, the fitness function is defined as:

f (x) = D(s) (6)

D(s) =
n−1∑
i=1

d(vi, vi+1)+ d(vn, v1) (7)

C. SELECTION
Selection is the process where individuals are selected
based on their fitness values and generated offspring.
Here we used the tournament method, so that the new gen-
eration is more excellent, and thus can accelerate the conver-
gence speed [18].
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D. CROSSOVER
In order to make sure that legitimate individual can be gen-
erated during cross process, it is required that chromosome
coding of each path not duplicate. That is, each joint must and
can only be welded once [19]. So crossover which is suitable
for traditional genetic algorithms may not fully be appli-
cable here. Because the partial mapping crossover (PMX),
sequential crossover (OX), and cyclic crossover (CX) have
two disadvantages. One is that the cross-overspring do not
retain the good genes of the parent and the other is that the
children may need some changes to be feasible, which will
affect the convergence effect and calculation speed. While
single point crossing (OC) refers to the exchange of a part
of chromosomes of two paired individuals at a point after
randomly setting an intersection point in an individual code
string. It can satisfy the convergence effect and guarantees
the operation speed. Therefore, OC is chosen as the crossover
operator [20]. Therefore, the OC is adopted for crossover as
follows:

Parent1: 1 2 3 |4 5 6| 7 8 9
and
Parent2: 6 8 7 |1 3 9| 5 0 4 2
(Parent1 and Parent2 are two chromosomes to be cross-

operated.)
The joints in the selected substring in Parent1(here 4, 5,

and 6) are firstly replaced by ‘‘∗’’ in the receptor Parent2.
Parent1: 1 2 3 |4 5 6| 7 8 9 0
and
Parent2: ∗8 7 |1 3 9| ∗ 0 ∗ 2
To preserve the relative order in Parent2 (the receiver),

a sliding motion is made to leave the holes in the matching
section marked in the receiver. In this research, start this
sliding motion in the second crossover site, so after the
rearrangement we have:

Parent1: 1 2 3 |4 5 6 |7 8 9 0
and
Parent2: 1 3 9 | ∗ ∗ ∗ |0 2 8 7
After that, the three stars are replaced with the

joint taken from the donor Parent1 in the Offspring of
Parent2(Offspring2).

Offspring2: 1 3 9 |4 5 6|0 2 8 7
The similarly operation can produce the Offspring of

Parent1(Offspring1):
Offspring1: 4 5 6|1 3 9|7 8 0 2
As can be seen, the generated offspring are legitimate weld

paths by OC without repetition of welding joints.

E. MUTATION
Swap mutation is used for operations. Randomly select two
bits in one chromosome and swap [21]. Thus, we still have
legitimate path after swap mutation.

F. THE OPTIMIZATION PROCEDURE FOR
WELDING PATH BASED ON THE GA
Input: maximum iterations (n), population size (m), selec-
tion probability (Ps), crossover probability (Pc) and mutation
probability (Pm).

Output: The optimal path and fitness function evolution
curve.
Step 1 (Initialization): Randomly generate an initial popu-

lation (m denotes the number of the chromosomes, N denotes
the number of genes in each chromosome representing a
welding path;
Step 2: Evaluate the fitness of each chromosome(each

path). If the termination condition of iterations is satisfied,
end the GA calculation and go to Step 6. Else if, continue
the next step;
Step 3: Selection with Ps;
Step 4: Crossover with Pc;
Step 5:Mutation with Pm. Retain the new offspring and go

to Step 2;
Step 6: Output the optimal path and fitness function

evolution curve.
The flow chart is shown in Fig. 1.

FIGURE 1. The flow chart of the GA.

G. SIMULATION RESULTS AND ANALYSIS
Generally, a work station’s welding spots of a production line
are hundreds, however, taking into account the welding robot
working area and the efficiency of entire production line,
often arrange multiple robots in a welding workstation and
simultaneously operating, so welding points of each welding
robot are not too many, average 30 or so, so the experimental
task of this thesis also selects 30 welding joints. As shown
in Fig. 2, it is 30 joints welding joint coordinates.

To validate the application of the genetic algorithm, in this
paper, Matlab programs are run for simulation. Use natural
number coding to produce M chromosomes with n genes.
Then, decide whether or not to terminate the program based
on the termination condition. If the termination condition is
satisfied, the program is end and the optimal path and fitness
function curve are output. If the condition of termination has
not been met, proceed to the next round iteration (selection,
crossover and mutation). As shown in Fig. 1.

The algorithm parameters are set as follows:
population size: m = 50,
selection probability: Ps = 0.3,
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FIGURE 2. Welding joints coordinates.

crossover probability: Pc = 0.8,
mutation probability: Pm = 0.05,
termination iterations: n = 30, 50, 100, 200, 300, 400.
Fig. 2 shows the welding joint coordinates for study.

Repeat the simulation 50 times, and the statistical results of
solving are presented in Table 1.

When the number of iterations is 400, GAs get the opti-
mal path and fitness function evolution curve, as shown
in Fig. 3 and Fig. 4

The optimal path length is 10.4628m, and the average
operation time was 8.9305s when the number of iterations is
400 as listed in Table 1.

IV. WELDING PATH OPTIMIZATION BASED ON DISCRETE
PARTICLE SWARM OPTIMIZATION
A. DISCRETE PARTICLE SWARM OPTIMIZATION(DPSO)
Suppose a D-dimensional search space composed of m par-
ticles, where the ith particle denotes with a D-dimensional

position vector Xi = (xi1, x i2, · · · , xiD) and a D-dimensional
velocity vector Vi = (vi1, vi2, · · · , viD) (i = 1, 2, · · · ,m).
Pi = (pi1, pi2, · · · , piD) denotes the position of the present
optimal value pBest of the ith and Pg = (pg1, pg2, · · · , pgD)
denotes the position of the global optimal value gBest of the
whole particle swarm. Fitness function is expressed as f (x).
For ease of discussion, assume the optimization as a mini-
mum problem, that is to determine the length of the shortest
Hamilton Circle[22].

The current best position of the particle i is determined by:

pk+1i =

{
pki if f (X k+1i ) > f (pki )
X k+1i if f (X k+1i ) ≤ f (pki )

(8)

The best position of the global population is determined by:

pkg = arg min
|f (pk1),f (p

k
2),··· ,f (p

k
m)|
{f (pk1), f (p

k
2), · · · , f (p

k
m)} (9)

After finding the two optimal positions, update the par-
ticles’ velocity and position according to the following two
formulas:

vk+1id =ωvkid+c1 rand( ) (pid−x
k
id )+c2 rand( ) (pgd − x

k
id )

(10)

xk+1id = xkid + v
k+1
id (11)

Where i = 1, 2, · · · ,m denotes the sequence num-
ber of particles, d = 1, 2, · · · ,D denotes the dimension
of the search space, k denotes the number of iterations,
V k
id denotes the d-dimensional velocity of the ith particle

in the kth iteration, ω is the non-negative inertia weight,
c1 and c2 are constant acceleration coefficients, rand( ) is
a function to generate random number in the interval (0, 1).
There is a maximum Vmax to limit the particle speed, in favor
to make the PSO algorithm achieve the best search capability
by regulation ω. Termination conditions for the iterations are
generally selected to a predetermined maximum number of
iterations.

TABLE 1. Comparisons of the two optimization algorithms.
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FIGURE 3. Evolution curve of the GA.

FIGURE 4. The optimal path of the GA.

The PSO is originally used for continuous space opti-
mization problems and achieved good results[23]. But
for non-continuous combinatorial optimization problems,
the traditional PSO may not be fully applicable. Therefore,
Discrete Particle Swarm Optimization(DPSO) is evolved
from PSO to solve discrete optimization problems (such as
TSP problems)[24].The DPSO has no crossover andmutation
operations of GA, and relies on particle velocity to search
with fast convergence speed, short time and fewer parameters,
which is easy to adjust and remain stable.

B. THE DPSO FOR WELDING ROBOT PATH OPTIMIZATION
The discrete particle swarm optimization was reported to
solve TSP problems with definitions of ‘‘swap operator’’
and ‘‘swap sequence’’ for the velocity and position respec-
tively [8]. In our research, the DPSO is utilized to optimize
the welding robot path. The core of the DPSO algorithm is

that each particle corresponds to a random arrangement of
spots position, representing a legitimate weld path.

C. SWAP OPERATOR [8]
Suppose the path optimization problem has nweld joints. One
solution is S = (a1, a2, · · · , an). Define the swap operator
SO (i, j) indicates the exchange position of joint ai and aj in
the solution S in order to generate a new solution sequence S ′.
That is S ′ = S + SO(i, j), where the symbol ‘‘+’’ denotes the
exchange operation.

D. SWAP SEQUENCE [8]
The swap sequence SS is defined as ordered arrangement of
one or more swap operators.
SS = (SO1, SO2, · · · , SOn), Where SO1, SO2, . . . , SOn

are swap operators, the order of which are very important.

E. THE RELATIVE CONCEPTS OF SWAP SEQUENCE [8]
The swap sequence acts on a solution sequence, indicating
that all the swap operators in the swap sequence are acting on
the solution in order, which can be described by (12):

S ′ = S + SS = S + (SO1, SO2, · · · , SOn)

= [(S + SO1)+ SO2]+ · · · + SOn (12)

Different swap sequences acting on the same solution may
produce the same new solution, which can be called the equiv-
alent set. Two or more swap sequence can be combined into a
new swap sequence, which defined as the merge operator of
these swap sequences by ‘‘⊕’’.

For instance, two swap sequences SS1 and SS2 act on the
solution sequence S in order, and get a new solution S ′.
Suppose another swap sequence SS ′, acting on the same solu-
tion S, the same new solution sequence S ′ can be obtained,
and then define:

SS ′ = SS1 ⊕ SS2

Here SS ′ and (SS1 ⊕ SS2) belong to the same equivalence
set. In general, SS ′ is not unique.
In equivalent sets of swap sequences, the sequence with the

minimum number of swap operators is defined as the basic
swap sequence of equivalent sets. The basic swap sequence
can be constructed as follows:

Given two paths (A and B), need to construct a basic swap
sequence SS, which can satisfy B+ SS = A.

For example: A = (123456) and B = (426153).
As can be seen, A(1) = B(4) = 1.
So the first swap operator is SO1(1, 4), and then B1 = B+

SO1(1, 4) = (126453). A(2) = B1(2) = 2, so B1(2) doesn’t
need to exchange. A(3) = B1(6) = 3, so the second swap
operator is SO2(3, 6) and B2 = B1 + SO2(3, 6) = (123456).
Because B2 = A, no additional swap operators is needed.

Thus, get a basic swap sequence:

SS = A− B = (SO1(1, 4), SO2(3, 6)) .
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According to the above analysis, the velocity (10) is not
suitable for welding robot path optimization, so it is necessary
to reconstruct it as :

vk+1id = ωvkid ⊕ c1rand( )(pid − x
k
id )⊕ c2rand( )(pgd − x

k
id )

(13)

xk+1id = xkid + v
k+1
id (14)

Where ω is the inertia weight, and larger ω is beneficial
to jump out of local minimum, while smaller ω is in favor
of convergence. So it is important to propose a linear iner-
tia weight to improve the convergence performance of the
algorithm [25], [26]. Here let ω = ωmax −

(ωmax−ωmin)
kmax

× k ,
where k is the current iteration number, kmax is the maximum
number of iterations, ωmax and ωmin respectively are the
maximum and minimum inertia weight factor[27]. c1 and c2
are random numbers in the interval (0, 1), rand( ) is a random
number ∈ (0, 1) generating function.

F. THE OPTIMIZATION PROCEDURE FOR WELDING
PATH BASED ON THE DPSO
Input: maximum iterations(n), swarm size(m), inertia
weight(ω), and learning coefficients (c1, c2).
Output: The optimal path and fitness function evolution

curve.
Step 1 Initialization: Each of the particles gets a random

solution/path and a random swap sequence(velocity);
Step 2: Evaluate the fitness value of each particle. If the

termination condition of iterations is satisfied, end the calcu-
lation and go to Step 4;
Step 3: For all the particles in the position X kid , calculate

the next position X k+1id ;
Step 3.1: Calculate A = (pid − xkid ) and B = (pgd − xkid )

(A and B are basic swap sequence);
Step 3.2: According to (13), convert the basic swap

sequence vkid to the basic swap sequence vk+1id ;
Step 3.3: Calculate a new solution based on the (14);
Step 3.4: According to (8) to update the optimal position

of a single particle searched, and according to (9) to update
global optimal position, and then go to Step 2;
Step 4: Output the optimal path and fitness function

evolution curve.
The flow chart is shown in Fig. 5.

G. SIMULATION AND RESULTS ANALYSIS
In order to verify the DPSO for solving welding robot path
optimization, Matlab programs are also run by simulation
as shown in Fig. 5, using the data in Fig. 2 and the fitness
function of (6). Use natural number coding to randomly gen-
erate a legitimate welding path for each particle and produce
a switching sequence for the speed. Then, decide whether or
not to terminate the program based on the termination condi-
tion. If the termination condition is satisfied, the program is
end and the optimal path and fitness function evolution curve
are output. If the termination condition has not been satis-
fied, proceed to the next round iteration calculation: calculate

FIGURE 5. The flow chart of the DPSO.

FIGURE 6. Evolution curve of the DPSO algorithm.

according to (13), and according to (14). Then update the
individual optimal path according to (8), and the global opti-
mal path according to (9). After an iteration round is finished,
repeat step 2-3 in Section 4.6.

The parameters of the DPSO are set as follows:
population size: m = 50,
learning coefficients: c1 = 0.5, c2 = 0.7,
inertia weight: ωmax = 0.9, ωmin = 0.4,
maximum iterations: n = 30, 50, 100, 200, 300, 400.
Fig. 2 shows the welding joint coordinates for study.

Repeat the simulation 50 times, and the statistical results of
solving are shown in Table 1.

When the number of iterations is 400, DPSO algorithm get
the optimal path and fitness function curve, as in Fig. 6 and
Fig. 7.
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FIGURE 7. The optimal path of the DPSO algorithm.

When the number of iterations is 400, the PSO found the
optimal path shown in Fig. 7.

V. COMPARISONS OF THE TWO OPTIMIZATION
ALGORITHMS FOR WELDING ROBOT
PATH OPTIMIZATION
The optimal path length is 10.3235m, and the average opera-
tion time was 0.9801s when the number of iterations is 400,
as listed in Table 1. In order to better understand the two
optimization algorithms, the experimental data for the two
algorithms are listed and compared in Table 1.

As can be seen fromTable 1, both the genetic algorithm and
particle swarm optimization algorithm can find the optimal
solution or near-optimal solution, whose average path length
value is 12.5514m and 11.8829m respectively when iterations
are 400, and the optimal values are 10.4628m and 10.3235m
respectively. The difference in the two optimal path length
probably results from inadequate iterations times or calcula-
tion errors, etc. From the view of the running time, the DPSO
algorithm computation time is shorter than the GA after the
same iterations, indicating the DPSO algorithm has higher
efficiency and especially better search performance for more
iterations.

VI. CONCLUSION
Application of the Discrete Particle Swarm Optimization
algorithm to welding robot path optimization is a relatively
new attempt. In this paper, the genetic algorithm and dis-
crete particle swarm optimization algorithm are applied to
the welding robot path optimization, and the effectiveness
of the two algorithms are verified through simulation. The
results show that both the two algorithms show a good conver-
gence and optimization capability for welding path optimiza-
tion. Besides the above analysis, why the DPSO has better
efficiency and search performance can be concluded that:
¬TheDPSO algorithm need no genetic operations (selection,
crossover and mutation) and just use the random velocity to

change the individual’ s search direction, which can result
in lower computational complexity;  Particles of the PSO
algorithm have a ‘‘memory’’ feature, and the optimal solu-
tion or near optimal solution can be obtained within a less
iterations by ‘‘self’’ learning and learn from ‘‘groups’’;®The
entire population of GA is relatively homogeneous closer to
the optimal solution with information sharing. But in the PSO
algorithm, only the global optimal solution and individual
optimal solution will pass information to other particles in
a one-way flow.

Although it is common for industrial applications to con-
sider the robot path planning as TSP problem, the welding
robot trajectory is planned in two-dimensional space with
reduced computational complexity, which is not exactly the
same as the actual situation. The next steps are to study
3D path planning for large size so as to be in line with
industrial application scenarios.
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