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ABSTRACT Motion estimation is vital in many computer vision applications. Most existing methods
require high quality and large quantity of feature correspondence and may fail for images with few textures.
In this paper, a photometric alignment method is proposed to obtain better motion estimation result. Since
the adopted photometric constraints are usually limited to the required illumination or color consistency
assumption, a new generalized content-preserving warp (GCPW) framework, therefore, is designed to
perform photometric alignment beyond color consistency. Similar to conventional content-preserving warp
(CPW), GCPW is also a mesh-based framework, but it extends CPW by appending a local color trans-
formation model for every mesh quad, which expresses the color transformation from a source image
to a target image within the quad. Motion-related mesh vertexes and color-related mapping parame-
ters are optimized jointly in GCPW to get more robust motion estimation results. Evaluation of tens
of videos reveals that the proposed method achieves more accurate motion estimation results. More
importantly, it is robust to significant color variation. Besides, this paper explores the performance of
GCPW in two popular computer vision applications: image stitching and video stabilization. Experimen-
tal results demonstrate GCPW’s effectiveness in dealing with typical challenging scenes for these two
applications.

INDEX TERMS Motion estimation, photometric constraint, color difference, image stitching, video
stabilization.

I. INTRODUCTION
Motion estimation between two images, is carried out to
find the corresponding pixel in a target image for each pixel
in a source image. It is essential in many computer vision
applications, such as image stitching and video stabiliza-
tion. Generally, motion estimation methods can be classified
into two categories: non-parametric [1]–[5] and parametric
methods [6]–[10].

A typical and the most popular non-parametric motion
estimation method is the optical flow [1], which directly
estimates a 2D offset for each pixel that indicates the motion
vector from a source image to a target image. Conven-
tional optical flow estimation approaches usually assume that
pixel intensities between two images keep constant during
motion, base on which the target of optical flow estimation
is to compute a motion field that minimizes intensity dif-
ferences between two images. A lot of methods [2], [11]

are proposed to achieve this target, but the brightness
constancy assumption actually is a main drawback of these
methods. Brox et al. [3] therefore resorted to high-order con-
stancy (e.g., image gradient) to overcome this problem,
but image gradient is sensitive to noise, and the relevant
L1-norm penalty is not easy to be optimized. Alterna-
tively, in [4] and [12], they decomposed images into car-
toon and texture components and applied texture images
that were less affected by illumination to estimate opti-
cal flow. Mileva et al. [13] achieved an illumination-
robust estimation method by transforming color images into
some photometric-invariant color space. Demetz et al. [14]
directly learned a brightness transfer function from train-
ing data to handle the intensity variation. Above methods
however, are limited and not robust enough to complex
color variation. Recent deep learning based methods con-
sist of purely supervised [5], [15], semi-supervised [16],
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and unsupervised [17], [18] methods. These methods either
fail to cope with images with color variation or require
sufficient labeled data to train neural networks for some
specific scenes, which restrict their application. More impor-
tantly, this non-parametric motion estimation method is
time-consuming.

Under these circumstances, parametric motion model is
a suitable alternative. There are many methods that use a
parametric model to express motions between two images,
in which motion estimation is formulated into efficient
model parameters optimization. According to the applied
model type, parametric methods can be classified as global
parametric methods [6], [19], [20] and local parametric
methods [7]–[10], [21].

In global parametric methods, motions of the entire image
are parameterized by a single model. Image homography is
the most widely used global parametric model that has an
eight degrees of freedom (DoF) [22]. Brown and Lowe [6]
proposed to estimate such a global homography by Direct
Linear Transformation (DLT) using matched feature points
in image overlapping region. Li et al. [9] estimated it with
a similar manner but they utilized point correspondence
as well as line segment correspondence to achieve a more
accurate and more robust result. Most recently, some deep
learning based methods [20], [23], [24] also are proposed to
robustly compute homography parameters by convolutional
neural networks (CNN). However, such a global parametric
model is too coarse to represent motions for complex scenes.
It works well only when image scenes are located on a single
plane or images are captured by a camera that is under pure
rotation.

Local parametric methods use spatially varying models
to represent motions for different image areas. Compared
with global methods, the higher DoF makes them more flex-
ible to handle motions in complex scenes, but it makes the
model estimation more difficult either. Therefore, two typical
kinds of constraints are adopted to guide the model estima-
tion process: geometric constraints [7]–[9] and photometric
constraints [10].

Geometric constraints include point constraints and line
segment constraints. There are many methods that estimate
the local model from matched feature points in image over-
lapping region. Gao et al. [21] proposed a dual homography
model to stitch images with two-plane scenes. More gen-
erally, Zaragoza et al. [8] and Lin et al. [25] developed a
spatially-varying motion model to locally align image con-
tent. Besides, inspired by the technique of mesh-based image
manipulation [26], Liu et al. [7] proposed content-preserving
warp (CPW) for video stabilization, which approximates a
motion field from an original video frame to a stabilized
video frame. Liu et al. [27] introduced efficient MeshFlow.
It estimates motions between adjacent two video frames from
feature point correspondence that are obtained by Kanade-
Lucas-Tomasi (KLT) tracker [28]. These methods have a
common limitation: their performances are highly relied on
the quality and quantity of extracted feature points, which is

difficult to ensure when feature points are distributed with
spatial bias or image scene is lack of texture. Recently, many
researches [9], [29]–[31] therefore resorted to line segment
constraints to breakthrough this limitation. Joo et al. [29]
proposed a line guided moving DLT (L-mDLT) method,
which estimated a spatially-varying homography model with
line segment correspondences. Similarly, Li et al. [9] com-
bined point and line segment constraints into the CPW frame-
work. It achieves a state-of-the-art motion estimation perfor-
mance on low-textured images.

Although the combination of point constraints and line
segment constraints has significantly improved motion esti-
mation quality, line segment constraints are not yet robust
enough. For one thing, when images contain many small
structures or tiny gradients, the extraction of line seg-
ments is difficult for most existing methods (e.g., LSD [32],
EDLine [33], and CannyLine [34]). For another, although line
matching has obtained a lot of attention [35]–[38] in recent
years, nevertheless, robust line matching algorithm is still
a problem that has not yet been completely resolved. Any
mismatched line segment would destroy final motion estima-
tion result. Lin et al. [10] therefore developed mesh-based
photometric alignment (MPA), which introduced photomet-
ric constraints into the CPW framework to estimate motions
between two images better. This idea mainly stems from the
problem of optical flow but is formulated as mesh deforma-
tion, which has a higher efficiency than conventional optical
flow estimation. However, at the same time, MPA inherits the
same drawback as optical flow estimation: the required color
consistency assumption. Actually, this assumption is easily
violated in practice in case of abrupt changes of illumination
sources, existing shadows or influenced by noise in acquisi-
tion process [39].

In this paper, we present a novel model called general-
ized content-preserving warp (GCPW) for motion estimation
between two images. GCPW is a mesh-based motion model.
It considers the inherent color transformation between images
by appending a local color mapping function for every mesh
quad. There are many works [40], [41] that focus on an
approximation of color transformation between two images.
We propose to adopt the simple but effective affine map-
ping function that has been widely used in many tasks for
the purpose of overcoming color variation, such as visual
tracking [40] and image enhancement [41]. We then design
a photometric constraint beyond color consistency, which is
workable even for images with significant color variation.
In order to maintain image content and reduce image distor-
tion, the proposed photometric constraint is combined with
three smoothness terms to form our final energy function.
Finally, mesh vertexes and color affine parameters are opti-
mized jointly to produce a better motion estimation result.
GCPW has higher DoF than CPW to handle color difference,
which makes it more difficult to optimize GCPW. We there-
fore design a three-step optimization method to achieve a
robust estimation for such a high DoF model. Experiments
on both real and synthetic data demonstrate that our proposed
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FIGURE 1. A comparison between GCPW and CPW [7]. (a) The conventional CPW framework only estimates warped mesh vertexes V̂ .
(b) Our GCPW consists of two parts: motion-related mesh vertexes V̂ and color-related mapping function (Ĝ, B̂). These two parts are
optimized jointly in GCPW. (Ĝ, B̂) expresses the color transformation from a source image to a target image (e.g., from p to p′).

method achieves more accurate motion estimation result than
state-of-the-are methods, and it is also robust to significant
color variations.

In the computer vision community, there are many prob-
lems that are relevant to motion estimation between two
images. For the problem of image stitching, multiple images
are stitched into a panorama by combining corresponding
pixels from different images together, which actually is a
process of motion estimation. As for application of video
stabilization, whose main target is to produce a stable video
from a shaky video. Camera path is usually extracted by
motion estimation between every adjacent two video frames
before it is stabilized by some advanced techniques. Motion
estimation plays an important role in this problem. In this
paper, we explore the performance of our motion estimation
method in above two applications. Abundant experimental
results demonstrate that the proposed GCPW is effective in
these two popular application scenarios.

In summary, in this paper, we make the following three
contributions:
• We introduce a newmotionmodel GCPW,which ismore
flexible than the widely used CPW and can cope with
images with color variation.

• We proposed a photometric constraint to perform pho-
tometric alignment beyond color consistency. A three-
step optimization scheme is designed to achieve a robust
estimation for GCPW.

• We apply the proposed GCPW to two popular computer
vision applications. Experimental results demonstrate
its effectiveness when it is used to handle challenging
scenes in these two applications.

The rest of this paper is organized as follows. In Section II
and Section III, the proposed motion estimation method is
presented. Specifically, the general description of GCPW
model is given in Section II-A, the adopted photometric
constraint is described in Section II-B, and the three-step
optimization pipeline is presented in detail in Section III.
We evaluate our motion estimation result on various videos
in Section IV, where Section IV-A compares our method
with other state-of-the-art methods to demonstrate the esti-
mation accuracy, and Section IV-B evaluates the robustness
of GCPW to images with different degrees of color variation.

Section V explores the performance of GCPW on two typical
applications: image stitching and video stabilization. Finally,
conclusion is drawn in Section VI.

II. GENERAL DESCRIPTION OF GCPW
In this section, we describe the main idea of the proposed
GCPW model to estimate motions from a source image Is
to a target image It . We assume that Is and It are roughly
aligned (e.g., two consecutive video frames or two images
that have been roughly aligned by a global homography).
First, a general introduction of proposed GCPW framework
is given. Next, we describe that how to measure photometric
error of two images under the GCPW framework.

A. FRAMEWORK OF GCPW
The proposed GCPW is a mesh-based motion model. Fig. 1
gives a comparison between GCPW and the conventional
CPW [7]. For one thing, they are similar. Because both of
them divide an image into an m × n uniform grid mesh,
and formulate the motion estimation into a problem of mesh
deformation. For another, they are different. CPW only esti-
mates warped mesh vertexes while GCPW optimizes mesh
vertexes and color model parameters simultaneously.

As shown in Fig. 1, instead of using a global model to
express color transformation from Is to It , we express it
locally. Specifically, we assume that pixels within a quad
share the same affine color mapping relation and use a set
of affine models to fit the color mapping relation between
two images. Such a local color model is simple, but it is
flexible enough to approximate a variety of complicated color
variations. Let V = {vi,j}, i = 0, 1, . . . ,m; j = 0, 1, . . . , n
denote mesh vertexes. G = {gi,j}, i = 1, . . . ,m; j = 1, . . . , n
and B = {bi,j}, i = 1, . . . ,m; j = 1, . . . , n represent gain and
bias of the affine color model respectively. For a pixel p in
Is and its matched pixel p′ in It , if p is located in the quad
[vi−1,j−1, vi−1,j, vi,j−1, vi,j], the mapping relation between p
and p′ is formulated as:

It (p′) = Is(p)× gi,j + bi,j, (1)

where Is(p) and It (p′) denote their pixel intensities. GCPW
estimates V and {G,B} jointly to obtain the optimal mesh
vertexes V̂ and the optimal local color model {Ĝ, B̂}. As a
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motion model, the main purpose of GCPW is to estimate V̂
accurately, but {Ĝ, B̂} play an important role in this process,
especially when we resort to photometric constraint to cope
with low-texture images.

B. PHOTOMETRIC ERROR METRIC
Photometric error metric measures pixel intensity difference
between two images. It is a widely used metric in optical flow
estimation, and Lin et al. [10] first introduce it into CPW to
estimate motions by mesh deformation. Their required color
consistency condition however, is not always met in prac-
tice. Therefore, we modify it into a photometric error met-
ric beyond color consistency based on the proposed GCPW
framework.

FIGURE 2. An illustration of photometric error measurement between Is
and It . Uniform points are sampled in the overlapping region. It (p + d (p))
is approximated by Taylor expansion within a small local region. The
object of photometric alignment is to find optimal d (p) that minimize the
difference between It (p + d (p)) and mapped Is(p).

As shown in Fig. 2, we first uniformly sample a set of
points at a fixed interval both horizontally and vertically in
image overlapping region. For each sampled point p in Is,
we want to find a 2D offset d(p) that minimizes the photomet-
ric difference between p in Is and p+ d(p) in It . Considering
the color variation from Is to It , we measure their photometric
error as:

‖G(p)× Is(p)+ B(p)− It (p+ d(p))‖2, (2)

where Is(p) is the intensity of Is at p, and It (p + d(p)) is the
intensity of It at p + d(p). G(p) and B(p) denote the gain
and bias of the quad that p is located in. ‖ · ‖2 denotes the
Euclidean distance. In our practice, for each sampled point
in a typical RGB image, we measure its photometric error
on three image channels separately. Since we assume that Is
and It are roughly aligned, which is similar to [10], we think
that d(p) should be small and set its initial value as (0, 0).
Then by using the first-order Taylor expansion of It (p+d(p)),
the photometric error defined by Eq. 2 can be simplified as:

ep = ‖G(p)× Is(p)+ B(p)− (It (p)+∇It (p) · d(p))‖2, (3)

where ∇It (p) is image gradient of It at p. The error metric
defined by Eq. 3 typically has two advantages: (1) it can
measure photometric error normally even when Is and It have
apparent color difference; (2) it retains a quadratic property
and is easy to be minimized. In next section, we will combine
it with other constraints to estimate parameters of GCPW.

III. GCPW OPTIMIZATION
Compared with CPW, due to higher degree of freedom (DoF),
GCPW is more flexible to estimate motions based on photo-
metric constraint for images with noticeable color difference.
In this section, we propose a three-step optimization pipeline
to achieve a robust estimation for such highDoFmodel. Fig. 3
presents the general optimization process. First, the color
model is initialized according to initial sampled point sets.
Next, we jointly estimate mesh vertexes and affine color
models by minimizing overall photometric errors of sampled
points. Finally, we revise the model by eliminating effects
from moving objects and occlusion regions. Algorithm 1
outlines the main optimization process. More details are
described as follows.

Algorithm 1 Joint Optimization
Input:

Image gaussian pyramid {I (k)s }, {I
(k)
t }, k = 1, 2, 3

Initialized grid meshMm×n{V ,G0,B0}
Output:

Optimal grid mesh M̂m×n{V̂ , Ĝ, B̂}
1: M̂←M
2: for k=1,2,3 do
3: Is← I (k)s , It ← I (k)t
4: For Is, generate uniform grid meshM← M̂
5: Sample points in image overlapping region Skp and

mark them as inlier
6: Coutlier ← INT_MAX
7: while Coutlier > τc do
8: Estimate current model parameters M̃{Ṽ , G̃, B̃}

with inlier sampled points(Eq. 20)
9: Set Coutlier = 0

10: for all p ∈ SkP do
11: if p is inlier then
12: compute residual photometric difference of p

to get ep(Eq. 21)
13: if ep > τ then
14: mark p as an outlier, Coutlier ← Coutlier + 1
15: end if
16: end if
17: end for
18: end while
19: Propagate estimation result from current layer to next

layer M̂← M̃
20: end for

A. INITIALIZATION STEP
As shown in Fig. 3(a), for each sampled point p in Is, q is
the corresponding point in It , which has the same coordinates
with p. We take three factors into consideration to initialize
the color model of GCPW. First, the initial overall photo-
metric difference between p and q should be small, which is
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FIGURE 3. The three-step optimization pipeline of the proposed method. (a) Initialization step. d (p) is fixed at (0, 0). The blue
rectangular marks out the non-overlapping region of Is and It , in which the color model is required to be close to the identity
affine transformation. The green marks out the eight-connected neighborhood of quad Q1. (b) Joint optimization step. The optimal
value of d (p) is searched within a small local region (denoted by red circle in It ). (c) Model revision step. Sample points located in
moving objects (blue area) and occlusion region (purple area) are marked as outliers and are abandoned.

achieved by minimizing the following equation:

E initp (G,B) =
∑
p

‖G(p)× Is(p)+ B(p)− It (q)‖2. (4)

It is equivalent to fixing the 2D offset d(p) of Eq. 2 at (0, 0) for
all sampled points. Secondly, Since for quads that are located
in the image non-overlapping region, there is not any sampled
point. So we directly require color models of these quads to
be close to the identity affine transformation:

E initr (G,B) =
∑

Q∩�=∅
(‖G(Q)−1.0‖2+‖B(Q)−0.0‖2), (5)

where � = Is ∩ It denotes the image overlapping region.
G(Q) and B(Q) represent the color gain and bias of quad Q.
Thirdly, color models of neighboring quads should be similar.
We therefore design a smoothness term to limit color model
smoothness within an eight-connected neighboring region.
We select a set of intensity values in normalized intensity
range at a fixed interval, which can be denoted as X =
{x1, x2, . . . , xk}, and we require these sampled intensities to
remain close after two neighboring color mappings:

E inits (G,B) =
∑
x∈X

∑
Q2∈NQ1

∑
Q1

‖FQ1 (x)− FQ2 (x)‖
2, (6)

where NQ1 denotes eight-connected neighboring quads of
Q1, and FQ1 (·) and FQ2 (·) represent neighboring two affine
color mapping functions. Considering above three aspects,
the color model is initialized as:

{G0,B0} = argmin
G,B

(E initp + E
init
r + E

init
s ), (7)

where G0 and B0 are initialized color gain and bias respec-
tively, and we convey them to next step to estimate V̂ and
{Ĝ, B̂} jointly.

B. JOINT ESTIMATION STEP
Original CPW [7] uses matched feature points in image over-
lapping region to guide motion estimation process, and its
objective function can be expressed as:

Ecpw = Ef + αEs, (8)

where Ef is the feature point term, and Es is the similarity
transformation term. We add three terms on the basis of Eq. 8
to obtain our objective function for three purposes: (1) we add
a photometric term Ep to cope with low-texture images; (2)
a color similarity term Ec is added to ensure the smoothness
of the color model in GCPW; (3) a line collinearity term El
is designed to preserve image content better. In general, our
objective function can be expressed as:

E joint = λ1Ef + λ2Es + λ3Ep + λ4Ec + λ5El, (9)

where λ1, λ2, λ3, λ4, and λ5 are associated balancing weights.
Next, we first introduce a parameterization method that con-
nects our adopted constraints with mesh deformation. After
that, a detailed description about above five terms is given.

As shown in Fig 4, p is a point in Is, and it is enclosed
by a quad whose four vertexes are denoted as v1p, v

2
p, v

3
p,

and v4p. The described parameterization method consists of
two principles: First, p is parameterized by expressing it as a
weighted sum of these four vertexes:

p =
4∑

k=1

wk × vkp, (10)

where wk denote four bilinear interpolation weights. Sec-
ondly, the interpolation weights are unchanged after warping
the quad. Let p̂, v̂1p, v̂

2
p, v̂

3
p and v̂

4
p denote the warped positions

of p, v1p, v
2
p, v

3
p, and v

4
p. The second principle assumes that

p̂ can be expressed by v̂1p, v̂
2
p, v̂

3
p and v̂4p using the same

interpolation weights that we computed in the original quad:

p̂ =
4∑

k=1

wk × v̂kp. (11)
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FIGURE 4. An illustration of a quad in the grid mesh. In (a) and (b), p and
p̂ are expressed by related vertexes using the same interpolation
coefficients. In (c) and (d), the quad is first divided into two
triangulations. After that, one vertex is expressed in the local coordinate
system defined by other two vertexes.

As demonstrated in [42], this assumption is reasonable espe-
cially when size of a quad is small.
• Feature point term Ef . This term provides mesh warp-
ing guidance with matched feature points. Let p be a
feature point in Is, and let p′ be its matching point in
It . We restrict the warped position of p to being close
to p′, which is achieved by minimizing their Euclidean
distance of 2D image coordinates. The feature point term
is formulated as follows:

Ef =
∑

(p,p′)∈Mf

‖

4∑
k=1

wk × vkp − p
′
‖
2, (12)

where Mf represents matched feature point set. Each
feature point in Is is further parameterized by above
parameterization method.

• Similarity transformation term Es. This term mea-
sures the deviation of each warped mesh quad from
a similarity transformation of its shape before warp-
ing. Specifically, as shown in Fig. 4, each mesh quad
[v1, v2, v3, v4] is first divided into two triangulations
1v1v2v3 and 1v1v3v4. Taking 1v1v2v3 as an example,
we express v1 in a local coordinate system defined by v2
and v3 as follows:

v1 = v2+a(v3−v2)+bR90(v3−v2), R90=

[
0 1
−1 0

]
,

(13)

where a and b are computed from original positions of
v1, v2 and v3. We restrict that v1 can be represented
by v2 and v3 using the same local coordinates (a, b)
before and after mesh warping. The overall similarity
transformation term is defined as:

Es =
Ct∑
i=1

‖vi1−(v
i
2+a(v

i
3−v

i
2)+bR90(vi3−v

i
2))‖

2, (14)

where Ct is the total count of triangulations in the grid
mesh. vi1, v

i
2 and v

i
3 are three vertexes of the i-th triangu-

lation.
• Photometric term Ep. For each sampled point p,
we measure its corresponding photometric error accord-
ing to Eq. 3, which is supposed to be minimized in our
joint optimization step. In order to associate it with mesh
deformation, we parameterize the 2D offset d(p) by:

d(p) = p̂− p, p̂ =
4∑

k=1

wk × vkp, (15)

where p̂ is the warped position of p, and wk are bilinear
interpolation coefficients computed by our described
parameterization method. Ep is computed by summing
up ep over all sampled points:

Ep =
∑
p∈Ms

ep, (16)

whereMs denotes the sampled point set.
• Color similarity term Ec. This term is designed to con-
strain the smoothness of color models within an eight-
connected neighboring region, which is also taken into
account in our initialization step, and we just define
it in the same way. Specifically, we sample a set of
discrete intensity values X = {x1, x2, . . . , xk} in normal-
ized intensity range with a fixed interval, and let these
selected intensities remain close after two neighboring
color mappings:

Ec =
∑
x∈X

∑
Q2∈NQ1

∑
Q1

‖FQ1 (x)− FQ2 (x)‖
2. (17)

NQ1 denotes eight-connected neighboring quads of Q1,
and FQ1 (·) and FQ2 (·) represent neighboring two affine
color mapping functions.

• Line collinearity term El . The similarity transforma-
tion term Es preserves image content within a mesh
quad by restrict the deviation of each quad from a sim-
ilarity transformation, but it is usually not sufficient to
reduce the distortions for structures larger than the mesh
quad. Therefore, similar to [31] and [43], we add a
line collinearity term to preserve image content better,
which is achieved by maintaining the straightness of
linear structures in Is as much as possible. Specifically,
we detect line segments in Is using LSD detector [32].
For each line segment l, whose two endpoints are
denoted as ls and le, we sampled key points along it at a
fixed interval. For each sampled key point l, we compute
its coordinate c in the local coordinate system defined by
ls and le:

l = ls + c× (le − ls). (18)

We require each key point can be expressed by the same
local coordinate before and after mesh warping. So the
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FIGURE 5. Two groups of videos used in our method evaluation. They include ordinary as well as low-texture scenes, cover different types of motion
modes (e.g., zooming, rotation, rolling shutter, running and driving), and contain thousands pairs of video frames.

line collinearity term is defined as:

El =
Cl∑
i=1

C ip∑
j=1

‖l i,j − (l is + c× (l ie − l
i
s))‖

2, (19)

where Cl is the count of detected line segments and
C i
p is the number of sampled key points of the i-th

line segment. l i,j, l is and l
i
e are parameterized by mesh

vertexes using the same parameterization method that
described above.
The final joint optimization result is obtained by solving:

{Ṽ , G̃, B̃} = argmin
V ,G,B

E joint (20)

C. REVISION STEP
In previous steps, we uniformly select points in image over-
lapping region and refer them as photometric constraints to
estimate motions from Is to It . It might result in a biased
estimation result if we blindly require two points from dif-
ferent objects to have similar intensity values, which occurs
when sampled points locate on moving objects or image
occlusion regions. Therefore, we further revise above joint
optimization result by eliminating these effects based on the
following observation: Ṽ is affected slightly because applied
strong regularization terms and points located on those bad
regions usually have larger photometric errors after our joint
optimization.

In our practice, for each sampled point p, we compute
its warped position p′ based on Ṽ . Then its corresponding
photometric error value is computed as:

ep = ‖G̃(p)× Is(p)+ B̃(p)− It (p′)‖2, (21)

where G̃(p) and B̃(p) are optimized color gain and bias
obtained from joint optimization step. Sampled point whose
ep is larger than a predefined threshold τ is marked as an
outlier, otherwise, it is marked as an inlier.We discard outliers
and use inlier sampled points to perform joint optimization
step again. After that, photometric errors of current inlier
points are re-computed based on newly optimized model

parameters, and points with ep larger than τ are marked as
outliers and are abandoned. This process performs iteratively
until only a few new outliers can be picked out.

In order to handle large displacement between Is and It ,
a coarse-to-fine scheme that is widely used in many motion
estimation problems is also adopted in this paper. We build a
three layer Gaussian pyramid for both Is and It . The initializa-
tion step (III-A) is only performed on the coarsest layer. Then
for each pyramid layer, we use the same mesh resolution and
perform joint optimization (III-B) and model revision (III-C)
iteratively to obtain optimal estimation result. The result from
current layer serves as initial values to propagate to next
pyramid layer. The result of the finest layer is our final model
estimation result {V̂ , Ĝ, B̂}. We can use V̂ to warp Is to It by
mesh warp technology.

IV. QUANTITATIVE EVALUATION
In this section, we evaluate our proposed GCPW quantita-
tively on various videos with 640 × 360 resolution. On the
one hand, we compared our method with three geometric-
based methods to demonstrate that the proposed GCPW
produces more accurate motion estimation results. On the
other hand, we generated experimental inputs with different
degrees of color variation and performed experiments on
them. A comparison with the state-of-the-art methods shows
that our model can handle images with color difference and
is more robust to different degrees of color variation. During
the quantitative evaluation, we fix the balancing weights in
Eq. 9 as: λ1 = 1.0, λ2 = 0.5, λ3 = 100.0, λ4 = 1.0, and
λ5 = 1.0. The photometric threshold τ is set to 0.05, and the
mesh resolution is fixed at: m = 16, n = 16.

A. EVALUATION OF ESTIMATION ACCURACY
1) EXPERIMENTAL DATA
As shown in Fig. 5, 32 videos are carefully prepared by col-
lecting from publicly available datasets [10], [44]–[46] and
YouTube,1 or by capturing by ourselves. Typically, the col-

1https://www.youtube.com/
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TABLE 1. Average RMSE results on 32 videos. Global: global homography [6]. CPW: content-preserving warp [7]. DFW: dual-feature warp [9].

lected 32 videos can be categorized into two classes: low-
texture videos and ordinary videos. Both of them consist of
videos with different typical motion modes, such as: rotation,
zooming, rolling shutter, running, etc.

2) EVALUATION METRIC
We describe the metric that is used to evaluate experimental
results quantitatively. For a video with k frames, we take each
pair of adjacent video frames (ft , ft+1) as input. ft+1 is warped
to obtain f̂t+1, which is aligned to ft by using the estimated
motion from ft+1 to ft . The accuracy of the estimated motion
is measured based on the alignment error between ft and
f̂t+1, which is computed by calculating the RMSE of one
minus normalized cross correlation (NCC) over a local w×w
window for pixels within the image overlapping region:

RMSE(ft , ft+1)=

√√√√ 1
N

∑
p∈�

(1.0−NCC(ft (p), f̂t+1(p))), (22)

where � denotes overlapping region of ft and f̂t+1, and N
is total pixel number within �. We take the average RMSE
value of all frame pairs as the final measurement of current
video:

Eval =
1

k − 1

k−1∑
t=1

(RMSE(ft , ft+1)). (23)

3) COMPARATIVE RESULTS
We compared our proposed GCPW with three geometric-
based motion estimation methods: global homography [6],
CPW [7], and DFW [9]. The comparative results are pre-
sented in Table 1, from which we can see that the global
homography usually produced the largest alignment error
because such a global motion model is not flexible enough to
express motions between adjacent video frames. The CPW
performed better than the global homography (produced
smaller alignment error) as it is a local motion model and
it uses matched feature points to compensate displacements
between two frames. The DFW resorts to line segments to
estimate motions and it got better performance than the CPW
in some videos (e.g., video 08 and video 29). Nevertheless,

in our experimental results, DFW’s improvement is incon-
spicuous and unstable (e.g., in video 20 and video 22). This
is because the performance of DFW is highly relied on good
results of line segment detection as well as line segment
matching, which can be easily destroyed by any wrong line
segment correspondence. In contrast, our proposed GCPW
produced the smallest alignment error values on most videos.
Fig. 6 further presents eight cumulative distribution his-
tograms, which indicate the accumulated distributions of
alignment errors of eight selected video sequences. We can
observe that in GCPW, more video frames tend to have lower
alignment errors compared with other three methods, which
also can demonstrate that motions estimated by our GCPW
have higher accuracy.

B. EVALUATION OF ROBUSTNESS TO COLOR VARIATION
1) DATA PREPARATION
In this experiment, we still utilized our collected 32 videos as
experimental data. For each pair of video frames (ft , ft+1),
we processed ft+1 by some color transformation to gener-
ate 16 pairs of videos frames, which can be denoted as
{(ft , f 1t+1), (ft , f

2
t+1), . . . , (ft , f

16
t+1)}. These 16 frame pairs are

controlled to explicitly have different degrees of color differ-
ence that pair (ft , f 1t+1) has the smallest color difference and
pair (ft , f 16t+1) has the largest color difference.

In order to avoid the effect of channel correlation, we pro-
cessed ft+1 in the YCbCr color space, and the color model
that we adopted is similar to the one of [47], which can be
presented as:

I ′ = Iγ , (24)

where I is the original frame and I ′ is the processed frame.
(·)γ is the non-linear gamma mapping function. Moreover,
in order to simulate the local color variation, for each frame
pixel, we computed its γ value based on its 2D image coor-
dinates:

γ = β × (1+
a− 1
N

)d/s, (25)

where N = 16 denotes the total number of frame pairs that
we generate from each original frame pair. a = 1, 2, . . . , 16 is
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FIGURE 6. Cumulative distribution histograms of eight selected videos. Compared with other three methods, the results produced by GCPW has larger
proportion of frames that have low alignment errors.

TABLE 2. 16 groups of parameter combinations used to synthesize frame pairs with different degrees of color difference.

current pair index. d denotes x (or y) coordinate of frame pixel
and s is the width (or height) of a video frame. We controlled
the degree of color variation from a = 1 to a = 16 by assign-
ing different β for different a, and the parameter combination
that we used in our experiment is listed in Table 2.

2) EVALUATION MANNER
Assume that (ft , f

a1
t+1) and (ft , f

a2
t+1) are two frame pairs gener-

ated from (ft , ft+1). They have different color variations and
in order to compare their motion estimation results fairly,
we evaluated their results as follows: First, we obtained their
estimated motions Ma1 and Ma2 that aligned f a1t+1 and f a2t+1
to ft respectively; Secondly, ft+1 was warped by Ma1 to get
f̂ a1t+1 and was warped byM

a2 to get f̂ a2t+1 respectively; Finally,
we computed the alignment error between ft and f̂

a1
t+1 as well

as between ft and f̂
a2
t+1 based on Eq. 22 and referred to the

error values as their evaluation metrics.
For a video with k frames, for each degree of color vari-

ation (e.g., a = 1), we averaged alignment errors of k − 1
frame pairs to get the final evaluation metric of this video
under current degree of color variation.

3) COMPARATIVE RESULTS
We compared the proposed GCPW with MPA [10],
LSH+MPA and NRDC+MPA to demonstrate the robustness
of our method. The MPA that is proposed in [10] utilizes
photometric constraints in the traditional CPW framework
to estimate motions between two adjacent video frames, but
it requires images to obey color consistency assumption.

We therefore further tested theMPA cooperated with two pre-
processing operations. For the first operation, we combined
the MPA with the locality sensitive histogram (LSH) [40],
which offers invariant image features, based on which MPA
was adopted to performmotion estimation.We referred to this
method as LSH+MPA. For the second operation, we com-
bined the MPA with NRDC [41], which performs image
color consistency correction to compensate color difference
between two video frames. We referred to this method as
NRDC+MPA. Fig. 7 typically presents 12 groups of compar-
ative results. We can observe that when color difference is
modest, all four methods produced similar estimation results.
However, errors of the MPA, LSH+MPA and NRDC+MPA
became larger as the color difference increased. The growth
of the error curve of NRDC+MPA is usually slower than the
one of MPA and LSH+MPA, but it is still higher a lot than the
one of GCPW when the color variation becomes huger and
more complicated (e.g., a=16). In contrast, as the degree of
color variation varied from the smallest to the largest, errors
of proposedGCPWwere stable andwere usually the smallest,
demonstrating that GCPW is robust to different degrees of
color variation.

C. EFFECT OF THE MESH RESOLUTION
The proposed GCPW actually approximates the 2D offset of
each sampled point by mesh deformation. Parameters m and
n, that are related to mesh resolution, indeed play an impor-
tant part in GCPW method. On the one hand, higher mesh
resolution can achieve more accurate motion approximation,
which leads to lower alignment error. On the other hand,

VOLUME 6, 2018 69843



K. Chen et al.: GCPW: Direct Photometric Alignment Beyond Color Consistency

FIGURE 7. Comparison with MPA [10], LSH+MPA [40], and NRDC+MPA [41] on synthetic frame pairs. 12 typical videos are selected. When the color
difference is small, the performance of all four methods are close. With the color difference gets larger, the average alignment error of other three
methods increase significantly. In contrast, the proposed GCPW stably produces the best alignment quality.

FIGURE 8. Effect of different mesh resolutions on motion estimation accuracy and average running time. 32 videos are separated into 4 groups. The effect
on motion estimation accuracy is presented in the first row, and the effect on average running time is reported in the second row.

higher mesh resolution means larger amount of parameters
that require longer time to be solved. Therefore, we tested
GCPW with different mesh resolutions. Specifically, mesh

resolution was controlled to vary from 4 × 4 to 48 × 48.
The average alignment error and average running time of all
32 videos are reported in Fig. 8. We can observe that the use
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FIGURE 9. An illustration of comparative results for low-texture image stitching. (a) Global homography [6]. (b) APAP [8]. (c) CPW [7]. (d) DFW [9].
(e) Proposed GCPW.

of higherm and n values usually can produce lower alignment
errors, which means higher motion estimation accuracy, but it
always costs longer time. Besides, when the mesh resolution
reaches to 16 × 16, continuing to increase the mesh resolu-
tion can bring only a little improvement in accuracy, but it
enlarges the average time cost significantly. We find that a
mesh resolution of 16×16 achieves a good trade off between
accuracy and efficiency.

V. EVALUATION ON APPLICATIONS
In this section, we validate GCPW in two typical computer
vision applications: image stitching and video stabilization.

A. IMAGE STITCHING
The objective of image stitching is to combine multiple
images into a panorama, which has a wider field of view.
Typically, there are two challenging scenes in the task
of image stitching: low-texture image stitching and large-
parallax image stitching. We demonstrate that our proposed
GCPW can be applied to cope with these two challenging
scenes effectively.

Many methods use matched feature points [8], [25] or line
segments [9], [29], [31] to perform image stitching. But
these methods are highly relied on the quantity and qual-
ity of feature extraction and feature matching, which are
difficult to guarantee for images with low texture. In contrast,

our GCPW resorts to dense photometric constraints, which
stabily offers sufficient guidance to the stitching process.
More importantly, the utilized photometric constraints do
not require images to obey color consistency assumption.
In fact, this assumption can be violated easily in image
stitching practice in case of changes of illumination sources,
diversities of capturing devices or some other impact factors.
Therefore, the proposed GCPW is more robust than
MPA [10]. In order to evaluate the effectiveness of GCPW,
we compared our method with four state-of-the-art methods:
CPW [7], APAP [8], DFW [9], and MPA [10]. Fig. 9 gives
an intuitive comparison with CPW, APAP, and DFW. The
proposed GCPW usually achieves the best alignment qual-
ity. Furthermore, Fig. 10 shows an example that low-texture
images to be stitched have apparent color differences. MPA
suffers from these color variations and fail while the GCPW
stably produce satisfactory result.

For images with large parallax, seamline-driven meth-
ods [43], [48], [49] usually perform better than methods that
work in an alignment manner. Recent SEAGULL [43] com-
bines the CPW-based image local alignment with the optimal
seamline detection, and these two steps are conducted itera-
tively to obtain the state-of-the-art performance on parallax-
tolerant image stitching. In order to prove the effectiveness of
GCPW,we combined the proposed GCPW alignment method
with the semaline-driven iterative procedure to stitch images
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FIGURE 10. An intuitive example for stitching low-texture images with
significant color differences. (a) target image. (b) source image. (c) result
produced by MPA [10]. (d) color consistency correction result of (b).
(e) result produced by MPA [10] based on corrected image pair. (f) result
from GCPW.

FIGURE 11. Comparison with Zhang and Liu’s method [48] for
parallax-tolerant image stitching. Top: results from the proposed GCPW.
Bottom: results from Zhang and Liu’s method.

with large parallax. The difference between our method with
SEAGULL is that we perform image local alignment in the
proposed GCPW framework, while SEAGULL locally align
images in conventional CPW framework. We resort robust
photometric constraints while SEAGULL highly relies on
extracted feature points. Fig. 11 and Fig. 12 present our
comparative results with Zhang and Liu’s method [48] and
SEAGULL [43], from which we can see that our method

FIGURE 12. Comparison with SEAGULL [43] for parallax-tolerant image
stitching. Top: results from the proposed GCPW. Bottom: results from
SEAGULL.

produces comparable stitching results with these two state-of-
the-art methods on ordinary large-parallax scenes. Moreover,
Fig. 13 shows an example that images to be stitched are lack
of texture and have large parallax at the same time. As shown
in Fig. 13, under this circumstance, GCPW cooperated with
seamline-driven strategy produces better result than SEAG-
ULL, which shows the superiority of GCPW.

B. VIDEO STABILIZATION
The technique of video stabilization aims to remove
unwanted camera motion in shaky videos that are usually
captured by some hand-held devices. Many methods [27],
[44], [50] are therefore proposed and they often involve two
steps: camera path estimation and camera path stabilization.
Usually, camera path is represented by the motion between
each pair of adjacent video frames, and it indeed plays an
important role in video stabilization.

When referring to the first challenge, it is just similar to
the one of image stitching. Once the captured scene is lack of
sufficient features, previous methods may fail to obtain accu-
rate motion estimation, which finally leads to unsatisfactory
stabilization results. Fig. 14 gives two example videos that
are less-textured. In order to demonstrate that the proposed
GCPW is effective under such a challenging scene, we apply
GCPW to estimation camera path, followed by a typical

FIGURE 13. An extremely challenging scene for image stitching, in which two challenges occur at the same time. Images to be stitched lack rich texture
and have large parallax either. (a) initial stitching result produced by seamline searching. It suffers obvious misalignment (as yellow arrow indicates).
(b) result produced by SEAGULL [43]. Misalignment artifacts are not effectively eliminated. (c) result produced by proposed method. (d) final stitching
result after image blending.

69846 VOLUME 6, 2018



K. Chen et al.: GCPW: Direct Photometric Alignment Beyond Color Consistency

FIGURE 14. Comparison with three popular video stabilization methods.
The evaluation value reported in the bottom row is produced by recent
video stability assessment method [53]. (a) Results from original shaky
video. (b) Results from Subspace [51]. (c) Results from Virtual Deshaker.
(d) Results from proposed GCPW. (e) Results from GeoStab [52]. Higher
value usually means better video stabilization result.

camera path optimization scheme [50] to produce final
video stabilization result. We also stabilize the same
video using other three popular methods: Subspace [51]

(with implementation in Adobe After Effects), VirtualDub
Deshaker2(with offered software), and GeoStab [52] (with
offered executable file). These methods approximate camera
path by either feature tracking or feature matching. In order to
compare the video stabilization performance quantitatively,
all stabilized results as well as the original video are evaluated
by the intrinsic motion stability assessment [53]. Fig. 14
presents the reciprocal of applied evaluation metric, in which
higher values mean better results. As we can see, other three
compared methods may fail to produce good results, and
sometimes, they may deteriorate video content and therefore
obtain lower scores than the original shaky video. In contrast,
our method outputs more stable results and win the highest
score.

Significant color difference is the second challenge for
camera path estimation. Actually, a shaky video usually
contains many high-frequency motions, such as rolling
shutter or quick rotation. Due to these high-frequency
motions, two consecutive video frames may have apparent

2http://www.guthspot.se/video/deshaker.htm

FIGURE 15. An illustration of motion estimation results on sampled video frame pairs. 1-st row: current frame. 2-nd row: next frame. 3-rd row:
a visualization of feature matching result. 4-th row: alignment results from MPA [10]. 5-th row: alignment result from proposed GCPW.
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color differences. It is challenging for recent MPA [10],
since the required color consistency assumption has been
violated. It should be noted that incorrect motion estimations
finally result in unsatisfactory stabilization results with severe
distortion or skew artifacts [9]. Fig. 15 gives an example
that a shaky video is captured using an ordinary cellphone.
On the one hand, the captured video lacks rich textures;
On the other hand, some adjacent frames have noticeable
color differences. We display the feature detection results of
these frame pairs in Fig. 15. In the presented results, we can
observe that the extracted features are usually so inadequate
to estimate motions accurately, either for methods based on
feature tracking [27] or for methods based on feature match-
ing [44]. Besides, color variations between consecutive two
video frames make MPA also fail to produce correct motion
estimation results. In contrast, the proposed GCPW stably
obtain satisfactory consequences, free from affections of low
texture or color variation.

VI. CONCLUSION
Motion estimation plays an important part in many computer
vision applications. Conventional feature-basedmethods usu-
ally fail for low-texture scenes. In this paper, we resort to
photometric constraints to produce better motion estimation
results. In order to make the applied photometric constraints
robust to color variation, we propose the GCPW frame-
work, in which the color transformation between images
are modeled, and motion-related mesh vertexes and color-
related mapping parameters are optimized jointly to obtain
more accurate motion estimation results. We evaluate the
proposed method on tens of videos. These videos contain
ordinary as well as low-texture scenes, cover several typ-
ical motion modes, and include thousands of frame pairs.
The results reveal that our method can estimate motion
more accurately, both for ordinary videos and low-texture
videos. Besides, a synthetic experiment is designed to esti-
mate motions between images with different degrees of color
variation. Experimental results prove that our method is
robust to color difference. Finally, since motion estimation
is the basis of many computer vision applications, we fur-
ther explore the possibility of GCPW being applied into
two areas: image stitching and video stabilization. Some
intuitive results demonstrate that our method is effective to
handle some challenging scenes within above two application
fields.
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