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ABSTRACT In this paper, the nonlinear robust control problem for tail-sitter aircraft in flight mode
transitions is addressed. The problem is challenging due to the nonlinearities and uncertainties including
parametric uncertainties, unmodeled uncertainties, and external disturbances involved in the vehicle dynam-
ics during the mode transitions. The proposed controller is designed in two steps: first, the dynamic inversion
technique is adopted to establish a tracking error model; then, for the tracking error model, a robust controller
consisting of a nominal controller and a robust compensator is designed. The nominal controller is designed
to obtain the desired tracking performances for the nominal system. The compensator is introduced to
restrain the effects of uncertainties. Tracking errors of the closed-loop system are proven to converge into a
neighborhood of the origin in a finite time. Simulation results are presented to demonstrate the advantages
of the proposed controller, compared with the controller based on the standard loop-shaping method.

INDEX TERMS Tail-sitter aircraft, robust control, nonlinear control, uncertainties.

I. INTRODUCTION
Over the past decades, unmanned aerial vehicles (UAVs) have
drawn considerable attention due to their wide applications,
such as search and rescue, reconnaissance, meteorological
monitoring, and wildfire tracking, as shown in [1]. UAVs
are typically classified as helicopters [2], [3], fixed-wing air-
craft [4], [5], and tail-sitter aircraft [6], [7]. The tail-sitter
vehicles are introduced due to their advantages of combining
the vertical take-off and landing capability of the helicopters
and the high forward flight speed of fixed-wing aircraft,
as shown in [8]. Therefore, much interest has been aroused in
the automatic control circle for the tail-sitter aircraft. Several
tail-sitter aircraft flight controllers have been implemented
successfully in recent years, as depicted in [9]–[13].

Many researches have been done in the past decades
for designing flight mode transition controllers. In [14],
a transition controller including a proportional-integral-
derivative (PID) feedback controller, a feedforward con-
troller, and controllers based on the gain scheduling approach
was designed to achieve the desired tracking performances.
The robust controller based on state estimator was present
in [15] of nonlinear systems with parametric uncertainties

and noisy outputs for quadrootor. A tracking controller based
on smooth function was introduced in [16] for autonomous
tail-sitter aircraft with bounded inputs. In [17], a nonlinear
double integrator was introduced to obtain desired track-
ing performance by the acceleration measurements. In [18],
an integrated altitude control design for a tail-sitter UAV
equipped with turbine engines was introduced in achieving
quasistationary flight. An observer was designed to recon-
struct system state variables based on the system model and
delayed outputs, as depicted in [19]. A controller based on
the Pade approximation technique and full order observers
was designed in [20]. Nonlinear controllers based on delayed-
output observers were proposed in [21] to track a given refer-
ence trajectory. The influences of uncertainties were not fully
considered in the stability analysis by the above-mentioned
control methods.

In fact, the tail-sitter aircraft flight mode transition con-
troller design is challenging due to the nonlinearities and
uncertainties including parametric uncertainties, unmodeled
uncertainties, and external disturbances. Therefore, robust
control approaches have been studied to restrict the influ-
ences of these uncertainties. PID control method was adopted
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in [22] to increase stability against large disturbances. In [23],
the gain scheduled linear quadratic regulator (LQR) was
adopted to design controllers under external disturbances.
Three different transition control strategies were studied
in [24] to realize the optimal transition. A control strategy
based on the backstepping method was presented to perform
the transition of a tail-sitter aircraft from vertical to forward
flight mode in [25]. In these works, the effects of the external
disturbances caused by wind and aerodynamic perturbations
have been explored, but further studies on rejecting the influ-
ences of uncertainties were not sufficiently investigated.

Furthermore, studies have been done to restrict the influ-
ences of the uncertainties on the closed-loop system for
the tail-sitter aircraft. In [26], a nonlinear controller was
introduced with finite-time convergent observer based on
Lyapunov function to estimate the unknown nonlinearities,
the uncertainties, and external disturbances duringmode tran-
sition. Unmodeled uncertainties and external aerodynamic
disturbances were considered, but the influences of paramet-
ric uncertainties were not discussed fully in [26].

This paper aims to propose a nonlinear robust controller
for flight mode transition control of the tail-sitter aircraft.
The proposed controller is composite of a nonlinear con-
troller based on the dynamic inversion technique, a linear
feedback controller, and a robust compensator. The dynamic
inversion technique is firstly utilized to generate a linear error
model of the tail-sitter aircraft. The linear error model is
considered as a nominal model with equivalent disturbances.
Then, based on the tracking error model, a robust controller
consisting of a nominal controller and a robust compensator
is designed. The nominal controller based on the eigenvalue
assignment approach is designed to obtain the desired track-
ing performances for the nominal system. The compensator is
introduced to restrain the effects of parametric uncertainties,
unmodeled uncertainties, and external disturbances.

Compared with previous studies, the proposed control
method can restrain the effects of equivalent disturbances
including parametric uncertainties, unmodeled uncertainties,
and external disturbances. In this current paper, it is proven
that if the initial conditions of the tracking states are bounded,
then the tracking errors are bounded and can converge to
a neighborhood of the origin in a finite time. In addi-
tion, the eigenvalue assignment method leads to linear time-
invariant state feedback controllers, and it is comparatively
easy to be employed in practical applications. In the current
paper, a time-invariant robust controller is proposed for a
time-varying nonlinear system. Furthermore, it do not need
to switch the controller structure or the controller parameters
for different flight status in practical applications. Therefore,
the designed controller is comparatively easy to be imple-
mented in practical applications. The simulation results show
the advantages of the proposed method for improving track-
ing performances of the closed-loop system, compared to the
loop-shaping controller.

This paper is organized as follows: the dynamic model
of the tail-sitter is shown in Section II; in Section III,

the nonlinear controller based on dynamic inversion tech-
nique is synthesized; in SectionVI, the robust stability and the
tracking properties are proven; simulation results are shown
in Section V; in Section VI, conclusions are drawn.

II. TAIL-SITTER AIRCRAFT MODEL
The tail-sitter vertical take-off and landing unmanned aerial
vehicle studied in this paper is developed by AOS Company
called ‘‘X-hound’’, as shown in Fig. 1. The mode transition
from hovering to level flight is depicted in Fig. 2. In this
section, firstly, the schematic of the tail-sitter aircraft is
described. Secondly, the coordinates and frames have been
defined. Then, the mathematical equations of motion of the
tail-sitter aircraft have been given.

FIGURE 1. X-hound aircraft.

FIGURE 2. Mode transition from hovering to level.

A. SCHEMATIC OF THE TAIL-SITTER AIRCRAFT
For the tail-sitter UAV, it can be divided into three flight
modes: the fly forward state, the hover state, and the mode
transition. In the hover state, the tail-sitter aircraft can be
regarded as a special quadrotor, and the aerodynamic anal-
ysis can be implemented based on the body fixed frame.
In the fly forward state, the tail-sitter aircraft is similar to
a general fixed-wing aircraft. The transition mode is sim-
ilar to both the hover state and the fly forward state in
some sense, and it is difficult to analyze the aerodynamic
forces and torques. In this case, the body fixed frame is
chosen to express the aerodynamic forces and torques in the
mode transition. Therefore, to facilitate analytical calcula-
tions, the aerodynamic forces are established in the body
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FIGURE 3. The schematic of the tail-sitter aircraft. 1: fuselage, 2: wings,
3: V-tail, 4: Vane 1, 5: Vane 2, 6: Vane 3, 7: Vane 4, 8: Rotor 1, 9: Rotor 2,
10: Rotor 3, 11: Rotor 4.

FIGURE 4. Coordinates and frames.

coordinate system. The schematic of the tail-sitter aircraft is
depicted in Fig. 3. The tail-sitter aircraft consists of fuselage,
two wings and V-tails as shown in Fig. 4. Thrust is generated
by the propellers driven by the four motors mounted on the
aircraft wings and the V-tails. Rotor 1 and Rotor 3 rotate
counterclockwise, while Rotor 2 and Rotator 4 rotate clock-
wise. The pitch movement is achieved by the difference
between the torques generated by the rotors (Rotor 1 and
Rotor 2) mounted on the wings and the rotors (Rotor 3 and
Rotor 4) on the V-tails. Vanes installing on wings and
V-tails are utilized to generate yaw and roll movements by
the deflections.

B. DEFINITION OF THE COORDINATES AND FRAMES
In Fig. 4, E =

{
Ex Ey Ez

}
denotes an earth fixed inertial

frame. Eb =
{
Exb Eyb Ezb

}
defines a body fixed frame

and C is the mass center of the tail-sitter aircraft. Let P =[
x y z

]T be the position of the mass center of the tail-sitter

aircraft relative to the inertial frame, v =
[
vx vy vz

]T denote
the velocity of the mass center relative to the inertial frame,
and ωb =

[
ωbx ωby ωbz

]T represent the angular rates on
each axis relative to the body frame. The symbol cθ is used
for cos θ and sθ for sin θ , the rotation matrix from the body
frame to the inertial frame is expressed as follows:

R(φ, θ, ψ)=

cψcθ cψ sθ sφ − sψcφ sψ sθcφ + sψ sφ
sψcθ sψ sθ sφ + cψcφ sψ sθcφ − cψ sφ
−sθ cθ sφ cθcφ

 .
where φ, θ , and ψ describe the Euler angles: the roll angle φ,
the pitch angle θ , and the yaw angle ψ , respectively. The
rotation matrix between angular rates relative to the body
fixed frame and the time derivative of the attitude angles in
the inertial frame is defined as follows:

Rv =

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

 .
C. MATHEMATICAL MODEL
As a rigid body, the mathematical equations of motion of the
tail-sitter aircraft can be derived by Newton-Euler’s law and
described as follows:

Ṗ = v,

mv̇ = Ft − mgRbe, (1)

Jt ω̇b + ω
×

b Jtωb = Tt , (2)

where m denotes the total mass of the tail-sitter aircraft, g is
the gravity constant, Jt indicates the inertial matrix of the tail-
sitter aircraft, and Ft =

[
Fx Fy Fz

]T and Tt =
[
Tx Ty Tz

]T
are the total force and torque on the aircraft in the body
frame, respectively. The cross-product operation is a skew-
symmetric matrix and can be defined as follows:

ω×b = S (ωb) =

 0 −ωbz ωby
ωbz 0 −ωbx
−ωby ωbx 0

 , (3)

and the inertial matrix Jt is given as follows:

Jt =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 .
The relationship between the angular rates and the attitude
angles of the aircraft is given by the following equation:ωbxωby

ωbz

 =
−ψ̇ sin θ cosφ + φ̇ cos θ

ψ̇ sinφ + θ̇
ψ̇ cosφ cos θ + φ̇ sin θ

 ,
The total force Ft contains the thrust Fr produced by

the four rotors, the aerodynamic force Fw generated by the
fixed wings, and the force Fd including uncertainties and
external disturbances. The total force Ft can be obtained by
transforming the forces expressed in the body frame above as
follows:

Ft = Rbe (Fr + Fw + Fd ) . (4)
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The aerodynamic force Fw has the following expression:

Fw =

FwxFwy
Fwz

 =
 ρ ‖v‖22 SCD/2ρ ‖v‖22 SCS/2
ρ ‖v‖22 SCL/2

 , (5)

where ρ indicates the reference atmospheric density, ‖v‖2 =√
v2x + v2y + v2z the reference speed of the aircraft, and S the

reference aircraft pneumatic area, respectively. CD, CS , and
CL denote, respectively, the drag force aerodynamic coeffi-
cient, the side force aerodynamic coefficient, and the lift force
aerodynamic coefficient. The total torque Tt mainly consists
of the aerodynamic torque Ta produced by the four vanes,
the torque Tr generated by the four rotors, and the torque
Td=

[
Tdx Tdy Tdz

]T caused by the uncertainties and external
disturbances. It can be written as follows:

Tt = Ta + Tr + Td . (6)

The aerodynamic moment Ta can be modeled as follows:

Ta =

 TaxTay
Taz

 =
 ρ ‖v‖22 cSCR/2ρ ‖v‖22 cSCM/2
ρ ‖v‖22 cSCN /2

 , (7)

where CR, CM , and CN denote the aerodynamic coefficients.
The torque Tr produced by the four rotors is shown as follows:

Tr =

 TrxTry
Trz

 =
 0

Fr1l1 + Fr2l2 − Fr3l3 − Fr4l4
−Fr1l1 + Fr2l2 + Fr3l3 − Fr4l4

 , (8)

where Fri (i = 1, 2, 3, 4) are the thrusts produced by
the four rotors, li (i = 1, 2, 3, 4) are the distances from the
mass center of the tail-sitter aircraft to the center of the
i−th (i = 1, 2, 3, 4) rotor. The four rotors are symmetrically
mounted to avoid the roll torque caused by the rotors, because
these moments act in the opposite direction relative to the
rotation rate of the rotor and thereby the roll torque from
each rotor can be counteracted. As shown in Fig. 5, it can be
obtained the position of the each rotor and the direction of the
torque. Furthermore, it can be seen that the force generated by
the rotor is parallel to the axis Bx in the body fixed frame as

FIGURE 5. Direction of the forces and torques during the mode transition.

the mounted angle error neglected. According to the relation-
ship between the wings and the fuselage, the expression of
the vector r can be obtained, which determines the distance
and direction of each rotor. Because the vector Fr and r are
obtained, the direction of the torque can be given which is
corresponding to the axis in Tr . The force generated by the
four rotors are given by

Fri = kriω2
i , i = 1, 2, 3, 4, (9)

where kri (i = 1, 2, 3, 4) define the force coefficients of
rotors, and ωi (i = 1, 2, 3, 4) are the angular rates of the
rotors. The aerodynamic model structure adopted in the cur-
rent paper is generated based on the aerodynamic database
that established by the computational fluid dynamics tech-
nique at different angles of attack, sideslip angles and vane
deflections conditions. The aerodynamic model is shown as
follows:

CD = CD0 + CDαα + CDδa δa+CDδv δv,

CS = CS0β,

CL = CL0 + CLαα + CLδa δa+CLδv δv,

CM = CM0 + CMαα + CMδa δa+CMδv δv,

CR = CR0 + CRββ + CRδa δa+CRδv δv,

CN = CN0 + CNββ + CNδv δv,

where α, β, δa, and δv are angle of attack, sideslip angle,
deflection angle of Vanes 1, 2, and Vanes 3, 4, respectively.

Unit quaternion is adopted to describe the attitude of the
aircraft in order to avoid the drawback of using Euler angle
which may result in the singularity problem. Simulation
results are described by Euler angles to analysis the robust
stability and robust tracking properties of the closed-loop
systems. Quaternions have the following expressions for the
given Euler angles:

q0 = cos (φ/2) cos (θ/2) cos (ψ/2)

+ sin (φ/2) sin (θ/2) sin (ψ/2) ,

q1 = sin (φ/2) cos (θ/2) cos (ψ/2)

+ cos (φ/2) sin (θ/2) sin (ψ/2) ,

q2 = cos (φ/2) sin (θ/2) cos (ψ/2)

+ sin (φ/2) cos (θ/2) sin (ψ/2) ,

q3 = cos (φ/2) cos (θ/2) sin (ψ/2)

+ sin (φ/2) sin (θ/2) cos (ψ/2) ,

and Euler angles can be obtained by the known quaternions
as shown follows:

φ = arctan
(
2 (q0q1 + q2q3) /(q20 − q

2
1 − q

2
2 + q

2
3)
)
,

θ = arcsin (2 (q0q2 − q3q1)) ,

ψ = arctan
(
2 (q0q3 + q2q1) /(q20 − q

2
1 − q

2
2 + q

2
3)
)
,

then according to the given desired Euler angles, the quater-
nion form can be obtained. Let[

q0 q1 q2 q3
]
=
[
q0 q

]
,
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then the expressions can be given (see, for example, [27])

q̇ = ((S (q)+ q0I3)) ωb/2,

q̇0 = −qTωb/2, (10)

where In represents an n × n identity matrix. In the current
paper, the definition of the angle of attack and the sideslip
angle are shown as follows:

α = θ − arctan (vz/vx) ,

β = arcsin
(
vby/vb

)
,

where vb =
√
v2bx + v

2
by + v

2
bz represents the velocity of

the aircraft relative to the body frame.The tail-sitter UAV
involves a large pitch maneuver during the mode transition,
which may result in the stall constraint. The angle of attack
is an important factor to observe the motion state of the
aircraft. When the flight velocity is in a low speed state,
the angle of attack may suffer from the measurement noise
and therefore it is difficult to determine the aerodynamic
forces and torques. Therefore, the angle of attack is defined
as α = θ − arctan(vzr/vxr ) in the current manuscript, where
vzr and vxr represent the horizontal and longitudinal velocity
references in the body fixed frame. In this case, the angle
of attack is equal to the pitch angle θ minus the reference
trajectory angle i.e., arctan(vzr/vxr ) to avoid the drastically
change during the transition mode.
Remark 1: From (5) and (7)-(9), it can be seen that there

exist couplings and nonlinearities in the model of the tail-
aircraft. The couplings and nonlinearities existed in themodel
address a challenging controller design problem for the tail-
sitter aircraft.

III. NONLINEAR ROBUST CONTROLLER DESIGN
The proposed nonlinear robust control laws in the current
paper consist of three parts and are designed in three steps in
this section. First, a nonlinear controller based on the dynamic
inversion technique is designed and is applied to counteract
the known nonlinear terms to derive a linear model of the tail-
sitter aircraft. Second, the eigenvalue assignment technique
is applied to design a state feedback linear controller to
achieve stability and desired tracking performance specifi-
cations without considering equivalent disturbances. Then,
a linear robust compensator is designed for the closed-loop
nominal linear system in the presence of equivalent dis-
turbances to restrain the effects of uncertainties. Therefore,
the proposed controller is composite of a nonlinear controller
based on the dynamic inversion technique, a linear feedback
controller, and a robust compensator.

A. NOMINAL CONTROLLER DESIGN
Nominal controllers design consist two parts: nominal atti-
tude controller design and nominal position controller design.

A nonlinear controller based on the dynamic inversion
technique is designed without taking into account the equiv-
alent disturbances in this part. From (2) and (3), the system

can be rewritten as follows:

ω̇b = J−1t
[
(Ta + Tr )− ω

×

b Jtωb
]
. (11)

For the desired attitude angles φd , θd , and ψd , let ωdb =
Rbe
[
φ̇d θ̇d ψ̇d

]T be the given desired commands of the
angular rates in the body fixed frame, where Rbe represent
the rotation matrix between the angular rates relative to the
body fixed frame and the derivative of the attitude angles in
the inertial frame. The tracking errors of the angular rates can
be defined as follows:

eωb = ωb − ω
d
b , (12)

For the desired attitude angle φd , θd , and ψd , one can obtain
the desired attitude in the quaternion expression as:

q0 = cos (φ/2) cos (θ/2) cos (ψ/2)

+ sin (φ/2) sin (θ/2) sin (ψ/2) ,

q1 = sin (φ/2) cos (θ/2) cos (ψ/2)

+ cos (φ/2) sin (θ/2) sin (ψ/2) ,

q2 = cos (φ/2) sin (θ/2) cos (ψ/2)

+ sin (φ/2) cos (θ/2) sin (ψ/2) ,

q3 = cos (φ/2) cos (θ/2) sin (ψ/2)

+ sin (φ/2) sin (θ/2) cos (ψ/2) ,

The desired unit quaternion isQd =
[
q0d qd

]
which satisfies

qTd qd + q
2
0d = 1.

As shown in [27], the desired unit quaternion is related to
the desired angular velocity ωb by the following dynamic
equation:

q̇d = ((S (qd )+ q0d I3)) ωdb/2,

q̇0d = −qTωdb/2.

The angular velocity ωb can be computed from (10) as
follows:

ωb = 2(qoq̇− q̇q0)− 2S(q)q̇.

From [36], one can obtain the quaternion tracking error as

eq = q0dq− q0qd + S(q)qd ,

eq0 = q0q0d + qT qd .

Then one can rewrite (10) as follows:

ėq = ((S (q)+ q0I3)) eωb/2,

ėq0 = −
1
2
eqT eωb/2, (13)

Let M (q) = S (q) + q0I3, then from (12), where and are
tracking errors. Let , then from Eq. (12), we can rewrite the
model (13) as follows:

ėq = M (q) eωb/2,

ėq0 = −eTq eωb/2. (14)

A similar result about the formula derivation process can be
seen in [27]. The position errors and the Euler angle errors
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are defined as ei(i = 1, 2, 3, 4, 5, 6), where e1, e2, and e3
represent the three attitude errors based on the quaternions,
and e4, e5, and e6 are relative to the position errors. From [35],
one can obtain the attitude tracking errors e1, e2, and e3 based
on the quaternions as follows: ea1ea2

ea3

 = 1×
−qr0q1 + qr1q0 + qr2q3 − qr3q2−qr0q2 − q

r
1q3 + q

r
2q0 + q

r
3q1

−qr0q3 + q
r
1q2 − q

r
2q1 + q

r
3q0

 ,
1 = 2sgn(

3∑
i=0

qri qi), (15)

where qri represent the reference quaternions signals which
can be obtained by the transformation of the reference Euler
angles. The position tracking errors e4, e5, and e6 have the
following expression: ep4ep5

ep6

 =
 pr1(t)− p1(t)pr2(t)− p2(t)
pr3(t)− p3(t)

 ,
where pri (t) are the reference longitude position, lateral posi-
tion, and vertical position signals. The Euler angle are not
used to describe the attitude to avoid the singularity problem.
For the nominal attitude controller design, one can define
the error vector ea(t) = [eai(t)]3×1. Then, ea is the attitude
tracking error vector and eωb is rotational velocity tracking
error. One can obtain that

ėa = eωb ,

ėωb =
(
J−1t

[
(Ta + Tr )− ω

×

b Jtωb
]
− ω̇db

)
.

By defining the control input as Tr , the following expression
can be obtained based on the dynamic inversion technique as:

Tr = ω
×

b Jtωb + Jt ω̇
d
b − Ta + Jtua.

where ua = [uai]3×1 is virtual control input that can be
adopted for the linear systems generated by the dynamic
inversion technique. Therefore, one can obtain the following
expression:

ëa = [uai]3×1. (16)

Remark 2: It should be noted that the designed nonlinear
control law based on the dynamic inversion technique is
mainly utilized to counteract the nonlinear terms and cou-
pling parts of the aircraft model to generate a linear error
model. In this section, the uncertainties and external distur-
bances have not been considered. Quaternion tracking errors
rather than Euler angle tracking errors are applied to avoid
the singularity that may be caused by Euler angle in the mode
transition process.

As for the nominal position controller design, one can
define the error vector ep(t) =

[
epi(t)

]
3×1, which represent

the position tracking error vector. Then it can be obtained
following expression:

ėp = ev,

ėv = (Rbe (Fr + Fw + Fd ) /m)− gEz − v̇db , (17)

where ev is the velocity tracking error and vdb represent the
reference velocity in the body fixed frame. Let the total thrust
Fr produced by the four rotors be the control input, then
the following control law is selected based on the dynamic
inversion technique without taking equivalent disturbances
into account:

Fr = m(up − Fw)/Rbe + gEz + v̇db ,

where up =
[
upi
]
3×1 is virtual control input that can be

adopted for the linear error systems resulting by the dynamic
inversion technique:

ëp =
[
upi
]
3×1. (18)

Actually, the dynamic system can be regarded as the nominal
system utilized for designing state feedback controllers. The
other unknown parts of the system dynamics are treated as a
part of equivalent disturbances. Then the linear error system
state-space form can be written as follows:

Ėi = AiEi + Biui + di,

yi = CiEi, i = 1, 2, 3, 4, 5, 6, (19)

where Ei =
[
ei ėi

]T ,
Ai =

[
0 1
0 0

]
, Bi =

[
0
1

]
, Ci =

[
1
0

]T
, (20)

and ei describes the position errors and the Euler angle errors
of the aircraft as: e1e2

e3

 =
 ėa1ėa2
ėa3

 ,
 e4e5
e6

 =
 ėp1ėp2
ėp3

 .
di are equivalent disturbances including the parametric uncer-
tainties, unmodeled uncertainties, external disturbances, and
nonlinear dynamics that cannot be counteracted accurately by
the dynamic inversion technique.

The designed linear control laws which can be expressed
as ui =

[
uai upi

]T
(i = 1, 2, 3, 4, 5, 6) include the state

feedback controllers ui,con (i = 1, 2, 3, 4, 5, 6) and the robust
compensators ui,com (i = 1, 2, 3, 4, 5, 6), then the virtual con-
trol laws have the following expressions:

ui = ui,con + ui,com, i = 1, 2, 3, 4, 5, 6.

Remark 3: It should be noted that the state feedback con-
trollers ui,con (i = 1, 2, 3, 4, 5, 6) are designed to guarantee
the stability of the nominal plant, and the robust tracking
properties of the closed-loop system when uncertainties and
external disturbances are considered are guaranteed by the
introduced robust compensators ui,com (i = 1, 2, 3, 4, 5, 6).

The block diagram depicted in Fig. 6 shows the overall
control system of the tail-sitter aircraft. It can be seen that
the overall control system consists of two channels including
attitude channel and position channel. The attitude channel is
designed to guarantee the rotational dynamics for desired atti-
tude tracking, and translational dynamics for position track-
ing is governed by the designed position channel controllers.
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FIGURE 6. The block diagram of the robust control system.

B. STATE FEEDBACK CONTROLLER DESIGN
For linear time-invariant system, various techniques, such
as linear quadratic regulation [28], eigenstructure assignment
method [29]–[32], are available for designing controllers.
In this paper, the widely utilized approach eigenstructure
assignment method is adopted to design state feedback con-
trollers for the linear error systems in (19). The eigenstructure
assignment method is conducted by redisposing the poles
of the closed-loop system with the designed controller in
the s-plane. According to the given stability and perfor-
mance specifications, the desired poles of the closed-loop
system which determine the responses of a plant can be pre-
determined, and then according to the poles of the original
system and the desired poles, the state feedback controllers
can be designed. From (20), the linear error systems have the
following forms without taking equivalent disturbances into
consideration:

Ėi = AiEi + Biui,con, i = 1, 2, 3, 4, 5, 6.

The state feedback controllers based on the eigenvalue assign-
ment scheme are designed with the linear error system (19),
and the designed controllers based on the state feedback
approach are shown as follows:

ui,con = −Ki,conEi, i = 1, 2, 3, 4, 5, 6,

where Ki,con (i = 1, 2, 3, 4, 5, 6) are the feedback control
gains determined by the eigenstructure assignment method.
It can be obtained that the closed-loop systems of the plant
have the desired stability and performance specifications by
substituting the proposed feedback controllers into (19):

Ėi =
(
Ai − BiKi,con

)
Ei + Biui,con, i = 1, 2, 3, 4, 5, 6.

(21)

From (19) and (21), one can obtain that:

Ėi = Ai,conEi + Biui,com + di,

yi = CiEi, i = 1, 2, 3, 4, 5, 6, (22)

where Ai,con = Ai−BiKi,con (i = 1, 2, 3, 4, 5, 6). Since feed-
back control gains Ki,con (i = 1, 2, 3, 4, 5, 6) are properly
selected to guarantee the matrices Ai,con (i = 1, 2, 3, 4, 5, 6)

have eigenvalues with negative real parts, then the matrices
Ai,con (i = 1, 2, 3, 4, 5, 6) are Hurwitz [34], [37]–[40].

C. ROBUST COMPENSATOR DESIGN
The state feedback control laws are designed without con-
sidering the effects of equivalent disturbances, therefore
robust compensators are introduced to guarantee that the
closed-loop system can achieve desired robust stability and
robust tracking properties in the presence of equivalent dis-
turbances di (i = 1, 2, 3, 4, 5, 6).

Gi(s) = Ci(sI2 − Ai,con)
−1Bi, i = 1, 2, 3, 4, 5, 6,

then the outputs of the system can be shown as bellow:

yi(s) = Ci(sIi − Ai,con)−1(Ei(0)+ di(s))

+Gi(s)vi,com(s), i = 1, 2, 3, 4, 5, 6. (23)

From (22) and (23), the equivalent disturbances can be coun-
teracted if the control inputs are chosen as follows:

vi,com(s) = −Gi−1(s)Ci(sIi − Ai,con)
−1di(s),

i = 1, 2, 3, 4, 5, 6. (24)

The robust the compensators are introduced to attenuate
the influence of equivalent disturbances and the following
expressions deduced from (24) are given to describe the
introduced robust compensators:

vi,com(s) = −Fi (s)Gi−1(s)Ci(sIi − Ai,con)
−1di(s),

i = 1, 2, 3, 4, 5, 6, (25)

where Fi (s) (i = 1, 2, 3, 4, 5, 6) are called robust filters. The
robust filters Fi (s) (i = 1, 2, 3, 4, 5, 6) have the following
expressions:

Fi (s) =
f 2i

(s+ fi)2
, i = 1, 2, 3, 4, 5, 6,

where fi (i = 1, 2, 3, 4, 5, 6) are positive constants and deter-
mined by the specified prescribed conditions and perfor-
mance specifications.
Remark 4: If fi (i = 1, 2, 3, 4, 5, 6) are sufficiently large

enough, then the gains of the robust filters Fi (s) (i = 1, 2, 3,
4, 5, 6) are approximately equal to one and the designed
compensators are asymptotic with the ideal condition,
which means more effects of equivalent disturbances
di (i = 1, 2, 3, 4, 5, 6) can be counteracted.
Since the values of the equivalent disturbances cannot

be measured directly, the robust compensator can be recon-
structed by the following expressions:

di(s) = (sIi − Ai,con)Ei(s)− Bivi,com(s),

i = 1, 2, 3, 4, 5, 6. (26)

From (25) and (26), the robust compensating output control
laws can be expressed by the outputs yi (i = 1, 2, 3, 4, 5, 6)
as shown follows:

vi,com(s) = −Fi(s)(1− Fi(s))−1Gi−1(s)yi(s),

i = 1, 2, 3, 4, 5, 6. (27)
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IV. ROBUST STABILITY AND TRACKING
PROPERTY ANALYSIS
From (21) and (27), the linear error system can be rewritten
as follows:

Ėi = Ai,conEi + (1− Fi) di,

yi = CiEi, i = 1, 2, 3, 4, 5, 6. (28)

Remark 5: Since the uncertain parameters fluctuate
between lower and upper bounds, therefore, assume the
parameter uncertainty terms bounded are reasonable. This is
also reasonable to be applied to external disturbances.

According to [33], the equivalent disturbances are assumed
to have finite norm bounds as follows:

‖di (t)‖∞ ≤ ξEi‖Ei (t)‖∞ + ξi, i = 1, 2, 3, 4, 5, 6,

where ξi and ξEi (i = 1, 2, 3, 4, 5, 6) are positive constants.
Remark 6: It should be noted that with the boundedness

of the equivalent disturbances including parametric uncer-
tainties, unmodeled uncertainties, and external disturbances,
the robust stability and robust tracking properties of the
closed-loop control system can be guaranteed. The proof has
been given in the following parts.
Theorem 1: For any given positive constant ε and given

bounded initial state tracking errors Ei(0)(i = 1, 2, 3, 4, 5, 6),
positive constants fu and tu can be found such that for any
fi ≥ fu(i = 1, 2, 3, 4, 5, 6), the state errors Ei(t)(i =
1, 2, 3, 4, 5, 6) are bounded and the output tracking errors
|yi(t)| ≤ ε,∀t ≥ Tu(i = 1, 2, 3, 4, 5, 6) are guaranteed.
Proof: From (28), it can be obtained that

E (t) = eAi,contE (0)+

t∫
0

eAi,con(t−τ) (1− Fi) didτ ,

i = 1, 2, 3, 4, 5, 6. (29)

From (29), it can be deduced that

‖E (t)‖∞ =

∥∥∥∥∥∥etAE (0)+
t∫

0

et−τA F1didτ

∥∥∥∥∥∥
∞

≤ ‖eA‖∞‖E (0)‖∞

+
∥∥etA∥∥∞

t∫
0

‖eτ‖∞‖F1‖∞‖di‖∞dτ

≤ ‖eA‖∞‖E (0)‖∞

+
∥∥etA∥∥∞

t∫
0

‖eτ‖∞‖F1‖∞ξEi‖Ei (t)‖∞dτ

+‖eA‖∞

t∫
0

‖eτ‖∞‖F1‖∞ξidτ ,

eA = eAi,cont ,

eτ = eAi,con−τ ,

F1 = 1− Fi,

i = 1, 2, 3, 4, 5, 6. (30)

Let

−λm = maxRe (λi) , i = 1, 2, (31)

where λi < 0 (i = 1, 2) indicate the eigenvalues of
Ai,con (i = 1, 2, 3, 4, 5, 6) and−λm is the maximum real part
of the eigenvalues of Ai,con (i = 1, 2, 3, 4, 5, 6). From (31),
one can obtain the following inequality:∥∥∥eAi,cont∥∥∥ ≤ ∥∥e−λmt∥∥ = e−λmt , i = 1, 2, 3, 4, 5, 6. (32)

From (32), one can rewrite (30) as follows:

‖E (t)‖∞ ≤ e−λmt‖E (0)‖∞

+ e−λmt
t∫

0

e−λmτ‖F1‖∞Eξdτ ,

Eξ = ξEi‖Ei (t)‖∞ + ξi,

i = 1, 2, 3, 4, 5, 6. (33)

The following expression can be deduced from (33):

eλmt‖E (t)‖∞ ≤ ‖E (0)‖∞ +

t∫
0

e−λmτ‖F1‖∞Eξdτ ,

i = 1, 2, 3, 4, 5, 6, (34)

then since ξi (i = 1, 2, 3, 4, 5, 6) are positive constants,
therefore, from (34), the following expression can be
obtained:

eλmt‖E (t)‖∞ ≤ ‖E (0)‖∞

+

t∫
0

e−λmτ ξEi‖F1‖∞‖Ei (t)‖∞dτ

+

∫ t

0
e−λmτ‖F1‖∞ξidτ ,

i = 1, 2, 3, 4, 5, 6. (35)

Since ‖1− Fi‖∞ (i = 1, 2, 3, 4, 5, 6) are bounded, and
ξi (i = 1, 2, 3, 4, 5, 6) are positive constants, then the fol-
lowing equation can be obtained:∫ t

0
e−λmτ‖F1‖∞ξidτ = ‖F1‖∞ξi

∫ t

0
e−λmτdτ ,

‖F1‖∞ξi

∫ t

0
e−λmτdτ =

ξi

λm
‖F1‖∞

(
1− e−λmt

)
.

As λm > 0, then ξi‖(1− Fi)‖∞
(
1− e−λmt

)/
λm are bounded

and let

m =
ξi

λm
‖(1− Fi)‖∞

(
1− e−λmt

)
, i = 1, 2, 3, 4, 5, 6.

(36)

From (35) and (36), the following expression can be achieved:

eλmt‖E (t)‖∞ ≤ ‖E (0)‖∞ + m

+

t∫
0

e−λmτ ξEi‖F1‖∞‖Ei (t)‖∞dτ , (37)

65916 VOLUME 6, 2018



Z. Li et al.: Nonlinear Robust Flight Mode Transition Control for Tail-Sitter Aircraft

Let

C = ‖E (0)‖∞ + m, (38)

then from (38), one can rewrite (37) as follows:

eλmt‖E (t)‖∞ ≤ C

+

∫ t

0
e−λmτ ξEi‖F1‖∞‖Ei (t)‖∞dτ , (39)

According to the Bellman-Gronwall Lemma, the following
conclusion can be deduced from (39):

eλmt‖E (t)‖∞ ≤ Ce

t∫
0
ξEi‖(1−Fi)‖∞dτ

, i = 1, 2, 3, 4, 5, 6,

(40)

then

‖E (t)‖∞ ≤ Ce
(ξEi‖(1−Fi)‖∞−λm)t , i = 1, 2, 3, 4, 5, 6.

(41)

From (25), the following condition can be guaranteed when
fi (i = 1, 2, 3, 4, 5, 6) are chosen large enough.

ξEi‖(1− Fi)‖∞ − λm < 0, i = 1, 2, 3, 4, 5, 6.

(42)

Then it can be obtained conclusion that, for a given bounded
initial tracking error E (0), the tracking error E (t) would be
bounded if fi (i = 1, 2, 3, 4, 5, 6) are selected as fi ≥ fu(i =
1, 2, 3, 4, 5, 6).
Remark 7: It should note that the robust compensator

parameters fi (i = 1, 2, 3, 4, 5, 6) are not needed to be cho-
sen sufficiently large and can be tuned online in practical
applications. The parameters fi (i = 1, 2, 3, 4, 5, 6) can be
set to certain initial values to run in the whole closed-loop
control systems. If the desired tracking performances are not
satisfied, the parameters fi (i = 1, 2, 3, 4, 5, 6) can be reset to
larger values until the desired tracking performances can be
achieved.

V. SIMULATION RESULTS
The values of the nominal plant parameters are given
in Table 1. The parameters of aerodynamic coefficients are
shown in Table 2. Table 3 shows the values of the external
disturbances, where dni (i = 1, 2, 3, 4, 5, 6) indicate high fre-
quency noise signals.

TABLE 1. Nominal parameters of the tail-sitter aircraft.

In this paper, the process of flight mode transitions
from hovering to level flight of the tail-sitter aircraft has

TABLE 2. Parameters of aerodynamic coefficients.

TABLE 3. External disturbances.

FIGURE 7. Singular values in pitch angle channel.

FIGURE 8. Singular values comparison in horizontal velocity channel.

been studied. The mode transitions require that the flight
path angle changes from 90◦ to zero while the roll and yaw
angle maintain zero. The final desired level fight velocity is
set to 25 m/s and height is 30 m. Theoretically, the selected

VOLUME 6, 2018 65917



Z. Li et al.: Nonlinear Robust Flight Mode Transition Control for Tail-Sitter Aircraft

FIGURE 9. Attitude responses by loop-shaping controller and proposed
controller for nominal model.

FIGURE 10. Velocity and position responses by loop-shaping controller
and proposed controller for nominal model.

controller gain vectors Ki,con (i = 1, 2, 3, 4, 5, 6) can guar-
antee the matrices Ai,con (i = 1, 2, 3, 4, 5, 6) are Hur-
witz. In practical design process, the gain vectors
Ki,con (i = 1, 2, 3, 4, 5, 6) are determined by the desired
poles of the nominal closed-loop system selected based on
the desired time domain performances including steady-state
error, overshoot, rising time, and settling time. The desired
poles of the closed-loop system are selected as

λ1 =
[
−0.5+ 4.4j −0.5− 4.4j

]
,

λ2 =
[
−0.25+ 3.2j −0.25− 3.2j

]
,

λ3 =
[
−0.5+ 3.8j −0.5− 3.8j

]
,

λ4 =
[
−0.3+ 2.2j −0.3− 2.2j

]
,

λ5 = [−0.01+ 0.7j −0.01− 0.7j] ,
λ6 =

[
−0.3+ 2.2j −0.3− 2.2j

]
.

FIGURE 11. Attitude responses under uncertainties by proposed
controller.

FIGURE 12. Velocity and position responses under uncertainties by
proposed controller.

Numerical simulation results of loop-shaping controllers
designed based on the linearized model (22), as depicted
in [34], has been shown to compare with the proposed non-
linear robust controller to demonstrate the advantages of the
proposed nonlinear robust controller.

Comparison results of singular values of the closed-loop
transfer functions from disturbances to the outputs in dif-
ferent channels are presented in Fig. 7. The results show
that the singular values in low frequency of the proposed
robust controllers are smaller, which means the proposed
robust controllers have better properties in rejecting the
disturbance effects than the loop-shaping controllers for
the closed-loop system, especially in low frequency. The
disturbances rejection properties of the proposed robust con-
trollers can be improved significantly by increasing the
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FIGURE 13. Position and velocity responses by proposed controller for
nominal model.

FIGURE 14. Position and velocity responses under uncertainties by
proposed controller.

values of the fi (i = 1, 2, 3, 4, 5, 6). In Fig. 8, singular val-
ues of the closed-loop transfer functions from disturbances
to the outputs with different values of fi (i = 1, 2, 3, 4, 5, 6)
have been shown to demonstrate the improvement of dis-
turbances rejection properties by increasing the values of
fi (i = 1, 2, 3, 4, 5, 6).

Simulations of loop-shaping controllers and the proposed
robust controllers have been conducted for the nominal non-
linear model and uncertain nonlinear model, respectively.
Figs. 9-10 depict the attitude, velocity and position tracking
performance responses of the nominal nonlinear model by
designed loop-shaping controllers and the proposed nonlinear
robust controllers. From these figures, it can be obviously
obtained that both controllers can achieve desired tracking

FIGURE 15. Angle of attack, sideslip angle, and flight path angle
responses by proposed controller for nominal model.

FIGURE 16. Angle of attack, sideslip angle, and flight path angle
responses under uncertainties by proposed controller.

performance for the nominal nonlinear model. However,
the simulation results in Figs. The uncertain nonlinear model
cannot achieve desired tracking performance by the designed
loop-shaping controllers when the uncertainty of the parame-
ters are selected to be 20% larger than the nominal one while
the proposed robust controllers can, as shown in Figs. 11-
12. The results obviously demonstrate the advantages of the
proposed controller.

Figs. 13-14 depict the movement of the horizontal posi-
tion, the velocity responses of the nonlinear model in lateral
direction and vertical direction with and without equivalent
disturbances, respectively. It can be seen that, in Fig. 13,
the nominal system of the tail-sitter aircraft is stable by the
proposed robust controller. Fig. 14 shows that the response
of the aircraft fluctuates in a small scope near the nominal

VOLUME 6, 2018 65919



Z. Li et al.: Nonlinear Robust Flight Mode Transition Control for Tail-Sitter Aircraft

FIGURE 17. The control input force response from hover to level by
proposed controller.

FIGURE 18. The control input torque response from hover to level by
proposed controller.

response of the aircraft, which demonstrates the robustness of
the proposed controller. Attack angle, slide angle and flight
path angle responses in the mode transitions of the nominal
nonlinear system are described in Fig. 15. Taking the uncer-
tainties and external disturbances into account, the responses
of the angle of attack, the slide angle, and the flight path
angle are shown in Fig. 16. From these figures, it can be seen
that the proposed robust closed-loop system of the tail-sitter
aircraft can track the prescribed references. One can see the
response of the control input from the proposed controller
from Fig. 17 and Fig. 18, and the amplitude of the con-
trol inputs by the proposed controller is within a reasonable
range.

VI. CONCLUSION
In the paper, the problem of mode transitions from hovering
to level flight of a tail-sitter aircraft with external disturbances
and uncertainties including parametric uncertainties, nonlin-
ear dynamics, and unmodeled uncertainties is dealt by the
proposed nonlinear robust controller. The proposed nonlinear
robust controller consisting of a dynamic inversion controller,
a state feedback controller, and a robust compensator can
guarantee the tail-sitter aircraft can achieve desired robust
stability and robust tracking properties. The proof of the
robust stability and robust tracking properties has been given
in this paper. The comparison simulation results are presented
to show the effectiveness and advantages of proposed con-
troller.The proof of the robust stability and robust tracking
properties has been given in this paper. The comparison
simulation results are presented to show the effectiveness and
advantages of proposed controller.
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