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ABSTRACT Nowadays, human behaviors are known to spread through social contact. Word-of-mouth
(WOM) communication has also become a prevalent strategy for product sales on the internet and most
consumers attribute a higher importance to WOM communication. Mathematical modeling is an important
approach to studyWOM communication in online social networks. In order to investigate the characteristics
of WOM communication and heterogeneity of online social networks, a SIALS (susceptible-infected-
acknowledged-loath) model is presented on scale-free networks. The spreading dynamics of WOM are
analyzed in detail by using the theory of mean field. The basic reproductive number R0 is calculated by
the next generation matrix method and two equilibriums are derived. The theoretical analysis indicates
that the basic reproductive number depends mainly on the transmission of WOM and the topology of
the underlying networks. Furthermore, the global stability of the WOM-disappearance equilibrium is
proved. The permanence of WOM information spreading and the global attractivity of the WOM-prevailing
equilibrium are also studied in detail. Finally, numerical simulations confirm the analytical results.

INDEX TERMS SIALS model, heterogeneity, scale-free networks, stability, permanence.

I. INTRODUCTION
Social networks are social structures that consist of a set
of social actors and social interactions between them [1].
The word-of-mouth (WOM) effect is a central instrument in
viral marketing campaigns, while the transmission and adop-
tion of opinions is crucial in understanding various political
and social issues [2]. Promotion like WOM communication
is a common form of product sales in social media. It is
well known that more and more merchants tend to advertise
through the form of WOM communication, which means
that people may purchase based on others’ comments. For
example, one may determine to purchase when his or her
friend makes good evaluations of the goods he bought.
In fact, at least 80% of people who plan to make a pur-
chase will look through online consumers’ reviews before
making their purchase decision. As compared to the third-
party advertising, such as TV and newspaper, WOM com-
munication has attracted a lot of people to choose shopping
for its convenience and caught lots of merchants for its
lower cost and much faster propagation, which means that
the WOM marketing outperforms the traditional advertising
marketing [3]–[12]. Especially shopping on the internet or
the consumption of mobile payment, the spreading of WOM

is a prevailing phenomenon. It has been found that satis-
fied and dissatisfied consumers tend to respectively spread
acknowledged and loath comments on the items that they
have purchased and used [8]–[14]. In fact, consumers tend to
buy things that are given acknowledged comments, namely,
acknowledged comments are more cognitive and more con-
sidered [15]. By contrast, an item given loath comments
may also be bought according to the individual demand.
Without a doubt, a friend’s opinion or advice often can be
a decisive argument for a purchase. So, network models
considering social contacts and the individual heterogeneity
about new products diffusion are relatively reasonable. In all
words, WOM communication with the acknowledged and
loath comments are more likely to influence the consumers’
opinion and affect the purchase decision of potential con-
sumers [4], [5]. With the increasing popularity of online
social networks such as Facebook, Myspace, and Twitter,
WOM communication has become the mainstream way of
product sales [16], [17]. In short, WOM as a kind of informa-
tion affects people’s life.

We all know that WOM communication is trustwor-
thy and effective in the market sales, which is demon-
strated by both industry surveys and academic research.
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WOM communication is believed as an even more effective
‘‘advertisement’’ [18]. So, it is of great significance to study
the spreading of a WOM model.

Wilke and Knower first found that WOM communica-
tion had a significant impact on users’ purchase decisions
and this conclusion had been confirmed by many succeed-
ing studies [19]. A number of dynamic models capturing
the WOM spreading processes had been suggested pre-
viously. Besides studying three aspects of communication
motivation, WOM communication effect and influencing
factors, scholars also explored the online WOM commu-
nication model [19]. For example, Brown and others used
social network analysis method to propose a new word-of-
mouth model [20]. And it once just focused on the factor
that consumers spread positive WOM in online consumer-
opinion platforms. Cheung and Lee [7] identified a number
of key motives of consumers’ electronic WOM intention
and developed an associated model based on the social psy-
chology literature. Once a study examined how the WOM
hosted by third-party websites (external WOM) and third-
party free sampling influenced the feedback mechanism
between internal WOM and retail sales [21]. Additionally,
a number of dynamic models capturing the WOM spread-
ing processes have been discussed [22]–[32]. Based on the
network communication model, the individual information is
exchanged [33].

Very recently, focusing on the modeling and analysis of
theWOMmarketing, the author consideredmultiple products
instead of a single product, and established a new model
in [11]. However, the model did not consider the hetero-
geneity of the nodes and ignored the power-law degree dis-
tribution p (k) ∼ k−γ (2 < γ ≤ 3) on scale-free networks.
In addition, the basic reproductive number was not obtained.
Apparently, some relevant models were based on homoge-
neous network [23] or just researched in the small world
network [24] rather than heterogeneous network. Neverthe-
less, previous studies have provided us with a large number
of important properties of transmission process of WOM
communication on social networks. It is well known that
an important characteristic of social networks is their scale-
free property [25]. And a large number of studies have also
shown that the model on scale-free networks can truly reflect
much more systems [34]. What’s more, previous work hasn’t
proved the global attractivity of equilibrium and the per-
manence of spreading [25]. So, to further understand the
spreading dynamics of the WOM, we propose the WOM
model SIALS on scale-free networks considering the people’s
interest in evaluation of purchasing. The mean field method
is the most concise method and the most widely used in epi-
demic disease the analysis [33], which is also applied to the
paper.

The rest of this paper is organized as follows. In Section 2,
we present a SIALS model on scale-free networks.
In Section 3, the basic reproduction number and two equi-
libriums are obtained at first. Then, we analyze the globally
asymptotic stability of WOM-disappearance equilibrium,

FIGURE 1. The transmission sketch of the SIALS model.

the global attractivity of WOM-prevailing equilibrium and
the permanence of WOM information spreading in detail.
In Section 4, we present the simulation results of the proposed
model. Finally, we conclude the paper in Section 5.

II. SYSTEM MODEL
Considering the population as a complex social network, each
individual is abstracted as node and the edges are the direct
connections between individuals along which the WOMmay
spread in population. In the dynamic transmission process of
WOM communication, each node has four states: susceptible
(S), which means that an individual hasn’t bought any good
recently but may purchase one; infected (I ), which means
that an individual has recently purchased one but hasn’t made
any comment on it yet; acknowledged (A), which means that
an individual has recently purchased one and has made an
acknowledged comment on it; loath (L), which means that
an individual has recently purchased one and has made a
loath comment on it. The transmission sketch is described
in Figure 1.

During the spreading of WOM communication, a sus-
ceptible individual is connected to an acknowledged indi-
vidual or a loath individual, then he will be infected with
a probability of ρA or ρL , respectively, and becomes an
infected individual. Considering the probability ε of people’s
interest in evaluation of purchasing, so when one expresses
the feeling for the recently purchased goods, an infected
individual becomes an acknowledged individual or a loath
individual with probability of εαA or εαL , respectively.
In general, an infected individual or an acknowledged indi-
vidual may purchase another thing according to demand-
ing or the desire of shopping and becomes a susceptible
individual at the average rate γI or γA, γI ≤ γA. In order
to make the total number of nodes remain time invari-
ant, we assume that the entrance rate and leaving rate are
both equal to δ. And all entrants occur into the susceptible
class.

To account for the non-uniformity of each node, the pro-
portion of above four nodes with k which represents the
number of connections between one node and other nodes,
are defined as Sk (t), Ik (t), Ak (t), Lk (t) at time t . Accord-
ing to the above model and the mean field theory, the
dynamic mean-field reaction rate equations can be written
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as

dSk (t)
dt
= δ + γAAk (t)+ γI Ik (t)− δSk (t)

−kρA2A (t) Sk (t)− kρL2L (t) Sk (t)
dIk (t)
dt
= kρA2A (t) Sk (t)+ kρL2L(t)Sk (t)−γI Ik (t)

−εαAIk (t)− εαLIk (t)− δIk (t)
dAk (t)
dt
= εαAIk (t)− γAAk (t)− δAk (t)

dLk (t)
dt
= εαLIk (t)− δLk (t)

(1)

where 2A (t) denotes the probability of a contact pointing to
an acknowledged individual and satisfies

2A(t) =
1
〈k〉

∑
k

kP(k)Ak (t) (2)

and 2L (t) denotes the probability of a contact pointing to a
loath individual and satisfies

2L(t) =
1
〈k〉

∑
k

kP(k)Lk (t) (3)

Here, 〈k〉 denotes the mean degree values, i.e., 〈k〉 =∑
k kP (k), and P (k) describes the connectivity distribution.

Let A (t) =
∑
k
P (k)Ak (t), which denotes the density of

the acknowledged individuals, and L (t) =
∑
k
P (k)Lk (t),

which denotes the density of the loath individuals in thewhole
network. For simplicity, given ρ (t) = ρA2A(t) + ρL2L(t).
Hence, the system (1) can be equivalent to the following
model:

dSk (t)
dt
= δ + γAAk (t)+ γI Ik (t)− (kρ (t)+ δ) Sk (t)

dIk (t)
dt
= kρ (t) Sk (t)− (γI + ε (αA + αL)+ δ) Ik (t)

dAk (t)
dt
= εαAIk (t)− (γA + δ)Ak (t)

dLk (t)
dt
= εαLIk (t)− δLk (t)

(4)

From a practical perspective, the initial conditions for the
system (4) satisfy:

0 ≤ Sk (0), Ik (0),Ak (0),Lk (0) ≤ 1,

Sk (t)+ Ik (t)+ Ak (t)+ Lk (t) = 1, ρ(0) > 0. (5)

III. STABILITY ANALYSIS OF MODEL
In this section, the dynamic propagation process of SIALS
model is analyzed.
Theorem 1: Define the basic reproduction number

R0 =
< k2 >
< k >

ρAεαAδ + ρLεαL (δ + γA)

δ (δ + γA) (δ + γI + εαA + εαL)
.

There always exists a WOM-disappearance equilibrium
E0 (1, 0, 0, 0) for the system (4). When R0 > 1,
the system (4) has a unique WOM-prevailing equilibrium
E+

(
S∗k , I

∗
k ,A
∗
k ,L
∗
k

)
.

Proof: Since the initial conditions for the system (4)
satisfies Sk (t) + Ik (t) + Ak (t) + Lk (t) = 1, we have

Sk (t) = 1 − Ik (t) − Ak (t) − Lk (t). The system (4) can be
equivalent to the following model:

dIk (t)
dt
= kρ (t) (1− Ik (t)− Ak (t)− Lk (t))

− (δ + γI + εαA + εαL) Ik (t)
dAk (t)
dt
= εαAIk (t)− (δ + γA)Ak (t)

dLk (t)
dt
= εαLIk (t)− δLk (t)

(6)

According to the next generation matrix method [35],
the system (6) can be written as following:

dx
dt
= f (x)− v (x),

where

x = (Ik ,Ak ,Lk)T ,

f (x) =

 kρ (t) (1− Ik − Ak − Lk)
0
0

,
v (x) =

 (δ + γI + εαA + εαL) Ik(δ + γA)Ak − εαAIk
δLk − εαLIk

.
The Jacobian matrices of f (x) and v (x) at the E0 (0, 0, 0)

are as following:

F = Df (E0) =

 0 F12 F13
0 0 0
0 0 0

,
V = Dv (E0) =

V11 0 0
V21 V22 0
V31 0 V33

,
where

F12 =
ρA

〈k〉


P (1) 2P (2) · · · nP (n)
2P (1) 22P (2) · · · 2nP (n)
...

...
. . .

...

nP (1) 2nP (2) · · · n2P (n)

,

F13 =
ρL

〈k〉


P (1) 2P (2) · · · nP (n)
2P (1) 22P (2) · · · 2nP (n)
...

...
. . .

...

nP (1) 2nP (2) · · · n2P (n)

,
and

V11 = (δ + γI + εαA + εαL) I ,V21 = −εαAI ,

V22 = (δ + γA) I ,V31
= −εαLI ,V33 = δI ,

where I represents the identity matrix. Then the basic repro-
duction number is denoted by following:

R0 = ρ
(
FV−1

)
=
< k2 >
< k >

ρAεαAδ + ρLεαL (δ + γA)

δ(δ+γA) (δ+γI + εαA + εαL)
,

where
〈
k2
〉
=
∑

k k
2P (k).
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Next, we can easily find that E0 (1, 0, 0, 0) is always an
equilibrium of the system (4). In order to obtain the equilib-
rium E+

(
S∗k , I

∗
k ,A
∗
k ,L
∗
k

)
, we let the right side of the system

(4) to be equal to zero. Here are the equations as follows:
δ + γAAk (t)+ γI Ik (t)− (kρ (t)+ δ) Sk (t) = 0
kρ (t) Sk (t)− (γI + ε (αA + αL)+ δ) Ik (t) = 0
εαAIk (t)− (γA + δ)Ak (t) = 0
εαLIk (t)− δLk (t) = 0

From the above equations, we can calculate

Ak (t) =
εαA

γA + δ
Ik (t)

Lk (t) =
εαL

δ
Ik (t)

Sk (t) =
γI + ε (αA + αL)+ δ

kρ (t)
Ik (t)

(7)

Then, according to the normalization condition S∗k (t) +
I∗k (t)+ A

∗
k (t)+ L

∗
k (t) = 1, we can obtain

I∗k (t) =
kρ (t) δ (δ + γA)

Bk
S∗k (t) =

δ (δ + γA) (δ + γI + εαA + εαL)

Bk
A∗k (t) =

kρ (t) δεαA
Bk

L∗k (t) =
kρ (t) εαL (δ + γA)

Bk

(8)

where

Bk = kρ (t) [δεαA + εαL (δ + γA)]

+ δ (δ + γA) (δ + γI + εαA + εαL) .

Because of ρ (t) =
∑
k
kP (k) (ρAAk (t)+ ρLLk (t))/〈k〉,

and from the system (8), we easily know that 0 < S∗k < 1,
0 < I∗k < 1, 0 < A∗k < 1, 0 < L∗k < 1. Therefore, we can
find when ρ (t) = 0, Sk (t) = 1, Ik (t) = 0, Ak (t) = 0,
Lk (t) = 0 is the WOM-disappearance equilibrium, and
the WOM-prevailing equilibrium E+

(
S∗k , I

∗
k ,A
∗
k ,L
∗
k

)
is well

defined. Hence, when R0 > 1, a unique positive equilibrium
E+

(
S∗k , I

∗
k ,A
∗
k ,L
∗
k

)
exists. This completes the proof.

Theorem 2: When R0 < 1, the WOM-disappearance
equilibrium E0 is global asymptotically stable. If R0 >

1, the system (4) is permanent, i.e., there exists a η >

0, such that lim inf
t→∞

{Ik (t),Ak (t),Lk (t)}nk=1 ≥ η, where
(Ik (t),Ak (t),Lk (t)) is any solution of the system (4) and
Ak (0) > 0 or Lk (0) > 0.

Proof: For simplicity, it is denoted that Pi = iP (i)
/
〈k〉

and n = kmax in this paper. The Jacobian matrix of the
positive equilibrium of the system (6), a 3n× 3n matrix, can
be written as follows:

G =

U11 · · · U1n
...

. . .
...

Un1 · · · Unn

,

where

U11 =

− (δ + γI + εαA + εαL) ρAP1 ρLP1
εαA − (δ + γA) 0
εαL 0 −δ

,
U1n =

 0 ρAPn ρLPn
0 0 0
0 0 0

,
Un1 =

 0 nρAPn nρLPn
0 0 0
0 0 0

,
Unn=


−(δ + γI + εαA + εαL) nρAPn nρLPn

εαA − (δ + γA) 0
εαL 0 −δ

.
By mathematical introduction method, the characteristic
polynomial of the WOM-disappearance equilibrium E0 can
be calculated as following form:

(λ+ δ)n−1 (λ+ δ + γA)
n−1 (λ+ δ + γI + εαA + εαL)

n−1

×

(
λ3 + sλ2 + pλ+ q

)
= 0,

where s = γI + γA + εαA + εαL + 3δ, and

p = δ(2δ+γI + εαA + εαL)+(δ+γA)(δ + γI + εαA+εαL)

− (εαAρA + εαLρL)

n∑
i=1

iPi,

q = δ (δ + γA) (δ + γI + εαA + εαL)

− [δεαAρA + εαLρL (δ + γA)]
n∑
i=1

iPi.

It is easy to find that s > 0. Note that R0 < 1 is equivalent to
q > 0, and it also implies

δ (δ + γA) (δ + γI + εαA + εαL)

> [δεαAρA + εαLρL (δ + γA)]
n∑
i=1

iPi,

that is,

(δ + γA) (δ + γI + εαA + εαL)

>
[
εαAρA + εαLρL

(
1+

γA

δ

)] n∑
i=1

iPi,

which apparently means p > 0. Therefore, the real eigen-
values of U are all negative if R0 < 1, otherwise, if and
only if R0 > 1, there is a unique positive eigenvalue λ of
U . According to the Perron-Frobenius theorem, this suggests
that the maximal real part of all eigenvalues of λ is positive
only if R0 > 1. So, we obtained the results of this theorem
through a theorem of Lajmanovich and Yorke [36], which
completes the proof.
Theorem 3: Suppose that (Ik (t),Ak (t),Lk (t)) is a solution

of the system (6), satisfying equation (5) with Ak (0) >

0 or Lk (0) > 0. If R0 > 1, then lim
t→∞

(Ik (t),Ak (t),Lk (t)) =

65566 VOLUME 6, 2018
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(
I∗k ,A

∗
k ,L
∗
k

)
, where

(
I∗k ,A

∗
k ,L
∗
k

)
is the positive equilibrium of

the system (6) for k = 1, 2, · · · , n.
Proof: Given that k is suitable for any integer in

{1, 2, · · · , n} as follows. There exists a positive constant 0 <
ξ < 1

/
3 and a large enough constant T > 0 such that

Ak (t) ≥ ξ and Lk (t) ≥ ξ for t > T , according to Theorem 2.
So, ρ(t) > ξ (ρA + ρL) for t > T . Replacing the first
equation of the system (6) with these shows

dIk (t)
dt
≤ k (ρA (t)+ ρL (t)) (1− Ik (t))

− (δ + γI + εαA + εαL) Ik (t)

for t > T .
By the standard comparison theorem of differential equa-

tions in the theory, for any given positive constant

0 < ξ1 <
δ + γI + εαA + εαL

2 [k (ρA (t)+ ρL (t))+ (δ + γI + εαA + εαL)]
,

there exists a t1 > T , such that Ik (t) ≤ X (1)
k − ξ1 for t > t1,

where

X (1)
k =

k (ρA (t)+ ρL (t))
k(ρA(t)+ ρL(t))+ (δ + γI + εαA + εαL)

+2ξ1<1.

On the basic of the second equation of the system (6), it shows
that

dAk (t)
dt
≤ εαA (1− Ak (t))− (γA + δ)Ak (t)

for t > t1.
Therefore, as follows any given constant

0 < ξ2 < min
{
1
/
2, ξ1, (δ + γA) [2 (δ + γA + εαA)]−1

}
,

there exists a t2 > t1, such that Ak (t) ≤ Y (1)
k − ξ2 for t > t2,

where

Y (1)
k =

εαA

δ + γA + εαA
+ 2ξ2 < 1.

Similarly, the third equation of the system (6) gives that

dLk (t)
dt
≤ εαL (1− Lk (t))− δLk (t)

for t > t2.
Therefore, as follows any given constant

0 < ξ3 < min
{
1
/
3, ξ2, δ [2 (δ + εαL)]−1

}
,

there exists a t3 > t2, such that Lk (t) ≤ Z (1)
k − ξ3 for t > t3,

where

Z (1)
k =

εαL

δ + εαL
+ 2ξ3 < 1.

On the other hand, replacing Ak (t) ≥ ξ , Lk (t) ≥ ξ and
ρ(t) > ξ (ρA + ρL) into the first equation of the system (6),
we calculate
dIk (t)
dt
≥ kξ (ρA + ρL) (1− Ik (t)− Ak (t)− Lk (t))

− (δ + γI + εαA + εαL) Ik (t)

= kξ (ρA + ρL) (1− Ak (t)− Lk (t))

− [kξ (ρA + ρL)+ δ + γI + εαA + εαL] Ik (t)

≥ kξ (ρA + ρL)
(
1− Y (1)

k − Z
(1)
k

)
− [kξ (ρA + ρL)+ δ + γI + εαA + εαL] Ik (t)

for t > T .
Therefore, as follows any given constant

0 < ξ4 < min

×

1
4
, ξ3,

kξ (ρA + ρL)
(
1− Y (1)

k − Z
(1)
k

)
2 [kξ (ρA + ρL)+ (δ + γI + εαA + εαL)]

 ,
there exists a t4 > t3, such that Ik (t) ≥ x(1)k + ξ4 for t > t4,
where

x(1)k =
kξ (ρA + ρL)

(
1− Y (1)

k − Z
(1)
k

)
kξ (ρA + ρL)+ (δ + γI + εαA + εαL)

− 2ξ4 > 0.

It follows that,

dAk (t)
dt
≥ εαAx

(1)
k − (δ + γA)Ak (t)

for t > t4.
Therefore, as follows any given constant

0 < ξ5 < min

{
1
5
, ξ4,

εαAx
(1)
k

2 (δ + γA)

}
,

there exists a t5 > t4, such that Ak (t) ≥ y(1)k + ξ5 for t > t5,
where

y(1)k =
εαAx

(1)
k

δ + γA
− 2ξ5 > 0.

Similarly,

dLk (t)
dt
≥ εαLx

(1)
k − δIk (t)

for t > t5.
Therefore, as follows any given constant

0 < ξ6 < min

{
1
6
, ξ5,

εαLx
(1)
k

2δ

}
,

there exists a t6 > t5, such that Lk (t) ≥ z(1)k + ξ6 for t > t6,
where

z(1)k =
εαLx

(1)
k

δ
− 2ξ6 > 0.

Since ξ is a small constant, it holds that 0 < x(1)k < X (1)
k <

1, 0 < y(1)k < Y (1)
k < 1 and 0 < z(1)k < Z (1)

k < 1. Let

q(j) =
n∑
i=1

Pi
(
ρAy

(j)
i + ρLz

(j)
i

)
,

Q(j)
=

n∑
i=1

Pi
(
ρAY

(j)
i + ρLZ

(j)
i

)
j=1, 2 , . . .
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From the above discussion, it is clear that

0 < q(1) ≤ ρ(t) ≤ Q(1) < ρA + ρL

and t > t6.
Again, by the system (6), one has

dIk (t)
dt
≤ kQ(1)

(
1− Ik (t)− y

(1)
k − z

(1)
k

)
− (δ + γI + εαA + εαL) Ik (t)

= kQ(1)
(
1− y(1)k − z

(1)
k

)
−

(
kQ(1) + δ + γI + εαA + εαL

)
Ik (t)

for t > t6.
Hence, for any given constant 0 < ξ7 < min

{
1
/
7, ξ6

}
,

there exists a t7 > t6, such that

Ik (t) ≤ X (2)
k min

×

X (1)
k − ξ1,

kQ(1)
(
1− y(1)k − z

(1)
k

)
kQ(1) + δ + γI + εαA + εαL

+ ξ7


for t > t7.
Thus,

dAk (t)
dt
≤ εαAX

(2)
k − (δ + γA)Ak (t)

for t > t7.
So, for any given constant 0 < ξ8 < min

{
1
/
8, ξ7

}
, there

exists a t8 > t7, such that

Ak (t) ≤ Y
(2)
k min

{
Y (1)
k − ξ2, εαAX

(2)
k

/
(δ + γA)+ ξ8

}
for t > t8.
As a result, one gets that

dLk (t)
dt
≤ εαLX

(2)
k − δLk (t)

for t > t8.
So, for any given constant 0 < ξ9 < min

{
1
/
9, ξ8

}
, there

exists a t9 > t8, such that

Lk (t) ≤ Z
(2)
k min

{
Z (1)
k − ξ3, εαLX

(2)
k

/
δ + ξ9

}
for t > t9.
Turning back to the system (6), one gets

dIk (t)
dt
≥ kq(1)

(
1− Ik (t)− Y

(2)
k − Z

(2)
k

)
− (δ + γI + εαA + εαL) Ik (t)

for t > t9.
So, for any given constant

0<ξ10<min

1/10, ξ9, kq(1)
(
1− Y (2)

k − Z
(2)
k

)
2
(
kq(1) + δ + γI+εαA+εαL

)
,

there exists a t10 > t9, and Ik (t) ≥ x
(2)
k + ξ10, t>t10, where

x(2)k =max

x(1)k +ξ4,
kq(1)

(
1− Y (2)

k − Z
(2)
k

)
kq(1)+δ+γI + εαA + εαL

− 2ξ10

.

Thus,

dAk (t)
dt
≥ εαAx

(2)
k − (δ + γA)Ak (t)

for t > t10.
So, for any given constant

0 < ξ11 < min

{
1
/
11, ξ10,

εαAx
(2)
k

2 (δ + γA)

}
,

there exists a t11 > t10, and Ak (t) ≥ y
(2)
k + ξ11, t>t11, where

y(2)k = max

{
y(1)k + ξ5,

εαAx
(2)
k

δ + γA
− 2ξ11

}
.

Similarly,

dLk (t)
dt
≤ εαLx

(2)
k − δLk (t)

for t > t11.
So, for any given constant

0 < ξ12 < min

{
1
/
12, ξ11,

εαLx
(2)
k

2δ

}
,

there exists a t12 > t11, and Lk (t) ≥ z
(2)
k + ξ12, t>t12, where

z(2)k = max

{
z(1)k + ξ6,

εαLx
(2)
k

δ
− 2ξ12

}
.

What’s more, we can carry out step r(r = 3, 4, · · · ) of the
calculation and obtain six sequences:

{
X (r)
k

}
,
{
Y (r)
k

}
,
{
Z (r)
k

}
,{

x(r)k

}
,
{
y(r)k
}
and

{
z(r)k
}
. Because the first three sequences

are monotone increasing and the last three sequences are
strictly monotone decreasing, there exists a large positive
integer M such that for r ≥ M :

X (r)
k =

kQ(r−1)
(
1− y(r−1)k − z(r−1)k

)
kQ(r−1) + δ + γI + εαA + εαL

+ ξ6r−5

Y (r)
k =

εαAX
(r)
k

δ + γA
+ ξ6r−4

Z (r)
k =

εαLX
(r)
k

δ
+ ξ6r−3

x(r)k =
kq(r−1)

(
1− Y (r)

k − Z
(r)
k

)
kq(r−1) + δ + γI + εαA + εαL

− 2ξ6r−2

y(r)k =
εαAx

(r)
k

δ + γA
− 2ξ6r−1

z(r)k =
εαLx

(r)
k

δ
− 2ξ6r

(9)

It is obvious that
x(r)k ≤ Ik (t) ≤ X

(r)
k

y(r)k ≤ Ak (t) ≤ Y
(r)
k

z(r)k ≤ Lk (t) ≤ Z
(r)
k ,

t > t6r (10)

65568 VOLUME 6, 2018



W. Liu et al.: Spreading Dynamics of a WOM Model on Scale-Free Networks

FIGURE 2. The time series and orbits of four states with R0 = 0.9480 < 1
and initial values S

(
0
)

= 0.7, I
(
0
)

= 0.1, A
(
0
)

= 0.1, L
(
0
)

= 0.1.

FIGURE 3. The time series and orbits of four states with R0 = 6.1433 > 1
and initial values S

(
0
)

= 0.7, I
(
0
)

= 0.1, A
(
0
)

= 0.1, L
(
0
)

= 0.1.

Because of the sequential limits of the system (9), let
lim
t→∞

�
(r)
k = �k , where �k ∈ {Xk ,Yk ,Zk , xk , yk , zk ,Qk , qk}

and �(r)
k ∈

{
X (r)
k ,Y (r)

k ,Z (r)
k , x(r)k , y

(r)
k , z

(r)
k ,Q

(r)
k , q

(r)
k

}
. Since

0 < ξr < 1
/
r , one has ξr → 0 as r → ∞. Regarding,

we can calculate the equation of the system (9) and get

Xk =
kQ (1− yk − zk)

kQ+ δ + γI + εαA + εαL
, Yk =

εαAXk
δ + γA

,

Zk =
εαLXk
δ

,

xk =
kq (1− Yk − Zk)

kq+ δ + γI + εαA + εαL
, yk =

εαAxk
δ + γA

,

zk =
εαLxk
δ

,

(11)

where

q =
n∑
i=1

Pi (ρAyi + ρLzi),Q =
n∑
i=1

Pi (ρAYi + ρLZi).

FIGURE 4. The time series and orbits of the acknowledged or the loath
individuals with R0 < 1 and initial values
A

(
0
)

= 0.1, L
(
0
)

= 0.1, k = 50, 100, 200, 500. (a) Acknowledged
individuals A(t). (b) Loath individuals L(t).

What’s more,

Xk =
k2Qδ (δ + γA)

Gk

×

[
δ (δ + γA) (kq+ δ + γI + εαA + εαL)
−q (δεαA + δεαL + γAεαL)

]
,

xk =
k2qδ (δ + γA)

Gk

×

[
δ (δ + γA) (kQ+ δ + γI + εαA + εαL)
−Q (δεαA + δεαL + γAεαL)

]
,

(12)

where
Gk = δ2 (δ + γA)2 (kq+ δ + γI + εαA + εαL)

× (kQ+ δ + γI + εαA + εαL)

− k2qQ [δεαA + εαL (δ + γA)]2 .

Replacing Q and q with the above equation respectively,
we get
1 = [ρAεαAδ + ρLεαL (δ + γA)]

×

n∑
i=1

Pi
i2

Gi
δ (δ + γA) (kq+ δ + γI + εαA + εαL)
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FIGURE 5. The time series and orbits of the acknowledged or the loath
individuals with R0 > 1 and initial values
A

(
0
)

= 0.1, L
(
0
)

= 0.1, k = 50, 100, 200, 500. (a) Acknowledged
individuals A(t). (b) Loath individuals L(t).

− [ρAεαAδ + ρLεαL (δ + γA)]

×

n∑
i=1

Pi
i2

Gi
q (δεαA + δεαL + γAεαL),

1 = [ρAεαAδ + ρLεαL (δ + γA)]

×

n∑
i=1

Pi
i2

Gi
δ (δ + γA) (kQ+ δ + γI + εαA + εαL)

− [ρAεαAδ + ρLεαL (δ + γA)]

×

n∑
i=1

Pi
i2

Gi
Q (δεαA + δεαL + γAεαL).

Simplifying above equations, we obtain

(q−Q)
n∑
i=1

Pi
Gi
i2 [iδ (δ+γA)−(δεαA+δεαL + γAεαL)]≡0.

This pushes out that Q = q. So,∑n

i=1
Pi [ρA (Yi − yi)+ ρL (Zi − zi)] = 0,

FIGURE 6. Prevalence A100(t), L100(t) versus t corresponding to different
ε with R0 < 1 and initial values A100

(
0
)

= 0.1, L100
(
0
)

= 0.1.
(a) Acknowledged individuals A(t). (b) Loath individuals L(t).

which is equivalent to Yi = yi and Zi = zi for 1 ≤ i ≤ n.
According to the equations of the system (10) and (11), it
follows that

lim
t→∞

Ik (t) = Xk = xk , lim
t→∞

Ak (t) = Yk = yk ,

lim
t→∞

Lk (t) = Zk = zk .

Finally, by substituting Q = q into the equation of the
system (12), according to the equation of the system (11),
we found that Xk = I∗k , Yk = A∗k and Zk = L∗k . The proof is
completed, we can know that there always exists the WOM-
prevailing equilibrium when R0 > 1.

IV. NUMERICAL SIMULATIONS
This section gives the analytical results by numerical sim-
ulations. The system of SIALS is formulated on scale-free
networks with P (k) = ωk−3,where the parameterω satisfies
n∑

k=1
ωk−3 = 1, n = 1000. And we show the analysis of the

basic reproductive number R0.
In Figure 2, assume that the parameters are chosen as

δ = 0.2, ρA = 0.8, ρL = 0.1, αA = 0.2, αL = 0.2,
γA = 0.2, γI = 0.2, ε = 0.2, thus the basic reproductive
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FIGURE 7. Prevalence A100(t), L100(t) versus t corresponding to different
ε with R0 > 1 and initial values A100

(
0
)

= 0.1, L100
(
0
)

= 0.1.
(a) Acknowledged individuals A(t). (b) Loath individuals L(t).

number R0 = 0.9480 < 1. We can see that there is almost
no transmission of WOM when R0 < 1, which means that
WOM communication will eventually disappear. It also sug-
gests that theWOM-disappearance equilibrium E0 is globally
asymptotically stable when R0 < 1.
In Figure 3, assume that the parameters are chosen as δ =

0.2, ρA = 0.8, ρL = 0.5, αA = 0.5, αL = 0.5, γA = 0.2,
γI = 0.2, ε = 0.6, thus the basic reproductive number R0 =
6.1433 > 1. The Figure 3 shows that WOM communication
is permanent on scale-free networks when R0 > 1.
In Figure 4(a) and (b), we choose δ = 0.2, ρA = 0.8,

ρL = 0.1, αA = 0.2, αL = 0.2, γA = 0.2, γI = 0.2, ε =
0.2, and thus R0 = 0.9480 < 1. The Figure 4 describe the
time series of the acknowledged individuals A(t) and loath
individuals L(t) with different degree. Apparently, we can see
that when R0 < 1, A(t) and L(t) both grow to zero, i.e., WOM
communication will ultimately disappear.
In Figure 5(a) and (b), we choose δ = 0.2, ρA = 0.8,

ρL = 0.5, αA = 0.5, αL = 0.5, γA = 0.2, γI = 0.2, ε =
0.6, and thus R0 = 6.1433 > 1. The Figure 5 describe the
time series of the acknowledged individuals A(t) and loath

individuals L(t) with different degree. Apparently, we can see
that when R0 > 1, A(t) and L(t) grow to a positive constant
respectively, i.e.,WOMcommunication is permanent.What’s
more, we also found that the level of the WOM-prevailing
increases with the increasing of degree number k .
In Figure 6(a) and (b), we choose δ = 0.3, ρA = 0.6,

ρL = 0.1, αA = 0.4, αL = 0.2, γA = 0.3, γI = 0.2,
and thus R0 < 1. The Figure 6 describe the time series of
the acknowledged individuals A(t) and loath individuals L(t)
with different probability ε of people’s interest in evaluation
of purchasing. Apparently, we can see that when R0 < 1,
a smaller ε can accelerate the disappearance of WOM com-
munication.
In Figure 7(a) and (b), we choose δ = 0.2, ρA = 0.8,

ρL = 0.5, αA = 0.5, αL = 0.5, γA = 0.2, γI = 0.2,
and thus R0 > 1. The Figure 7 describe the time series of
the acknowledged individuals A(t) and loath individuals L(t)
with different probability ε. Apparently, we can see that when
R0 > 1, A(t) and L(t) both grow to a positive constant with
the increasing of parameter ε. It can be seen that the larger ε
can lead to the large value of WOM communication level.

V. CONCLUSION
In this paper, considering the comment mechanism and
heterogeneity of online social networks, we have proposed
a new SIALS model to illustrate the spreading of WOM
communication processes with both acknowledged and loath
comments on the social networks. Through establishing
SIALS model, we analyzed the spreading dynamics of WOM
communication in detail. We determined that the spreading
dynamics of the model depend on the basic reproductive
number R0. And we obtain the conclusion that if R0 < 1,
the WOM-disappearance equilibrium E0 is globally asymp-
totical stability, i.e., WOM communication will disappear
regardless of the initial situation of the infected individu-
als. If R0 > 1, WOM communication is permanent and
globally stable, which means that the acknowledged and
loath comments will exist and make WOM communication
be a universal phenomenon. Furthermore, we investigate
the impact of the comment parameter ε, the probability of
people’s interest in evaluation of purchasing. Interestingly,
the larger ε can promote the spreading of WOM information,
namely, increasing the comment probability is conducive to
the spreading of WOM communication. The study has a vital
significance in studying the spreading dynamics of WOM
communication in the heterogeneous network. Our results are
useful for promoting the spreading of WOM communication
on scale-free networks.
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