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ABSTRACT Travel time uncertainty may cause late arrival and impose a high penalty on travelers. There
is a growing interest in modeling travel time uncertainty to optimize the reliability of travel time at the
path and network level. Real data analysis finds that the influence factors, including day-of-week, holidays,
time-of-day, road grades, traffic states, and so on, often reduce the cumulative probability of travel time even
in the same facility type (the same lane number and the same divided type). Thus, a novel aggregate approach
is proposed to classify the travel time data based on these influence factors. The distribution with the new
aggregate approach is defined as the extended shifted lognormal (ESLN) distribution. KS test indicates that
the ESLN distribution can effectively describe travel time, and outperforms normal, lognormal, gamma,
and beta distribution. Travel time correlations are calculated between new aggregate groups, which can
effectively reduce the complexity compared with the link to link correlations. Finally, the ESLN distribution
is used to find the most reliable path in a real-world large-scale network. The comparison results between
ESLN distribution and shifted lognormal (SLN) distribution show the effectiveness and improvement of the
proposed method in finding the most reliable path.

INDEX TERMS Travel time, most reliable path, extended shifted lognormal distribution.

I. INTRODUCTION
Advanced traveler information system has applied widely to
alleviate traffic congestion. In congestion road network, link
travel time is highly stochastic due to supply degradation
and demand fluctuation [1], [2], [3], which may cause late
arrival and impose a high penalty on travelers, such as missed
flight and lost business [4], [5]. To ensure punctual arrival
and avoid a penalty, travelers not only need the shortest
path in a stochastic network but also pursue a reliable path
within a given travel time budget. Consequently, quantifying,
modeling, and optimizing travel time reliability is a growing
interest and necessary research topic.

Quantitative measures for travel time reliability include
statistic range methods [6], [7], [8], buffer time mea-
sures [3], [7], tardy-trip measures [7], and probabilistic
measures [2], [4], [8], [9], [10], [11], [12]. In this study, prob-
abilistic measures are adopted to capture travelers’ different
risk attitudes towards travel time uncertainty and maximize
the on-time arrival probability within a given travel time bud-
get. Travel time distribution is the foundation of probabilistic

measures, which has been proved as normal distribution
[11], [13], [14], lognormal (LN) distribution [15], [16],
shifted lognormal (SLN) distribution [2], Gamma distribution
[17], [18], Gamma-Gamma distribution [19], Burr distribu-
tion [20], beta distribution [2], Weibull distribution [21],
inverse Gaussian distribution [22], generalized extreme value
distribution, and generalized Pareto distribution [23], etc.
Among these distributions, normal distribution is convenient
for analysis and calculation. However, the non-zero probabil-
ity of negative travel time of normal distribution is unreason-
able. LN distributionmay cause unreasonable free-flow speed
for its bounded below by zero. SLN distribution is proposed
by Srinivasan et al. [2] to solve these shortcomings. However,
SLN distribution only describes travel time distribution in
the same facility type (the same lane number and the same
divided type). Some influence factors, such as day-of-week,
holidays, time-of-day, road grades, traffic states, etc., may
cause the diversity of travel time and reduce the cumulative
probability of travel time even in the same facility type. Thus,
this paper proposes a novel aggregate approach of travel time
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to improve the precision of travel time distribution and travel
time reliability by isolating the influence factors.

Travel time correlation is an important parameter in finding
the most reliable path. Ignoring correlation will result in
substantial errors in estimating the benefits of projects that
are expected to result in an improvement in reliability [24].
Factors affecting the correlation coefficient include spa-
tial distance [25], traffic congestion [5], [27], speed lim-
its, and turn intersection delays [28], etc. To solve the
complexity of correlations between links, some techniques
and approaches have been proposed, including nonparamet-
ric regression technique based on Bayesian natural cubic
spines [27], regression model [25], Cholesky decomposi-
tion [5], Lagrangian relaxation approach [26]. Specifically,
covariance matrix-based method requires a large amount of
memory to store link to link correlation values, which is
difficult to embed into standard shortest path algorithms
directly [26]. To reduce the complexity of link travel time cor-
relations efficiently, Srinivasan et al. [2] propose correlations
between aggregate groups in the same facility type.

Some algorithms for finding the most reliable path have
been explored in recent decades. The algorithms for solving
the least expected travel time problem include the branch
and bound solution procedure [29], the heuristic algorithm
based on the K-shortest path algorithm [13], label-correcting
algorithm [30], [31], [32], the multi-criteria A∗ algorithm
based on the stochastic first-in-first-out property [4], [33],
the multi-objective 0-1 optimization model and a tabu search
algorithm [34]. Another category is the stochastic arrival on
schedule and the reliable priori shortest path model. The opti-
mal path has two definitions: the maximum arrival reliability
within a given time budget [12], [35], [36] and the minimum
travel time budget for a specified reliability [10]. For the
non-linear and non-additive routing algorithm, the efficient
methods include the non-dominance-based method [1], [11],
the Lagrangian relaxation approach [26], [37], [38],
[39], [40], and the simulation-based method [41], [42], [43].
The simulation-based method is expensive in computation
and the maximum simulation number decides its precision.
Srinivasan et al. [2] propose an algorithm to find the most
reliable path with an approximated SLN distribution and
a general correlation structure, which is computationally
less expensive than traditional Monte-Carlo estimation tech-
niques with an acceptable compromise on accuracy.

Considering the above literature review, the contributions
of this paper to the growing body of knowledge in travel
time reliability are as follows: A novel aggregate approach
is proposed to classify travel time based on day-of-week,
holidays, time-of-day, road grades, and traffic states. The
distribution with the new aggregate approach is defined as
the extended shifted lognormal (ESLN) distribution. ESLN
distribution is used to find the most reliable path in a real-
world large-scale network.

The remainder of this paper is structured as follows.
Section II states the problem. Section III proposes a new
aggregate approach of travel time, and uses the ESLN

distribution to quantify travel time at link and path levels.
In Section IV, ESLN distribution is used to find the most
reliable path in a real-world large-scale network. Finally,
the salient findings, conclusions, and directions for further
research are outlined in Section V.

II. PROBLEM STATEMENT
SLN distribution has been proposed to describe travel time
distribution in the same facility type (the same lane number
and the same divided type), and indicates that SLN distribu-
tion outperforms normal distribution and LN distribution for
almost all facility types [2]. However, day-of-week, holidays,
time-of-day, road grades and traffic states, etc., may cause the
diversity of travel time and reduce the cumulative probability
of travel time. To explain the influence of these factors, real
GPS data were collected by floating cars in Beijing from
November 27, 2017, to January 1, 2018. Data contain the
date, time, car ID, longitude, latitude, and speed. GPS data
were associated with links with a map matching technique.
Link travel time was calculated by the matched GPS data.
As travel time increases with the increase in traffic conges-
tion, we used congestion mileage to explain the influence fac-
tors. Fig. 1 (a) shows that congestionmileage varied greatly in
different days of week from Monday to Sunday. Congestion
mileage on holiday (e.g., New Year’s Day) was also different
from that of the other days. In addition, congestion mileage
varied greatly in the peak hours and non-peak hours.

Road grades (RG) include six levels: expressway (RG=1),
freeway (RG=2), arterial road and national road (RG=3),
secondary road and provincial road (RG=4), branch road
(RG=5), and others (RG=6). Fig. 1 (b) shows that the cumu-
lative probability of all data was lower than that of RG=1-4,
andwas larger than that of RG=6. The cumulative probability
of travel time per unit length varied greatly in different road
grades.Moreover, each road grade had different lane numbers
(see Fig. 1 (c)).

If we only aggerate travel time data with lane num-
ber and divided type, the cumulative probability will be
higher or lower than the actual value. Thus, we need to aggre-
gate travel time data by considering day-of-week, holidays,
time-of-day, road grades, and traffic states to improve the
accuracy of the cumulative probability of travel time and
further improve the accuracy in finding themost reliable path.

III. QUANTIFICATION OF TRAVEL TIME DISTRIBUTION
A. NEW AGGREGATE APPROACH OF TRAVEL TIME
1) NEW AGGREGATE APPROACH
The transportation network is modeled as a directed graph
G (N ,A), where N = {1, 2, · · · , n} represents the set of
nodes and A denotes the set of directed arcs. Travel time
varies greatly around upstream and downstream at some
special road segments, such as traffic light, on/off ramp,
toll station, service area, etc. Thus, these road segments
are divided into upstream, middle position, and downstream
(see Fig. 2).
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FIGURE 1. Problem statement: (a) the influence of day-of-week, holidays, time-of-day; (b) the influence of road grades (RG); (c) the percentage of lane
number with different road grades.

FIGURE 2. Schematic diagram of road segments: (a) signalized
intersection; (b) ramp.

Data are first divided into eight groups: Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, Sunday, Holidays.
Further, data on holidays are divided into Spring Festival,
Qingming Festival, May Day, Dragon Boat Festival, National
Day, Mid-Autumn Festival, New Year’s Day.

Then, data are divided into morning peak period, evening
peak period, non-peak period, and night period based on
the statistical characteristics of traffic flow. For example,
the periods on working days in Beijing are divided as fol-
lows: morning peak period (7:00-9:00), evening peak period
(17:00-19:00), non-peak period (9:00-17:00, 19:00-22:00),
and night period (22:00-7:00).

Finally, data are aggregated based on road grades and
traffic states. Road grades are characterized by free-flow
travel time. Traffic states include very smooth traffic, smooth
traffic, light congestion, moderate congestion, and severe
congestion. Traffic index is introduced to quantify traffic
states. The detailed classification method based on free-flow
travel time and traffic index is as follows.

Define γi as the free-flow travel time. Set ei as the excess
travel time. Travel time per unit length on link ti is described
by the following formula:

ti = γi + ei (1)

Define βi as the ratio between the excess travel time and
the free-flow travel time:

βi =
ei
γi

(2)

Set α as a conversion factor. The meaning of α is that
travelers need to spend α times more travel time compared
with free-flow travel time. Define Ii as the traffic index of
link i. Thus,

Ii =
βi

α
=

ei
α · γi

(3)

ei = αIiγi (4)

ti can be described as the function of γi and Ii:

ti = γi + ei = γi + αIiγi = γi(1+ αIi) (5)

Thus, an aggregate approach of travel time is proposed
based on γi and Ii. Travel time data with the same value of
γi and Ii are aggregated into the same group. To reduce the
complexity, γi and Ii are converted into discrete variables.
Define γi and Ii as the discrete value of γi and Ii. Thus, travel
time data with the same value of γi and Ii are aggregated into
the same group (see Fig. 3(a)).

Free-flow travel time differs greatly among different road
grades. Usually, free flow is measured by speed. For example,
the maximum limited speed of the expressway in Beijing is
120 km/h or 100 km/h; but the maximum limited speed of the
freeway is 80 km/h or 60 km/h. Thus, speed interval is used
as the discrete interval of γi. Define vf ,i (km/h) as the free-
flow speed of link i, vf ,i =

Li
γiLi/3600 =

3600
γi

, where Li (km)
is the length of link i. Set1 (km/h) as the speed interval. The
discretized free-flow travel time γi is calculated by:

γi =

⌈
3600
γi1

⌉
(6)

where d·e is the function that rounds the element to the nearest
integer in the direction of positive infinity. For example,
if 1 = 20km/h and γi = 40s/km, then γi =

⌈
3600
40×20

⌉
= 5.
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Define N0 as the number of Ii. For example, the default
value of N0 used by Beijing Transport Institute is 10. Ii is
calculated by:

Ii =


1, Ii = 0
dIie , 0 < Ii ≤ N0 − 1
N0, N0 − 1 < Ii ≤ Imax

(7)

Ii = N0 covers the value of Ii from N0 − 1 to Imax ,
where Imax =

emax
αγmin

. If emax = 3600s/km, γmin = 18s/km,
α = 0.15, N0 = 10, then Imax =

emax
αγmin

=1333, 9 <Ii ≤
1333, which means Ii = 10 covers Ii from 9 to 1333.
The range is too wide. The relationship between ti and Ii is
non-linear (see Fig. 3(b)), which approximately follows the
power law distribution. After logarithmic transform, the value
of log 2(Ii) varies from 3.17 to 10.38 (see Fig. 3(c)). The
value of dlog 2 (Ii)e varies from 4 to 11. Thus, logarithmic
transform is introduced to further divide traffic index while
N0−1 <Ii≤Imax (see Fig. 3(a)). The logarithmic transform
formation of Ii is defined as Ii,log:

II ,log =

{
0, 0 ≤ Ii≤N0−1
dlog 2 (Ii)e , N0−1 <Ii≤Imax

(8)

Ii, Ii,log, Ii, and their corresponding traffic states are shown
in Table 1, where N0 = 10. While Imax = 1333, 9 <Ii ≤
1333, Ii,log = dlog 2 (Ii)e = {4, 5, 6, 7, 8, 9, 10, 11}.

TABLE 1. The discretized traffic index with N0 = 10.

i i   Traffic state 
1 0  

Very smooth traffic 
2 0  
3 0  Smooth traffic 4 0  
5 0  Light congestion 6 0  
7 0  

Moderate congestion 8 0  
9 0  Severe congestion10   

To identify the aggregate groups distinctly, group ID is
defined as the function of γi,Ii, and Ii,log. For example,
groupID = 100000γi + 1000Ii + Ii,log. This expression can
make each parameter in a fixed position. Travel time data
with the same group ID are aggregated into the same group.
Define N1 as the the maximum group number of γi, N1 =⌈
3600
1

(
1
γmin
−

1
γmax

)⌉
. Define N2 as the maximum group

number of Ii. When 0 ≤ Ii≤N0 − 1, N2 = (N0 − 1);
when N0−1 <Ii ≤ Imax , N2 = dlog 2 (Imax)e; thus, for
all Ii, N2 = N0−1+dlog 2 (Imax)e. The maximum group
number of all aggregate groups Nmax = N1·N2. For exam-
ple, if ei∈ [0, 3600], γmin = 18, γmax = 120, 1 = 20,

N0 = 10,α = 0.15, then Nmax =
⌈
3600
20 ×

(
1
18 −

1
120

)⌉
×{

10− 1+
⌈
log 2

(
3600

0.15×18

)⌉}
= 165.

The aggregate approach of travel time based on free-flow
travel time and traffic index is illustrated in Algorithm 1.

Algorithm 1 Travel Time Data Aggregation Based on
Free-Flow Travel Time and Traffic Index
for (i=1; i≤m; i++) //m is the total number of links.
{
γi = 3600

/
vf ,i;

if ((ti − γi) ≥ 0)
{
γi =

⌈
3600
γi1

⌉
;

Ii =
ei
α·γ i
=

ti−γi
α·γ i
;

// Calculate Ii:
if (0 < Ii ≤ N0 − 1)
{

Ii = dIie ;
}
else if (Ii > N0 − 1)
{

Ii = N0;

}
else
{

Ii = 1;
}
//Calculate Ii,log:
if (Ii > N0 − 1)
{

Ii,log = dlog 2 (Ii)e ;
}
else
{

Ii,log = 0;
}
// Calculate group ID:
groupID = 100000γi+1000Ii+Ii,log; // This expres-

sion
can make each parameter in a fixed position. Travel

time
data with the same group ID are aggregated into the
same group.

}
}

2) DISTRIBUTION OF AGGREGATE GROUPS
Aggregated results with real data and Kolmogorov-
Smirnov (KS) test are given as follows. Real data were
collected by floating cars in Beijing in the morning peak
period, non-peak period, and evening peak period on Tuesday,
October 6, 2015. In the morning peak period, 2189 samples
were aggregated into 29 groups. In the non-peak period,
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FIGURE 3. Aggregate approach: (a) the decision tree; (b) the relationship between ti and Ii ; (c) the
relationship between log 2(ti ) and log 2(Ii ).

2375 samples were aggregated into 37 groups. In the evening
peak period, 2380 samples were aggregated into 37 groups.

Tested distribution included normal, LN, ESLN, gamma,
beta distribution. If the statistic value is less than the critical
value (CV) of the KS test, the distribution passes the KS
test. The detailed results of the KS test are shown in Fig. 4.
Most of the statistic values of normal, LN, ESLN, and gamma
distribution were less than CV. In the morning peak period,
the pass rates of ESLN, normal, LN, gamma, and beta dis-
tribution were 93%, 69%, 69%, 69%, and 7%, respectively
(see Table 2). In the non-peak period, the pass rates of
ESLN, normal, LN, gamma, and beta distribution were 92%,
59%, 62%, 59%, and 11%, respectively. In the evening peak
period, the pass rates of ESLN, normal, LN, gamma, and
beta distribution were 97%, 70%, 73%, 70%, and 8%, respec-
tively. For all periods, ESLN distribution had the highest
accuracy.

Average travel time per unit length in the new aggre-
gate group is modeled as ESLN distribution, tGID ∼

ESLN (µGID, σGID, γGID), where GID is the group ID.
Parameters are the same across all links in the same aggregate
group. However, for link i, ti should satisfy ti ≥ γi≥γmin.
If free-flow travel time in the same aggregate group is set
as the same value, for example, γGID = γmin, the maximum
pass rates of the KS test in the morning peak period, non-
peak period, evening peak period were 72%, 62%, and 73%,

TABLE 2. The accuracy of KS test.

respectively, which were lower than 93%, 92%, and 97%.
Thus, the parameter of free-flow travel time is not estimated
in the same aggregate group.

For each aggregate group, the mean (µGID) and the stan-
dard deviation (σGID) in different periods are estimated using
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FIGURE 4. KS statistic results: (a) morning peak; (b)non-peak; (c) evening peak. Note that ‘‘CV’’ is the critical value of KS test.

FIGURE 5. The mean and the standard deviation of aggregate groups with ESLN distribution in different periods: (a) morning peak;
(b) non-peak; (c) evening peak.

FIGURE 6. The Excess TT CoV in different periods: (a) morning peak; (b) non-peak; (c) evening peak.

maximum likelihood estimation technique. Fig. 5 shows the
estimated results.

ANOVA tests are used to confirm the estimated results.
Fig. 6 shows the coefficient of variation (CoV) of excess
travel time (TT) in different periods. In the morning peak
period, all Excess TT CoV were smaller than 1.2. In the

non-peak and evening peak periods, the Excess TT CoV of
most groups were smaller than 1, except for some groups
whose Ii was 10. The main reason for this phenomenon
is that Ii = 10 covers 9 <Ii ≤ 1333, which causes the
Excess TT CoV of Ii = 10 are generally higher than that of
Ii = 1-9.
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3) CORRELATIONS BETWEEN AGGREGATE GROUPS
The correlations between aggregate groups can efficiently
reduce the complexity compared with the link to link cor-
relations. Maximum likelihood estimation technique is used
to obtain the covariance matrix between aggregate groups.
Link within groups has the same group ID, thus, link travel
time correlations within groups are the correlations between
groups with the same group ID.

TABLE 3. p-values of the hypothesis of no correlation.

The hypothesis of no correlation is tested by p-value.
p-value is the probability of getting a correlation as large
as the observed value by random chance, where the true
correlation is zero. If p-value<0.05, the correlation is signif-
icant. Table 3 shows the percentage of p-values in different
periods. For p-value <0.05, the proportions in the morning
peak period, evening peak period, and non-peak period were
12%, 15%, and 18%, respectively. In the non-peak period,
more groups were correlative compared with morning peak
period and evening peak period. This phenomenon shows that
heavy congestion can reduce the correlation, which coincides
with the conclusion of Gajewski and Rilett [27] and further
verifies the effectiveness of the proposed method.

B. LINK TRAVEL TIME MODEL
As ESLN distribution is chosen to represent link travel time
per unit length in each aggregate group, µi, σi, and γi are
defined as the parameters of ESLN distribution. ti is the travel
time per unit length on link i, ti ∼ ESLN (µi, σi, γi). ti is
described as the following structure:

ti = γi + exp (µi + σizi) (9)

where ei = exp (µi + σizi) is the excess travel time. Specif-
ically, µi and σi are the mean and the standard deviation
of the excess travel time. zi is a standard normal random
variable, zi ∼ N (0, 1). Therefore, ei is a random variable
with lognormal distribution. The mean and the variance of ti
are calculated by the following equations:

E[ti] = Ti = γi + exp(µi + 0.5σ 2
i ) (10)

Var [ti] = Vi = exp
(
2µi + σ 2

i

) [
exp

(
σ 2
i

)
−1
]

(11)

The mean excess travel time is calculated by the following
equation:

Mi = E[ti]− γi (12)

Due to the use of aggregate approach, the average travel
time per unit length is modeled as following an ESLN distri-
bution. This assumption is relaxed in the subsequent sections
while calculating themost reliable path, where the parameters
can vary even across the links in the same aggregate group.

C. PATH TRAVEL TIME DISTRIBUTION
For ti is the link travel time per unit length, the total travel time
of link i should consider the link length, which is calculated
by the following equation:

tili =
[
γi + exp (µi + σizi)

]
li = γili

+ exp (µi + σizi) li = γili + exp (µi+lnli + σizi) (13)

Thus, the total link travel time tili can be distributed as
tili ∼ ESLN (µi+lnli, σi, γili), where li is the length of link i.

As link travel time follows an ESLN distribution, the path
travel time distribution does not have a closed form CDF.
Several approaches have been proposed to compute the com-
plementary distribution function of the sum of lognormal
random variables, such as Fenton-Wilkinson’s approach [44],
Schwartz and Yeh’s approach [45], and cumulants matching
approach [46]. Abu-Dayya and Beaulieu [47] has proved
that Fenton-Wilkinson’s approach is the best one. Moreover,
Fenton-Wilkinson’s approach has been used extensively in
signal processing applications [47], [48], [49] and path travel
time distribution [2]. Thus, Fenton-Wilkinson’s approach is
introduced to approximate the distribution of path travel time
tP by ESLN distribution with parameters µP, σP, and γP.
The mean value of excess travel time is calculated by the

following formula:

Exp
(
µP+0.5σ 2

P

)
=

∑
i∈P

exp
(
µi+lnli+0.5σ 2

i

)
(14)

The variance of travel time is calculated by the following
formula:

Exp
(
2µP + σ 2

P

) [
exp

(
σ 2
P

)
−1
]

=

∑
i∈P

exp
[
2 (µi+lnli)+ σ 2

i

] [
exp

(
σ 2
P

)
−1
]

+

∑
i∈P,j∈P

ρi,j

{
exp

[
2(µi+lnli)+σ 2

i

][
exp

(
σ 2
P

)
−1
]}0.5

×

{
exp

[
2
(
µj+lnlj

)
+σ 2

j

] [
exp

(
σ 2
P

)
−1
]}0.5

(15)

where i, j ∈ A represent links and ρi,j denotes the correlation
coefficient between link travel times.

The shift parameter of travel time is calculated by the
following formula:

γP =
∑

i∈P
γili (16)

Thus, the travel time reliability of path P is computed using
the CDF of the approximate path travel time distribution
tP∼ESLN (µP, σP, γP).

The total travel time tP can be expressed as:

tP = γP+exp (µP + zσP) (17)

The expected value and the variance of travel time are
calculated by:

Tp = E[tp] = γp + exp(µp + 0.5σ 2
p ) (18)

VP = Var [tP] = exp
(
2µP + σ 2

P

) [
exp

(
σ 2
P

)
−1
]

(19)
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where z ∼ N (0, 1) represents a normal random variable. eP is
defined as a random variable denoting excess travel time.

eP = tP−γP = exp (µP + zσP) (20)

The expected value of excess travel time of path P is
calculated by:

MP = E [eP] = exp
(
µP+0.5σ 2

P

)
(21)

From (21), µP can be written as:

µP = In(MP)− 0.5σ 2
P (22)

From (19) and (21), σP can be written as:

σP =

[
ln

(
1+

VP
M2
P

)]0.5
(23)

D. MOST RELIABLE PATH MODEL WITH
ESLN DISTRIBUTION
The objective of finding the most reliable path problem is to
determine the path on a network with maximum reliability
between a specific origin-destination (OD) pair (s, t) for a
pre-specified travel time threshold T0, where s ∈ N , t ∈ N .
The path travel time reliability RP is defined as the prob-

ability that path travel time tP is less than an associated
threshold of travel time T0:

RP = P [tP<T0] (24)

The objective function is to maximize the path travel time
reliability RP:

Max Rp(x) = 8
(
In(T0 − γP)− µP

σP

)
(25)

st.
∑

(h,k)εA
xhk−

∑
(k,h)εA

xkh =


1, h = s
−1, h = t
0, h∈N−{s,t}

(26)

where γP is the free-flow travel time of path P, obtained
from (16); µP and σP are the mean and the standard deviation
of the excess travel time of path P, obtained from (22) and
(23). (26) denotes flow conservation constraints. Each link
(h, k) has a tail node h and a head node k . xhk ∈ {0, 1}:
xhk = 1 means that link (h, k) is on the path P; xhk = 0
means that link (h, k) is not on the path P.

The most reliable path with ESLN distribution and general
correlation structure is computed by the convergence algo-
rithm of reliability bounds [2]. A set ofK0+K1 least expected
travel time paths are computed. The first K0 paths are added
to the path set PK0 , whose excess travel time (MP) are lower
than the threshold M0 = max

(√
Vmin,

T0−γmin
e

)
where e is

the Euler’s number. The next K1 paths are added to the path
set PK1 . From the last K1 paths, a sequence of K1 largest
and progressively decreasing upper bounds on path reliability
are obtained. The largest reliability among the paths in the
set of K0 + K1 paths forms a lower bound on the optimal
reliability objective. Yen’s K-shortest path algorithm is

implemented to determine the least expected excess travel
time paths.

The reliability of path P can be reformulated as follows:

RP = 8
(
ln (T0−γP)−µP

σP

)
= 8

(
ln (T0−γP)−

(
ln (MP)−0.5σ 2

P

)
σP

)

= 8

 ln
(
T0−γp
MP

)
σP

+0.5σP



= 8

 ln
(
T0−γp
MP

)
ln
(
1+ VP

M2
P

)0.5+0.5σP

 (27)

The upper bound of RP can be constructed by replac-
ing γP, VP, and σP with γmin, Vmin, and σmax , respectively.
γmin is the shift parameter of the path with the minimum free-
flow travel time. γmin is determined by a standard shortest
path algorithm with link costs as the free-flow travel time,
γmin = minP γP. Vmin represents the minimum variance of
travel time on any path for the given OD pair. σmax represents
the largest standard deviation of underlying normal distribu-
tion for any link on the network, σmax = maxi∈A σi.

DefineRPUB as the upper bound on the reliability of pathP,
then

RP≤ 8

 ln
(
T0−γmin
MP

)
ln
(
1+Vmin

M2
P

)0.5+0.5σmax

 = RPUB (28)

The algorithm for computing the most reliable path based
on ESLN distribution between an origin node and a destina-
tion node is shown in Algorithm 2.

IV. PERFORMANCE OF FINDING MOST RELIABLE
PATH WITH ESLN DISTRIBUTION
In this section, a case study is conducted on the real-world
large-scale network of Beijing to estimate the performance
of finding the most reliable path with ESLN distribution.
Road segments were divided at the positionswhere trafficwas
easily disturbed, including intersection, traffic light, pedes-
trian crossing, on/off ramp, toll station, service area, and gas
station, etc. In addition, road segments around traffic light,
on/off ramp, toll station, and service area, were divided into
upstream, middle position, and downstream. After dividing,
the road network of Beijing consisted of 80291 nodes (N)
and 160533 directed links (A). Each link contained link ID,
tail node ID, head node ID, name, length, direction, road
grade, city code, width, lane number, etc. Real data were col-
lected by floating cars in Beijing from September 16, 2015,
to November 30, 2015, seventy-six days in total. The program
was written in C++ and tested onWindows 10 (64-bit) system

VOLUME 6, 2018 72501



Z. Yang et al.: Finding Most Reliable Path With ESLN Distribution

Algorithm 2 Computing the Most Reliable Path
Initially, the lower bound on path reliability RKLB = 0.
The upper bound on path reliability RKUB = 1. Set two

path sets PK1 and PK0 to be empty. Set a pre-specified
tolerance ε and a pre-specified limit K̂ . Set k = 1.
do
{

Determine the k th shortest path Pk with link excess
means as the costs;

Compute the travel time distribution parameters(
µPk , σPk , γPk

)
using (14), (15), and (16);

Compute the path reliability using the ESLN CDF
with

the given reliability threshold T0;
if
(
MPk> max

(√
Vmin,

T0−γmin
e

))
{

ComputeRPkUB (the path reliability upper bound
of

path Pk ) using (28);
Set RKUB = RPkUB;
Add the path to the path set PK1 ;

}
else
{

Add the path to the path set PK0 ;
}

Identify the path with the highest reliability in the path
sets;

RKLB = maxP∈PK1∪PK0RP;
k = k + 1;

} while
(
RKUB−RKLB

RKLB
> ε or k ≤ K̂

)

with Inter (R) Core (TM) i7-8550U processor, 1.80 GHz and
2.00 GHz CPU, and 8 GB RAM.

For link i, themean and the standard deviation of the excess
travel time per unit length µi and σi were calculated within
the divided periods. To avoid the unreasonable value of travel
time, the minimum travel time of each link (corresponding to
the maximum value of speed, which may be beyond the rea-
sonable range) was removed. Thus, the free-flow travel time
γi was the second minimum value. Group ID was calculated
with µi, σi, and γi. Travel time correlations were calculated
between aggregate groups.

The origin was the Institute of Transportation Sys-
tem Science and Engineering, Beijing Jiaotong University
(TSSE-BJTU). The destination was Terminal 3 of Beijing
Capital International Airport (T3-BCIA). Fig. 7 shows the
K-shortest paths with K=3 based on ESLN distribution.
Fig. 8 shows the reliabilities of three paths with T0 =1200 to
5000. While T0 =1200 to 2402, the most reliable path was
Path 3; while T0 >2402, the most reliable path was Path 1.
While T0 >2982 (49.7minutes), themaximum reliability was
more than 0.95, which coincided with the actual running time
and verified that path travel time should consider link length.

FIGURE 7. The K- shortest paths with K=3 from TSSE-BJTU to T3-BCIA
based on ESLN distribution.

FIGURE 8. The reliabilities of three paths with T0 =1200 to 5000 based
on ESLN distribution.

To compare the difference between ESLN distribution and
SLN distribution in finding the most reliable path, the cor-
responding parameters µ,σ , and γ within the same facility
type (the same lane number and the same divided type)
were calculated with real data collected in Beijing (see
Table 4). Fig. 9 shows the K- shortest paths with K=3 from
TSSE-BJTU to T3-BCIA based on SLN distribution whose
parameters were aggregated within the same facility type.
The reliabilities of three paths with T0 =1200 to 5000 based
on SLN distribution are shown in Fig. 10. For all travel time
threshold, the most reliable path was Path 1.

The comparison results between ESLN distribution and
SLN distribution are shown in Fig. 11, where the optimal
reliability of ESLN distribution was larger than that of SLN
distribution. This phenomenon is caused by the different
aggregate approaches of travel time. The aggregate approach
of SLN distribution [2] is based on the same facility type
(the same lane number and the same divided type), where the
parameters are the same across all links in the same facility
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TABLE 4. Parameters of SLN distribution within the same facility type.

FIGURE 9. The K- shortest paths with K=3 from TSSE-BJTU to T3-BCIA
based on SLN distribution.

FIGURE 10. The reliabilities of three paths with T0 =1200 to 5000 based
on SLN distribution.

type. In practice, travel time in the same facility typemay vary
in many cases, such as day-of-week, holidays, time-of-day,
road grades, and traffic states, et al. The aggregate approach

FIGURE 11. Comparison results between ESLN distribution and SLN
distribution: (a) the optimal reliability; (b) the optimal reliability
difference between ESLN distribution and SLN distribution.

of SLN distribution does not distinguish these influence fac-
tors, which lead to a decline in the cumulative probability
of travel time. The aggregate approach of ESLN distribu-
tion proposed in this study first divides travel time data
into eight groups: Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday, Holidays. Further, travel time data
on holidays are aggregated with different holidays. Then,
based on the statistical characteristics of traffic flow, travel
time data are divided into morning peak period, evening peak
period, non-peak period, and night period. Finally, travel time
data are aggregated based on road grades and traffic states.
New proposed aggregate approach can separate different
influence factors from each other. With these improvements,
the optimal reliability of ESLN distribution exceeds that of
SLN distribution.
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V. CONCLUSIONS
Themain research contents and results of this study in finding
the most reliable path are as follows:

(1) Real data analysis found that day-of-week, holidays,
time-of-day, road grades, and traffic states could cause
the diversity of travel time and further reduced the cumu-
lative probability of travel time even in the same facil-
ity type (the same lane number and the same divided
type). A new aggregate approach was proposed to classify
travel time based on the influence factors. The distribution
with new aggregate approach was defined as the extended
shifted lognormal (ESLN) distribution. KS test proved that
ESLN distribution could effectively describe travel time
distribution.

(2) Travel time correlations were calculated between new
aggregate groups, which could reduce the complexity com-
pared with the link to link correlations. Moreover, statistical
results in different periods validated that heavy congestion
could reduce the correlations.

(3) For travel time distribution was verified based on travel
time per unit length, path travel time model considering link
length was proposed.

(4) ESLN distribution was used to find the most reliable
path in the real-world large-scale network (with 80291 nodes
and 160533 links). The comparison results between ESLN
distribution and SLN distribution indicated the improvement
of the proposed method in finding the most reliable path.

Potential directions for future research include: propose
a method for finding the optimal cutting points of daytime,
explore a more reasonable method for determining the free-
flow travel time. The computational time is proportional to
the K value of K-shortest path algorithm and the distance
between an origin node and a destination node. Thus, we will
further study the acceleration algorithm for improving the
computational efficiency. Furthermore, the algorithms for
determining the departure time with a given on-time arrival
probability based on ESLN distribution are intended to be
proposed.
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