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ABSTRACT In control moment gyroscopes (CMGs), the gimbal is expected to rotate at a low speed
with high precision so that high-precision gyroscopic torque can be generated to realize high-precision
spacecraft attitude control. However, there are complex and multiple disturbances in the gimbal servo
systems, which may deteriorate the gimbal control performance to a great extent. In this paper, an extended
harmonic disturbance observer (EHDO)-based composite controller is proposed to reject the effects of
multiple disturbances on the control performance of gimbal servo systems. Firstly, an EHDO is developed for
an mth-order model describing disturbance dynamics in which the rotor dynamic imbalance torque along
gimbal axis is modeled as a harmonic, and the others are approximated as a polynomial. Compared with
conventional extended disturbance observers, EHDO can estimate multiple disturbances with high precision
even with a lower bandwidth. Secondly, a backstepping-based composite controller is designed to achieve
high-performance gimbal control for CMGs. Finally, simulation and experimental results are presented to
demonstrate the effectiveness of the proposed method.

INDEX TERMS Anti-disturbance control, composite controller, control moment gyroscopes, extended
harmonic disturbance observer, gimbal servo system.

NOMENCLATURE
m order of disturbance model and observers
� SGCMG rotor speed
ω SGCMG gimbal speed
ωd desired gimbal speed
ω̃ gimbal speed tracking error
ud , uq stator voltages of d-axis, q-axis
id , iq stator currents of d-axis, q-axis
R stator resistance
np motor pole pairs
ψf stator flux linkage
Ld , Lq stator inductance of d-axis, q-axis
Te electromagnetic torque of PMSM
T ∗e desired electromagnetic torque
T̃e electromagnetic torque tracking error
J equivalent moment of inertia about the gimbal

axis
D damping coefficient about the gimbal axis
Tg disturbance caused by gimbal system
Tr disturbance caused by rotor rotation

Ts disturbance caused by spacecraft motion
Tu disturbance caused by unmodeled factors
ur the quantity of rotor dynamic imbalance
φd initial phase of rotor dynamic torque
d total disturbance in gimbal servo system
δ(t) the mth-order derivative of d in EDO or

the (m− 2)th-order derivative of (d − Tr )
in EHDO

lj observer gains, j = a, b, 1, . . .m
λ bandwidth of the EDO and EHDO
λp maximal eigenvalue of P
λq minimal eigenvalue of Q
δm upper bound of δ(t)
kt electromagnetic torque coefficient
k0, k1, k2 controller gains

I. INTRODUCTION
As a kind of actuators for spacecraft attitude control, con-
trol moment gyros (CMGs) have been widely used in
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fast maneuver of agile spacecraft and high-precision atti-
tude stabilization of large spacecraft owing to their supe-
rior properties in simple structure, large torque and high
precision [1]–[3]. A CMG typically consists of a high-speed
rotor with large angular momentum and one or two low-speed
gimbals [4]. By changing the direction of angular momentum
via gimbal rotation, gyroscopic torque can be produced to
control spacecraft attitude. It has been recognized that a
crucial task of high precision control for spacecraft attitude
control is to increase the accuracy of CMG torque which
greatly depends on the control precision of gimbal servo
systems.

However, there are various disturbances in gimbal servo
systems, such as frictions, cogging effects, flux distor-
tions, current ripples, and the disturbance caused by the
rotor dynamic imbalance, spacecraft motions [5]–[7], etc.
Although these disturbances have different features, all of
them can degrade the control performance of gimbal servo
systems significantly. Some of them are related to the gimbal
motion such as frictions, cogging effects, and flux distortions,
while some of them are related to the rotor rotation, such
as rotor imbalance torque [8]–[10]. Since the gimbal moves
at a low speed and the rotor rotates at a high speed, there
is a great difference in the frequency of disturbances in the
gimbal servo systems. It is such a wide range of disturbance
frequency which brings great difficulties in disturbance atten-
uation and rejection for gimbal servo systems.

To overcome the adverse effects of disturbances, many
disturbance attenuation strategies have been proposed,
such as robust control [11]–[13], sliding mode control
(SMC) [14]–[16], internal model principle (IMP) based con-
trol [17]–[21], etc. Although these control methods demon-
strate strong robustness to disturbances and uncertainties,
there still exist some deficiencies in them, such as the con-
servation of robust control, the chattering problem of SMC,
and the strong dependence of disturbance model of IMP.

To avoid problems of the above methods, disturbance
uncertainty estimation and attenuation (DUEA) tech-
niques [22], [23] have been paid considerable attentions
during the past several decades. The basic idea of DUEA is to
estimate the disturbances and uncertainties with a disturbance
estimator, and then compensate them effectively with the esti-
mated value via feedforward. Furthermore, a feedback con-
troller is applied to achieve desired control performance for
closed-loop system. As an important component of DUEA,
the performance of disturbance estimator affects the ability
of disturbance attenuation and rejection to a great extent.

Up to now, various disturbance estimators have been
proposed, such as disturbance observer (DO) [24]–[26],
extended state observer (ESO) [5], [27]–[29], proportional
integral observer (PIO) [30], etc. Both ESO and PIO estimate
the lumped disturbance together with the system states, while
DO only output the estimate of the lumped disturbance. As a
reduced-order disturbance observer, DO is enough for gimbal
servo systems since the gimbal angular position and speed are
directly derived from resolver-to-digital converters.

In conventional DOs, all the uncertainties and disturbances
are usually treated as derivative-bounded lumped distur-
bance [20], [31], thus the detailed model information of
disturbances and uncertainties is no longer required during
observer design. However, the assumption of bounded deriva-
tive for lumped disturbance may result in large model errors
for high-order disturbances, which may lead to greater esti-
mate error for DOs with limited bandwidth.

To attenuate the effects of disturbance model uncertainties
on the estimation accuracy of high-order disturbances, sliding
mode disturbance observer (SMDO) [32]–[36] is proposed
by introducing sliding mode technology into disturbance
observer design. Most of SMDOs are full order observers
which give estimates for the lumped disturbance and the
system states. For gimbal servo systems, additional estima-
tion of system states may increase implementation cost [32].
Although reduced-order SMDO will not estimate system
states repeatedly, the derivative of angular speed for space-
craft is approximated by using a tracking differentiator which
also can increase the complexity of the observer [32]. In addi-
tion, the chattering phenomenon is still a severe problem to
be solved for all SMDOs.

To avoid the problems of SMDO and improve estimation
accuracy for high-order disturbances, extended disturbance
observer (EDO) is proposed by describing the disturbance
with a high-order model [3], [37], [38]. In EDO, the band-
width should be chosen much greater than the frequency con-
tent of the estimated disturbances. However, larger observer
bandwidth increases the sensitivity to noises [39]. As a type
of high gain observers, EDO also leads to high gain problems
for high-order disturbances.

To avoid the high gain problem of EDO and the chattering
problem of SMDO, Chen proposed a harmonic disturbance
observer (HDO) to estimate harmonic disturbance [40]. The
harmonic disturbance is supposed to have known frequency
but unknown amplitude and phase, and can be represented by
a second-order neutral system. According to the second-order
system describing harmonic disturbance, nonlinear harmonic
observer including stability analysis and gain tuning approach
is established for nonlinear systems with harmonic distur-
bances [40], [41]. Obviously, the order of HDO is the double
of the number of harmonics in disturbances. As for gimbal
servo systems in CMGs, there are multiple harmonics in
disturbances which may lead to high order of HDO. Besides,
HDO only focuses on dealing with harmonic disturbances
and other aperiodic disturbances are not taken into account.

In order to improve the disturbance rejection ability for
gimbal servo systems, an extended harmonic disturbance
observer (EHDO) is designed to estimate the lumped distur-
bance described by an mth-order (m ≥3) dynamical system.
In this system, only the dynamic imbalance disturbance with
the same frequency as the rotor is represented by a second-
order harmonic model. The other ones are supposed to be
slowly-varying and represented by a (m-2)th-order polyno-
mial model. Hence, the lumped disturbance can be estimated
precisely by using EHDO even with a lower bandwidth and
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the high gain problem of EDO can be avoided. Thereafter,
feedforward is used to compensate multiple disturbances in
gimbal servo systems by using estimated disturbance from
EHDO, and a backstepping based composite controller is
designed to achieve expected control performance in gimbal
speed control for CMGs.

The rest of the paper is organized as follows. In Section 2,
the control problem of gimbal servo systems in CMGs is
formulated after a brief introduction for mathematical mod-
els of gimbal dynamics and multiple disturbances is given.
In Section 3, a conventional EDO is designed for gimbal
servo systems and the problem of high gain is analyzed.
Then, EHDO is proposed to estimate multiple disturbances
in gimbal servo systems in Section 4 and the relationship
between the estimation accuracy of disturbances and the
observer parameters (including bandwidth and order) is also
discussed. In Section 5, a composite controller is designed for
gimbal servo systems via backstepping method. In Section 6,
simulation results are given to show the effectiveness of the
proposed method. Conclusions are made in Section 7.

II. MATHEMATICAL MODEL AND
PROBLEM FORMULATION
As shown in Fig. 1, single gimbal CMG (SGCMG) is con-
sidered in this paper. In this section, the mathematical model
of gimbal dynamics and multiple disturbances will be intro-
duced first, and then the control problem of gimbal servo
systems in CMGs will be formulated.

FIGURE 1. Single gimbal CMG.

A. DYNAMICS OF GIMBAL SERVO SYSTEM
For SGCMG, the rotor usually rotates about the spinning
axis xg at a constant and high speed �. When the gimbal
rotates about the gimbal axis zg at a low speed ω, gyroscopic
torque will be generated along the output axis yg owing to the
variations of the rotor momentum in SGCMG.

In order to drive the gimbal rotating slowly and pre-
cisely, permanent magnet synchronous motor (PMSM) is
often adopted in most of SGCMGs owing to its superior per-
formance at low speed. Assuming that PMSM has a surface-
mounted permanent magnet rotor, 3-phase wye-connected
symmetric stator windings, and ideal back EMF of sinusoidal
waveform, then the equations of voltage and current in d-q

reference coordinates can be described by [23]{
ud = Ldpid + Rid − npωLd iq
uq = Lqpiq + Riq + npωLqid + npωψf

(1)

where p is the differential operator.
Without consideration of salient and slot effects, magnetic

saturation, and losses due to hysteresis and eddy current, the
electromagnetic torque Te of PMSM can be written as [23]

Te = 1.5np
[
ψf iq +

(
Ld − Lq

)
id iq

]
(2)

Actuated by the electromagnetic torque Te, the gimbal will
rotate about the gimbal axis and the equation of motion can
be given by [42]

J ω̇ + Dω = Te − Tg − Tr − Ts − Tu (3)

B. ANALYSIS OF THE MULTIPLE DISTURBANCES
For multiple disturbances of (3) in gimbal servo systems
driven by PMSM, the characteristics will be analyzed.

1) DISTURBANCE RELATED TO GIMBAL SYSTEM
In (3), Tg represents the disturbances caused by unexpected
factors in gimbal servo systems, such as motor-related fac-
tors including cogging effect and flux distortion [43], [44],
control-related factors including current measurement error
and PWM dead time effect, and bearing friction. Both motor-
related and control-related factors may lead to ripple torques
described by harmonic models in [45]. Since the ripple
torques are very small in amplitude, only basic components
of ripple torques are considered in this paper. For bearing
frictions, Stribeck model is widely used to describe nonlin-
ear effect of friction at low velocity [46]. Thus, Tg can be
approximately expressed as

Tg = Tcog sin(Ncoθ )+ Tflux cos(6θe)+ Td cos(6θe)

+Tm cos θe + Tc · sign(ω)+(Tst−Tc)e−(ω/ωs)
2
sign(ω)

(4)

where Tcog, Tflux , Td and Tm are the amplitudes of basic
components of ripple torques caused by cogging effect,
flux harmonic, dead time effect and current measurement
error, respectively; Tc and Tst are Coulomb and static fric-
tion torques respectively; Nco is the least common multiple
between motor slots and poles; θ and θe denote mechanical
and electrical angles respectively; ωs is the Stribeck char-
acteristic angular speed; sign(·) is a signum function with
respect to (·).

From (4), it is obvious that ripple torques are periodic
functions with angular frequencies related to gimbal speed
and friction torques are signum function of gimbal speed.
Since the gimbal often works at low speed in SGCMGs,
the disturbances in (4) vary very slowly.

2) DISTURBANCE RELATED TO ROTOR
DYNAMIC IMBALANCE
In (3), Tr represents the disturbance caused by dynamic mass
imbalance of the rotor in SGCMGs. Dynamic imbalance
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FIGURE 2. Schematic diagram of gimbal servo system.

arises when the principal axis of inertia does not coincide
with the spinning axis of the rotor. When the rotor rotates
at the velocity of �, dynamic imbalance will lead to a vec-
tor of radial centrifugal torque rotating in the perpendicular
plane of the spinning axis [7]. Denoting the quantity of the
rotor dynamic mass imbalance by ur , then the rotor dynamic
imbalance torque can be expressed along gimbal axis as
follows [47]:

Tr = ur�2 sin(�t + φd ) (5)

From (5), it is known that the disturbance torque due
to rotor dynamic imbalance has the amplitude proportional
to �2 and the same frequency as �. Since the rotor speed �
is often very high to achieve large gyroscopic effect for
SGCMG, the amplitude and frequency of Tr are much higher
than the other disturbances in gimbal servo systems.

3) DISTURBANCE RELATED TO SPACECRAFT MOTION
In (3), Ts represents the disturbance caused by the angular
motion of spacecraft. Let ωby denote the component along
the output axis yg of the angular velocity of spacecraft, then
the disturbance torque Ts can be expressed as [48]

Ts = −ωbyIr� (6)

where Ir denotes the inertia of the rotor.
From (6), it is known that the disturbance Ts is pro-

portional to the angular velocity ωby since the angular
momentum Ir� is fixed for SGCMGs. When the spacecraft
maneuvers rapidly, the amplitude of Ts will be very large.
Considering the practical mode of attitude maneuver for
spacecraft, Ts can be approximated to be a polynomial model.

C. PROBLEM FORMULATION
Multiple disturbances in gimbal servo systems may bring
great difficulties in high-precision gimbal control for CMGs.
In this paper, a cascade control structure is adopted to atten-
uate the effects of multiple disturbances on gimbal control
performance for SGCMGs, as shown in Fig. 2. Then, the con-
trol problem of gimbal servo system for SGCMGs can be
formulated as follows.

For the gimbal servo system (1)-(3), the objective of this
paper is given as follows. 1) Design a disturbance observer
to estimate the lumped disturbance in (3) with high precision

and the estimate error can be confined in a bounded region
which can be regulated by the observer gains. 2) Design
a composite controller to track the desired gimbal speed
with high precision by using feedforward compensation and
feedback regulation, and the tracking error can be confined
in a bounded region which can be regulated by the controller
gains.

III. DESIGN AND ANALYSIS OF CONVENTIONAL EDO
In this section, the lumped disturbance in (3) is modeled as
an mth-order (m ≥ 3) polynomial first. Then, a conventional
EDO is designed for themth-order disturbance model and the
observer performance is analyzed.

A. POLYNOMIAL BASED DISTURBANCE MODEL
Denoting the lumped disturbance in (3) by d , then we can
get d = Tg + Tr + Ts + Tu. According to (3), the lumped
disturbance d also can be expressed as

d = Te − J ω̇ − Dω (7)

Theoretically, the lumped disturbance d can be obtained
from (7) if both angular velocity ω and electromagnetic
torque Te are available. In engineering, it is not feasible to
obtain d by using (7) since the calculation of the angular
acceleration ω̇ will amplify higher-frequency noise compo-
nents in ω. Therefore, disturbance observer is a feasible way
to obtain the estimate of the lumped disturbance.

In order to design an observer to estimate the lumped
disturbance, its model should be established first. In the
theory of numerical approximations, a common function
is polynomial. Similarly, the lumped disturbance d can be
approximated by using anmth-order polynomial as d = α0+
α1t+α2t2+· · ·+αmtm with coefficients αi, i =0, 1, · · · , m.
By defining the states x1 = d , x2 = ḋ , · · · , xm = d (m−1),
the polynomial model also can be expressed by an mth-order
dynamical system as{

ẋj = xj+1, j = 1, 2, · · · ,m− 1
ẋm = d (m)

(8)

Regard d derived from (7) as a virtual measurement of the
lumped disturbance, then the virtual output equation of (8)
can be written as

d = x1 (9)
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Thus, the mth-order dynamical system describing the
dynamics of the lumped disturbance is established.

B. DESIGN OF EDO
Let x̂j and d̂ represent the estimate of xj and the prediction
of d respectively, j =1, · · · , m, then a state observer for (8)
and (9) can be designed as{

˙̂xj = x̂j+1 + lj(d − d̂), j = 1, 2, · · · ,m− 1
˙̂xm = lm(d − d̂)

(10)

where d̂ = x̂1; lj are observer gains, j = 1, · · · , m.
Substituting (7) and (9) into (10) gives{
˙̂xj = x̂j+1 + lj(Te − J ω̇ − Dω − x̂1), j = 1, 2, · · · ,m− 1
˙̂xm = lm(Te − J ω̇ − Dω − x̂1)

(11)

In order to avoid the calculation of the angular accelera-
tion ω̇, auxiliary variables zj are introduced to satisfy

x̂j = zj − ljJω, j = 1, 2, · · · ,m (12)

According to (12), (11) can be rewritten as{
żj = zj+1 − lj+1Jω + lj(Te − Dω − z1 + l1Jω)
żm = lm(Te − Dω − z1 + l1Jω), j = 1, 2, · · · ,m− 1

(13)

Thus, (12) and (13) constitute an extended disturbance
observer to estimate multiple disturbances in (3) [3].

C. ANALYSIS OF EDO
In order to analyze the performance of the conventional
EDO, the error dynamics of the conventional EDO should be
obtained first. Since EDO in (12) and (13) is obtained by the
variable substitutions of (10), the error dynamics for (10) can
be examined instead.

Define the estimate errors as x̃j = xj− x̂j, j = 1, · · · ,m and
d̃ = d − d̂ , then the error dynamics of EDO can be derived
from (9) and (10) as follows:{

˙̃xj = x̃j+1 − ljd̃, j = 1, 2, · · · ,m− 1
˙̃xm = d (m) − lmd̃

(14)

According to (14), the transfer function from the lumped
disturbance d to the estimate error d̃ can be obtained as

G1 (s) =
d̃ (s)
d (s)

=
sm

sm + l1sm−1 + l2sm−2 + · · · lm
(15)

If the observer gains are chosen as

lj =
m!

j! (m− j)!
λj, j = 1, 2, · · · ,m (16)

Then (15) will have multiple poles at s = −λ which also
determines the bandwidth of EDO [49].

To demonstrate the performance of EDO with differ-
ent bandwidths and orders, the frequency characteristics of
G1(s) can be plotted. Fig. 3 shows the frequency response
of G1(s) for the 3rd-order EDO with different bandwidths

FIGURE 3. Frequency characteristics of G1(s) of the 3rd–order EDO with
different bandwidths.

FIGURE 4. Frequency characteristics of G1(s) of EDO of different orders
with fixed bandwidth (λ = 2π rad/s).

(λ =2π , 10π , 50π rad/s). Fig. 4 shows the frequency
response ofG1(s) for the EDOwith fixed bandwidth (λ = 2π
rad/s) and different orders (m = 3, 4, 5).
From Fig. 3 and Fig. 4, it can be concluded that the lumped

disturbance can be estimated by EDO precisely only if the
bandwidth of EDO is much more than the frequency content
of the disturbance. Furthermore, higher order of EDO will
bring higher precision in disturbance estimate when the band-
width is fixed. In order to estimate the dynamic imbalance
disturbance with the same frequency as high-speed rotor
effectively, higher bandwidth should be chosen for EDO.
However, higher bandwidth increases the sensitivity to noises
in measurement [39], and will lead to the problem of high
gains.

IV. DESIGN AND ANALYSIS OF EHDO
To avoid the problems of EDO, an EHDO is proposed for
the disturbance model with harmonics in this section. The
performance of EHDO is also discussed for the proposed
tuning rules of the observer gains.

A. HARMONIC BASED DISTURBANCE MODEL
According to the performance analysis of EDO in Section III,
it is known that the rotor dynamic imbalance disturbance is
the dominant factor leading to high-gain problem since it
has the same frequency as the rotor. To avoid the high-gain
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problem resulting from the rotor dynamic imbalance, it can
be expressed as a harmonic model embedded into the model
describing the dynamics of the lumped disturbance since it
has known frequency but unknown amplitude and phase.

Let xa = Tr , xb = Ṫr , then the following equation can be
derived from (5) as

ẋb = −ur�4 sin(�t + φd ) = −�2xa (17)

For the other disturbances (d−Tr ) in (3) except for the rotor
dynamic imbalance, they can be regarded as slowly-varying
disturbances and approximated by using an (m − 2)th-order
(m ≥ 3) polynomial. Let x1 = d − Tr , x2 = ẋ1, · · · ,
xm−2 = δ(t), then we haveẋa = xb, ẋb = −�2xa

ẋj = xj+1, j = 1, 2, · · · ,m− 3
ẋm−2 = δ (t)

(18)

where δ(t) denotes the (m− 2)th-order derivative of (d − Tr )
which also represents the uncertainty in the mth-order model
in (18). For convenience, δ(t) is supposed to be bounded.
According to the definition of the states in (18), the virtual

measurement equation can be written as

d = xa + x1 (19)

Let

x =



xa
xb
x1
...

xm−3
xm−2


, A =



0 1
−�2 0
- - - - - - - - -

0 0
...
...

0 0
0 0

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0 0 · · · 0
0 0 · · · 0

- - - - - - - - - - - - - - - -
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0


,

B =
[
0 0 0 · · · 0 1

]T
, C =

[
1 0 1 · · · 0 0

]
,

then the disturbance model in (18) and (19) can be written in
a compact form as {

ẋ = Ax+ Bδ (t)
d = Cx (20)

Since the pair (A, C) is observable, we can design an
observer to estimate the disturbances.

B. DESIGN OF EHDO
Let x̂ and d̂ represent the estimate of x and the prediction of d
respectively, then an observer for (20) can be designed as{

˙̂x = Ax̂+ L(d − d̂)
d̂ = Cx̂

(21)

where L is an observer gain matrix. Substituting (7) into the
first equation of (21) gives

˙̂x = (A− LC)x̂+ L(Te − J ω̇ − Dω) (22)

Similar to the design of EDO, an auxiliary variable is also
introduced to avoid the calculation of the angular accelera-
tion. The auxiliary variable z is defined such that

x̂ = z− LJω (23)

According to (23), (22) can be rewritten as

ż = (A− LC) (z− LJω)+ L (Te − Dω) (24)

Thus, the EHDO is obtained in (23) and (24). Next, the
convergence of EHDO will be analyzed.

The estimate errors x̃ = x − x̂, d̃ = d − d̂ , then the error
dynamics of EHDO can be derived from (20) and (21) as{

˙̃x = (A− LC) x̃+ Bδ (t)
d̃ = Cx̃

(25)

Since the pair (A,C) is observable, the matrix (A−LC) can
be Hurwitz by choosing suitable gain matrix L. Then, given
any positive definite matrix Q, there exists a unique positive
definite matrix P such that

(A− LC)TP + P(A− LC) = −Q (26)

For the error dynamics in (25), choose Lyapunov candidate
function as

V0 = x̃TPx̃ > 0 (27)

Taking the time derivative of V0 along (25) and (26) gives

V̇0 = ˙̃xTPx̃+ x̃TP ˙̃x

= x̃T[(A− LC)TP + P(A− LC)]x̃+ 2x̃TPBδ(t)

= −x̃TQx̃+ 2x̃TPBδ(t) (28)

Let λp, λq, and δm denote the maximal eigenvalue of P,
the minimal eigenvalue of Q, and the upper bound of δ(t)
respectively, then the following equality can be derived
from (28) as

V̇0 ≤ −λq ‖x̃‖2 + 2 ‖x̃‖ ‖P‖ ‖B‖ δm
= −λq ‖x̃‖2 + 2λpδm ‖x̃‖ (29)

where || · || denotes 2-norm of a vector or a matrix.
From (29), it is known that the estimate error of EHDO is

bounded. When ‖x̃‖ > 2λpδm
/
λq, V̇0 < 0 which will drive

the trajectory of x̃ into a bounded region R1 = {x̃| ‖x̃‖ ≤
2λpδm

/
λq}. The upper bound ofR1 depends on λp, λq and δm,

and it can be decreased by regulating the gain matrix L.

C. ANALYSIS OF EHDO
Similar to EDO, the performance of EHDO is also analyzed.
Let L =

[
la lb l1 · · · lm−2

]T, (21) can be rewritten as
˙̂xa = x̂b + lad̃
˙̂xb = −�2x̂a + lbd̃
˙̂xj = x̂j+1 + ljd̃, j = 1, 2, · · · ,m− 3
˙̂xm−2 = lm−2d̃

(30)

According to (30), we can get{
¨̂xa +�2x̂a = −la

˙̃d − lbd̃
x̂(m−2)1 = l1d̃ (m−3) + l2d̃ (m−4) + · · · + lm−2d̃

(31)
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Under zero initial conditions, the Laplace transform
expression of (31) can be written as

x̂a (s) =
las+ lb
s2 +�2 d̃ (s)

x̂1 (s) =
l1sm−3 + l2sm−4 + · · · + lm−2

sm−2
d̃ (s)

(32)

Since d (s) = d̂ (s) + d̃ (s) = x̂a (s) + x̂1 (s) + d̃ (s),
the transfer function from the lumped disturbance d to the
estimate error d̃ can be derived from (32) as

G2 (s)=
sm−2(s2+�2)

sm−2(las+lb)+(s2+�2)(sm−2+l1sm−3+ · · · lm−2)
(33)

From (33), the characteristic polynomial can be written as

D (s) = sm−2(las+lb)+(s2+�2)(sm−2+l1sm−3+ · · · lm−2)

(34)

If the bandwidth of EHDO is chosen as λ > 0 and the
poles of (33) are configured as (m − 2)-times multiple real
roots of −λ and a pair of conjugate roots of −λ ± j�,
the characteristic polynomial can be given by

D (s) = (s+ λ)m−2[(s+ λ)2 +�2] (35)

Comparing (34) with (35), then the observer gains are the
solutions to the algebraic equations as follows:

l1 + la = mλ
l2 + lb = C2

mλ
2

li+2 + li�2
= C i+2

m λi+2 + C i
m−2λ

i�2

lm−3 = mλm−1
/
�2
+ (m− 2) λm−3

lm−2 = λm
/
�2
+ λm−2

(36)

where Cn
m = m!

/
(n! (m− n)!), n ≤ m is a positive integer,

i = 1, 2, · · · , m− 4.
By using the observer gains derived from (36), the fre-

quency characteristics of G2(s) can be plotted to demonstrate
the effects of different bandwidths and different orders on
the performance of EHDO. Assuming that the rotor velocity
� = 200π rad/s, the frequency responses ofG2(s) for EHDO
with different bandwidths (λ = 2π , 10π , 50π rad/s) and
different orders (m = 3, 4, 5) are depicted in Fig. 5 and Fig. 6
respectively.

From Fig. 5 and Fig. 6, it is known that the rotor
dynamic imbalance disturbance with the angular frequency
of 200π rad/s can be estimated precisely by EHDO even
with a low bandwidth. Meanwhile, the other disturbances
with lower frequency content also can be estimated pre-
cisely. Thus, high gains are not necessary in EHDO and the
high-gain problem of EDO can be avoided. Similar to EDO,
the estimation accuracy of disturbance also can be improved
by EHDO with the increase of the order or bandwidth.

FIGURE 5. Frequency characteristics of G2(s) of the 3rd–order EHDO with
different bandwidths.

FIGURE 6. Frequency characteristics of G2(s) of EHDO of different orders
with fixed bandwidth (λ = 2π rad/s).

V. EHDO BASED GIMBAL CONTROLLER
Based on the EHDO designed in Section IV, a gimbal con-
troller can be designed for the gimbal servo system described
by (1)-(3) via backstepping method. The design procedure is
divided into 3 steps:
Step 1: Design a gimbal speed controller to track the

desired speed ωd for (3) by using the electromagnetic
torque Te as virtual control input;
Step 2: Resolve the desired torque T ∗e into current com-

mand in d-q reference coordinate according to (2);
Step 3: Design current controller to track the current com-

mand according to (1).
Step 1: Gimbal speed controller design
Let T ∗e denote the desired electromagnetic torque and

define speed tracking error as ω̃ = ωd − ω and torque error
as T̃e = T ∗e − Te, then the following error equation can be
derived from (3) as

J ˙̃ω = J ω̇d − J ω̇

= J ω̇d − Te + d + Dω

= J ω̇d − T ∗e + T
∗
e − Te + d + D(ωd − ω̃)

= −T ∗e + J ω̇d + Dωd − Dω̃ + T̃e + d (37)

For the error system in (37), choose Lyapunov candidate
function as

V1 =
1
2
J ω̃2
+ V0 > 0 (38)
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The time derivative of (38) along (37) can be expressed as

V̇1 = J ω̃ ˙̃ω + V̇0
= ω̃(−T ∗e + J ω̇d + Dωd − Dω̃ + T̃e + d)+ V̇0 (39)

If the virtual control T ∗e is designed as

T ∗e = J ω̇d + Dωd + k0ω̃ + d̂ (40)

Then (39) can be rewritten as

V̇1 = −(k0 + D)ω̃2
+ ω̃T̃e + ω̃d̃ + V̇0 (41)

where k0 > 0. Let k ′0 = k0 + D, then (41) can be rewritten
according to (29) and (25) as

V̇1 ≤ −k ′0ω̃
2
+ ω̃T̃e + |ω̃||d̃ | − λq ‖x̃‖2 + 2λpδm ‖x̃‖

≤ −k ′0ω̃
2
+ ω̃T̃e + |ω̃| ‖C‖ ‖x̃‖ − λq ‖x̃‖2 + 2λpδm ‖x̃‖

≤ −k ′0ω̃
2
+ ω̃T̃e +

√
2|ω̃| ‖x̃‖ − λq ‖x̃‖2 + 2λpδm ‖x̃‖

(42)

In (42), it is noted that 2|ω̃| ‖x̃‖ ≤ |ω̃|2 + ‖x̃‖2. Let
c1 = k ′0−

√
2
/
2, c2 = λq−

√
2
/
2, then (42) can be changed

into the following form as

V̇1 ≤ −c1ω̃2
− c2 ‖x̃‖2 + 2λpδm ‖x̃‖ + ω̃T̃e (43)

From (43), it is known that the closed-loop system is
asymptotically bounded by using the virtual control in (40) if
the torque error T̃e = 0. Therefore, the next work is to design
current controller to realize the desired torque T ∗e in (40).
Step 2: Current command generator
In order to track the desired torque T ∗e for PMSM in the

gimbal servo system in Fig. 2, it should be resolved into the
current command i∗d and i

∗
q according to the torque equation in

d-q frame. Since Ld = Lq = L for surface-mounted PMSMs,
(2) can be rewritten by defining kt = 1.5npψf as

Te = kt iq (44)

According to (44), the torque command T ∗e can be trans-
formed into the current command as{

i∗d = 0
i∗q = T ∗e

/
kt

(45)

According to (44) and (45), the torque error T̃e also can be
obtained as

T̃e = kt (i∗q − iq) (46)

Step 3: Current controller design.
In order to track the current command in (45), current

controller will be designed in d-q frame. Define current errors
as ĩd = i∗d − id and ĩq = i∗q − iq, then the error equation can
be derived from (1) as{

Ld
˙̃id = Ldpi∗d − ud + Rid − npωLd iq

Lq
˙̃iq = Lqpi∗q − uq + Riq + npωLqid + npωψf

(47)

Choose Lyapunov candidate function as

V2 = V1 +
1
2
Ld ĩ2d +

1
2
Lq ĩ2q > 0 (48)

Taking the time derivative of V2 along (43) gives

V̇2 = V̇1 + Ld ĩd
˙̃id + Lq ĩq

˙̃iq
≤ −c1ω̃2

− c2 ‖x̃‖2 + 2λpδm ‖x̃‖

+ ω̃T̃e + Ld ĩd
˙̃id + Lq ĩq

˙̃iq (49)

Let k1 and k2 are positive constants, then we can design
current controller as{
ud = Ldpi∗d + Ri

∗
d − npωLd iq + k1 ĩd

uq = Lqpi∗q + Ri
∗
q + npωLqid + npωψf + kt ω̃ + k2 ĩq

(50)

According to (50) and (45), (47) can be rewritten as{
Ld
˙̃id = −(k1 + R)ĩd

Lq
˙̃iq = −(k2 + R)ĩq − kt ω̃

(51)

Let c3 = k1 + R, c4 = k2 + R, then (51) can be modified
according to (46) as{

Ld
˙̃id ĩd = −c3 ĩ2d

Lq
˙̃iq ĩq = −c4 ĩ2q − ω̃T̃e

(52)

Substituting (52) into (49) gives

V̇2 ≤ −c1ω̃2
− c2 ‖x̃‖2 + 2λpδm ‖x̃‖ − c3 ĩ2d − c4 ĩ

2
q (53)

Let e = [ω̃, x̃T , ĩd , ĩq]T , c = min{c1, c2, c3, c4}, then (53)
can be enlarged into the following form as

V̇2 ≤ −c[ω̃2
+ ‖x̃‖2 + ĩ2d + ĩ

2
q]+ 2λpδm ‖x̃‖

≤ −c ‖e‖2 + 2λpδm ‖e‖ (54)

From (54), it can be concluded that the closed-loop system
is asymptotically bounded. When ‖e‖ > 2λpδm

/
c, V̇2 < 0,

it will drive the trajectory of e into a bounded region
R2 =

{
e| ‖e‖ ≤ 2λpδm

/
c
}
. The upper bound of R2 depends

on c, λp and δm, and it can be decreased by regulating the
observer bandwidth λ and the controller gains k0, k1, and k2.

VI. SIMULATION AND EXPERIMENTAL RESULTS
In this section, simulations and experiments of EHDO and
EDO with different orders for the gimbal servo system have
been performed to demonstrate the effectiveness of the pro-
posed EHDO and controller.

A. SIMULATION RESULTS
Gimbal servo control system is established in Matlab/
Simulink and the performance of the system is analyzed in
this section. The parameters of the gimbal servo system are
listed in Table 1, where the values of the parameters are
consistent with the actual experimental platform.

According to (4), the parameters of disturbance related to
gimbal system are chosen as Tcog = 0.1Nm, Nco = 48,
Tst = 0.02Nm, Tc = 0.005Nm, ωs = 0.002rad/s, respec-
tively. Since the gimbal simulator is controlled to run by the
gimbal drive circuit, Tflux , Td and Tm have already existed
in the system, so we do not need to set the parameter of
Tflux , Td and Tm additionally. The velocity of the CMG rotor
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FIGURE 7. Simulation results of gimbal speed and disturbance estimate error for 3rd-order EDO. (a) Gimbal speed.
(b) Disturbance estimate error.

TABLE 1. Parameters of gimbal servo system.

is 6000r/min, the quantity of rotor dynamic imbalance is
ur = 4g.cm2, φd = 0◦, then the amplitude of the dynamic
imbalance torque Tr can be calculated from (5). Disturbance
torque caused by spacecraft motion is set as Ts = 0.03Nm.

The desired angular speed of gimbal is ωd = 1◦/s. The
parameters of speed and current controller are k0 = 30,
k1 = 20, k2 = 20, respectively.

By using the gimbal velocity ω and electromagnetic
torque Te, the EHDO in (24) and the EDO in (12) can be
implemented with the bandwidth λ = 2π rad/s. To compare
the performance of the EHDO and the EDO, and analyze the
effects of different orders of the EHDO and the EDO on the
disturbance estimate error, 3rd-order disturbance observer and
4th-order disturbance observer are considered in the simula-
tion. The observer gains of the EHDOand EDO are calculated
by (36) and (16), respectively.
Case 1: The 3rd -order disturbance observer.
In this case, the gains of observers are listed in Table 2, and

simulation results for the 3rd-order EDO and the EHDO can
be achieved. Fig. 7 and Fig. 8 show the gimbal angular speed
and disturbance estimate errors of the 3rd-order EDO and the
EHDO, respectively.

TABLE 2. Observer gains for 3rd-order EDO and EHDO.

Figs. 7(a) and 7(b) show the gimbal angular speed and
the disturbance estimate error of the 3rd-order EDO. The
gimbal servo speed fluctuates within 0.16◦/s, and the dis-
turbance estimate error is within 0.158Nm. It is clear that
3rd-order EDO is difficult to estimate the rotor dynamic
imbalance disturbance since the bandwidth is much less than
the frequency of rotor dynamic imbalance torque. Therefore
the high-frequency component still exists in the disturbance
estimate error, causing the high-frequency vibration in gimbal
speed. On the other hand, the 3rd-order EDO uses the first
three derivatives of disturbance for estimation, thus the esti-
mate effect of low-frequency disturbance is improved.

From Fig. 8, it is known that the gimbal angular speed
fluctuates within 0.025◦/s, and the disturbance estimate error
of the EHDO fluctuates within 0.02Nm. It is obvious that
the control performance of gimbal servo system is improved
as compared with the conventional 3rd-order EDO. However,
since only the first derivative of low-frequency disturbances is
used in the 3rd–order EHDO, the low-frequency component
still exists in disturbance estimate error and gimbal angular
speed.
Case 2: The 4th-order disturbance observer
Gains of the 4th–order EHDO and EDO are listed

in Table 3. The gimbal angular speed and the disturbance
estimate error of the 4th-order EDO and EHDO are shown
in Figs. 9 and 10, respectively.

TABLE 3. Observer gains for 4th-order EDO and EHDO.

Fig. 9(a) and Fig. 9(b) show the gimbal angular speed
and the disturbance estimate error of the 4th-order EDO.
The gimbal servo speed fluctuates within 0.16◦/s, and the
disturbance estimate error is within 0.158Nm. The EDO still
cannot estimate rotor dynamic imbalance disturbance since
the bandwidth of observer is less than disturbance frequency.
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FIGURE 8. Simulation results of gimbal speed and disturbance estimate error for 3rd-order EHDO. (a) Gimbal speed.
(b) Disturbance estimate error.

FIGURE 9. Simulation results of gimbal speed and disturbance estimate error for 4th-order EDO. (a) Gimbal speed.
(b) Disturbance estimate error.

FIGURE 10. Simulation results of gimbal speed and disturbance estimate error for 4th-order EHDO. (a) Gimbal speed.
(b) Disturbance estimate error.

Therefore the high-frequency component still exists in the
disturbance estimate error, causing the high- frequency vibra-
tion in gimbal speed.

From Fig. 10(a) and Fig. 10(b), it is obvious that the esti-
mate error is degraded with the order of the EHDO increases.
The gimbal angular speed fluctuates within 0.005◦/s, and the

disturbance estimate error of the 4th–order EHDO fluctuates
within 2 × 10−3Nm, which is less than that of 3rd-order
EHDO. Therefore, the control performance of gimbal servo
system is improved as compared with the 3rd–order EHDO.

According to the simulation results, the standard devia-
tion of gimbal angular speed is computed to evaluate the
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TABLE 4. Standard derivation of gimbal speed in simulations.

performance of the EDO and the EHDO, as shown in Table 4.
It is obvious that the standard derivation of gimbal speed for
EHDO is much lower than that for EDO, and it degrades as
the order of EHDO increases.

B. EXPERIMENTAL RESULTS
In this section, semi-physical experiments were carried out
to verify the effectiveness of the proposed EHDO and gimbal
controller. The semi-physical experiment platform included
a CMG gimbal simulator, gimbal drive and control cir-
cuits, an upper computer and power supplies, as shown
in Figure 11.

FIGURE 11. Simi-physical experiment platform.

CMGgimbal simulator is an electric loadwhich has similar
electrical and mechanical characteristics to practical CMG
gimbal motor. CMG gimbal simulator can be used as a substi-
tute for the real CMG gimbal system and it has been used to
test CMG drive circuits in spacecraft engineering. By using
CMG gimbal simulator, physical parameters of CMG gim-
bal and disturbances parameters such as friction and rotor
imbalance could be preset by the upper computer. Therefore,
it was convenient to evaluate the performance of the proposed
EHDO by comparing the estimates with the preset values of
disturbances. While a practical CMG gimbal system is used,
the actual values of disturbances cannot be obtained.

Gimbal drive and control circuit is in charge of driv-
ing gimbal simulator. The signals of three-phase current
are sampled and adjusted by signal acquisition module
(ADS8568) and then transmitted to a digital signal proces-
sor (TMS320F28335). As the core of the drive and control
circuit, the TMS320F28335 formulates the control signal
according to the information of speed and current. Then, the

proposed disturbance observer and control algorithm can
be implemented in DSP with a sampling period of 125µs.
The drive circuit of CMG gimbal simulator is a three-phrase
full-bridge converter consisting of 6 MOSFETs (IRFR3910).

The parameters of the CMG gimbal servo system are con-
sistent with simulations. Two cases that m =3 and 4 are
considered in the experiment.
Case 1: The 3rd -order disturbance observer.
In this case, the gains of the 3rd-order EDO and EHDO are

listed in Table 2. Fig. 12 and Fig. 13 show the gimbal angular
speed and the estimate of disturbance for the 3rd-order EDO
and the EHDO, respectively.

Considering the periodic perturbations in the estimate of
disturbances, we show the experimental results from 10s to
17.5s to illustrate the performance of different disturbance
observers with the order of 3.

As shown in Figs. 12(a) and 13(a), the gimbal speed for
3rd-order EDO and EHDO fluctuates within 0.2◦/s and
0.11◦/s, respectively. From Figs. 12(b) and 13(b), it is obvi-
ous that the rotor dynamic imbalance torque could not be
estimated by the 3rd-order EDO, gimbal speed is affected by
the rotor dynamic imbalance. Comparatively, the 3rd-order
EHDO could estimate the rotor dynamic imbalance torque.
However, using only the first derivative of Tg in 3rd-order
EHDO will result in large model error, which leads to a
decrease in the estimate accuracy of Tg. The gimbal speed
for 3rd-order EHDO still contains a fluctuation with the same
frequency as Tg.
Case 2: The 4th-order disturbance observer.
The gains of the 4th-order EDO and EHDO are listed

in Table 3. The gimbal angular speed and the estimate of
disturbance for the 4th-order EDO and EHDO are shown
in Figs. 14 and 15, respectively.

As shown in Figs. 14(a) and 15(a), the gimbal speed for
4th-order EDO and EHDOfluctuates within 0.2◦/s and 0.1◦/s,
respectively. From Figs. 14(b) and 15(b), it can be con-
cluded that the 4th-order EDO still cannot estimate the rotor
dynamic imbalance, while the 4th-order EHDO can estimate
the rotor dynamic imbalance torque as well as the disturbance
with lower frequency. Compared with the 3rd-order EHDO,
the estimation accuracy of the 4th-order EHDO is improved
since themodel error of Tg is reduced. The accuracy of gimbal
speed is improved through the feedforward compensation of
disturbances. The fluctuation with the same frequency as Tg
has been degraded in the gimbal speed.

The standard deviation of gimbal angular speed is shown
in Table 5.

TABLE 5. Standard derivation of gimbal speed in experiments.

In summary, the conventional EDO cannot estimate the
high-frequency disturbance with a bandwidth much less than

66346 VOLUME 6, 2018



L. Huang et al.: Control for CMGs via an EHDO

FIGURE 12. Experimental result of gimbal speed and disturbance estimate for 3rd-order EDO. (a) Gimbal speed.
(b) Disturbance estimate.

FIGURE 13. Experimental result of gimbal speed and disturbance estimate for 3rd-order EHDO. (a) Gimbal speed.
(b) Disturbance estimate.

FIGURE 14. Experimental result of gimbal speed and disturbance estimate for 4th-order EDO. (a) Gimbal speed.
(b) Disturbance estimate.

the frequency of disturbance. Compared with EDO, EHDO
can estimate the lumped disturbance precisely even with a
lower bandwidth. As shown in the simulation and experimen-
tal results, the estimation error decreases with the increase of
the order of EHDO.Moreover, the proposed EHDO can avoid

the high gain problem in EDO. By compensating multiple
disturbances in gimbal servo systems with the estimate of the
EHDO, the disturbances can be rejected significantly and the
expected control performance of gimbal speed control can be
achieved.
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FIGURE 15. Experimental result of gimbal speed and disturbance estimate for 4th-order EHDO. (a) Gimbal speed.
(b) Disturbance estimate.

VII. CONCLUSION
In this paper, an EHDO is proposed to estimate the multiple
disturbances described by a second-order harmonic model
and (m − 2)th-order polynomial model in gimbal servo sys-
tem. This observer can estimate the rotor dynamic imbalance
disturbance and other slowly-varying disturbances precisely
even with a lower bandwidth. Thereafter, feedforward is used
to compensate multiple disturbances in gimbal servo systems
by using estimated disturbance from EHDO, and a back-
stepping based composite controller is designed to achieve
expected control performance in gimbal speed control for
CMGs. Simulation and experimental results are presented to
demonstrate the effectiveness of the EHDOand the composite
speed controller. The proposed EHDO and the composite
controller can be applied in the development of CMG engi-
neering. Since periodic disturbances and uncertainties widely
exist in practical engineering, it is hoped that the proposed
EHDO and composite controller can be extended to other
systems in the future.
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