
Received October 1, 2018, accepted October 19, 2018, date of publication October 29, 2018, date of current version November 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2878311

Applied Graph Transformation and Verification
With Use Cases in Malaria Surveillance
JON HAËL BRENAS 1, MARTIN STRECKER2, RACHID ECHAHED3,
AND ARASH SHABAN-NEJAD 1
1Oak Ridge National Laboratory, Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health Science Center,
Memphis, TN 38163, USA
2IRIT Institute, Université de Toulouse, 31000 Toulouse, France
3CNRS and the Laboratoire d’Informatique de Grenoble, Université Grenoble Alpes, Grenoble, France

Corresponding author: Arash Shaban-Nejad (ashabann@uthsc.edu)

This work was supported by the Bill and Melinda Gates Foundation under Grant OPPID 1162018.

ABSTRACT Malaria is one of the leading causes of death and illness in sub-Saharan Africa. In order to
make timely decisions for control and elimination of malaria, researchers, and clinicians need access to
integrated consistent knowledge sources. These knowledge sources often rely on dynamic and constantly
changing databases and ontologies. It is crucial to manage changes and ensure that these changes do not
cause inconsistencies in the integrated knowledge source. To this end, we propose the use of a formal model
using graph transformations to monitor and manage the changes in a coherent way while preserving the
consistency of the integrated structure through classical verification. In this paper, we use an algorithmic
approach to graph transformation, instead of the more classical algebraic approach, to express the evolution
of the data and ontological structures. In this model, each transformation is the result of applying rules
to the graph, where the left-hand side is used to select a subgraph and the right-hand side is a sequence of
elementary actions to be performed. Strategies are used to define how transformation rules should be applied.
This approach enables us to define a Hoare-like calculus that can be used to verify the transformations and
manage the changes. In this paper, we demonstrate the feasibility and significance of the proposed method
through different use cases in malaria surveillance.

INDEX TERMS Graph transformation, verification, malaria surveillance, ontologies, change management.

I. INTRODUCTION
Malaria, an infectious disease disproportionately affecting
low-income developing countries [1], was responsible for
around 445,000 deaths worldwide in 2016 [2], mostly young
children in Sub-Saharan Africa. Parasitic micro-organisms of
the Plasmodium species responsible for many malaria cases
are transmitted through mosquito bites. In order to efficiently
perform malaria surveillance, many factors need to be taken
into account, for example, the vector ecology, the climate,
human behaviors [3], uses of malaria drugs, urbanization and
public health infrastructures [4].

Ontologies capture the domain knowledge by defin-
ing concepts, relationships, individuals, rules, and axioms.
Several ontologies, such as the Ontology for Vector Surveil-
lance and Management (VSMO) [5], the Malaria Ontol-
ogy (IDOMAL) [6], [7], the Mosquito Insecticide Resistance
Ontology (MIRO) [8], [9], have been specifically created to
deal with malaria and similar diseases. No single ontology

covers all the aspects required for an effectivemalaria surveil-
lance. So, the malaria community needs to integrate many
different types of databases and ontologies and maintain the
integrated structure to ensure data availability, integrity, and
reliability. One of the major challenges of maintaining such
integrated infrastructures is dealing with changes in their
components. Such changes [10] may cause inconsistencies
in the knowledge or break the interoperability with existing
sources and tools. One of the main elements of a successful
change management process is the ability to verify and prove
that the changes propagate in the right direction.

The concept of verification is far from new [11], [12] but
the knowledge of the structure on which to reason is capi-
tal, i.e., one must know the language that is used to repre-
sent the changes in order to be able to reason about them.
This is currently difficult as the languages used to represent
and express database modifications (e.g., SPARQL [13]) are
different from the languages used to express the changes

64728 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0001-9395-9365
https://orcid.org/0000-0003-2047-4759


J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

in ontologies. We use graphs as a common standard repre-
sentation vehicle for data structures and ontologies and graph
transformations as a formalism to express all the potential
changes and modifications.

Graphs already play a central role in modeling data struc-
tures and graph transformations facilitate reasoning about
a wide range of different structures. The feasibility and
significance of using graph transformation and categori-
cal logical approach for studying ontology evolution and
change management have been extensively discussed in
the literature [14]–[16]. Studies on the correctness of graph
transformations [17]–[24] have also produced promising
results. Throughout this paper, we use the formal definitions
described at [25] and demonstrate the applicability of the
graph transformation and verification to respond to pressing
salient issues such as change management and maintaining
interoperability in a real-world application to improve global
health surveillance. Our approach differs from many of the
previously mentioned in that it offers more flexibility on
the choice of the logic used to describe the graphs. Further-
more, it uses an algorithmic approach that is more intuitive
and accessible for non-expert users, e.g., the users might
not be totally aware of the distinction between single- and
double-pushout presented in other methods. We refer inter-
ested readers to more theoretical works, e.g., [25] for more
thorough comparisons of different approaches.

In this paper, we choose a Hoare-like calculus to address
the problem of the correctness of programs defined as strat-
egy expressions over graph rewrite rules. Specifications are
defined as triples of the form {Pre}(R,strategy){Post}
where Pre and Post are conditions, R is a graph rewrite
system and strategy is an expression stating how rules
in R are to be performed.
We consider the transformations in the form of rewrite

rules that follow an algorithmic approach where the left-hand
sides are attributed graphs and the right-hand sides are
sequences of elementary actions [26]. We study a wide range
of actions such as node creation, edge relabelling and redirec-
tion, or merging. An important aspect of our approach is that
graphs are labeled using logical formulae. We present some
of the logics that can be used in our application. All of them
are fragments of first-order logic. We present several logics
because different problems can be better expressed in differ-
ent logics. A particular focus is on Description Logics [27],
which are the de facto standard to express ontologies with
good balance between the expressiveness of the specification
and the complexity of the verification.

Our goal is to present a novel approach for verifying trans-
formations and changes in malaria surveillance data sources.
Any responsible body who performs such transformations,
e.g., a data collector that adds their most recent results or
a knowledge engineer modifying an ontology, can use our
algorithm to prove that the transformations work accord-
ing to the specifications, provided the transformation and
specifications are expressed in a way consistent with our
algorithm. Furthermore, if a set of defined conditions on the

transformations are satisfied, the correctness of the specifica-
tion will be considered decidable. When the specification is
incorrect, the algorithm returns a counter-model that can be
used to refine the specification.

The paper is organized as follows. Section II introduces
some preliminary definitions of graphs and the elementary
graph transformation actions. Section III presents the log-
ics that we use throughout this study. Section IV explains
how to define specifications for the transformations and how
graph verification is performed. Section V showcases appli-
cations of verification to certain types of changes in the
real world malaria surveillance database or the ontologies.
Finally, in Section VI we conclude with a discussion of our
findings and results, and suggestions for future work.

II. GRAPHS AND TRANSFORMATIONS
We start by introducing the notion of logically decorated
graphs. Nodes and edges of such graph structures are labeled
by logic formulas. The definition below is parameterized by
a given logic L seen as a set of formulas. Section III provides
some examples of possible candidates for such a logic L.
Definition 1 (Logically Decorated Graph): Let L be a

logic (set of formulas). A graph alphabet is a pair (C, R)
of sets of elements of L, that is C ⊆ L and R ⊆ L. C is
the set of node formulas or concepts and R is the set of
edge formulas or roles.1 Subsets of C and R, respectively
named C0 andR0, contain basic (propositional) concepts and
roles respectively. A logically decorated graphG over a graph
alphabet (C, R) is a tuple (N , E, 8N , 8E , s, t) where N is
a set of nodes, E is a set of edges, 8N is the node labeling
function, 8N : N → P(C), 8E is the edge labeling function,
8E : E → R, s is the source function s : E → N and t is the
target function t : E → N.

Transformation of logically decorated graphs is defined
following an algorithmic approach based on the notion of
elementary actions as introduced below. These actions con-
stitute a set of elementary graph transformations such as the
addition/deletion of nodes, concepts or edges; redirection of
edges; merging or cloning of nodes. Formal definitions of the
defined elementary actions are given in Fig. 1.
Definition 2 (Elementary Action, Action): An elementary

action, say a, may be of the following forms:

• a node addition addN (i) (resp. node deletion delN (i))
where i is a new node (resp. an existing node). It creates
the node i. i has no incoming nor outgoing edge and it
is not labeled with any concept (resp. it deletes i and all
its incoming and outgoing edges).

• a concept addition addC (i, c) (resp. concept deletion
delC (i, c)) where i is a node and c is a basic concept
(a proposition name) in C0. It adds the label c to (resp.
removes the label c from) the labeling of node i.

• an edge addition addE (e, i, j, r) (resp. edge deletion
delE (e, i, j, r)) where e is an edge, i and j are nodes and

1The terms concept and role are borrowed from the Description Logics’
vocabulary [27].

VOLUME 6, 2018 64729



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 1. G′ = G[α], summary of the effects of the elementary actions: addN (i ), delN (i ), addC (i, c), delC (i, c), addE (e, i, j, r ),
delE (e), i � j , mrg(i, j ) and cl (i, j, Lin, Lout , Ll_in, Ll_out , Ll_loop). C and R are never modified. More details can be found in [25].

r is a basic role (edge label) in R0. It adds the edge e
with label r between nodes i and j (resp. removes the
edge e). When the edge that is affected is clear from the
context, we will usually simply write addE (i, j, r) (resp.
delE (i, j, r)).

• a global edge redirection i� j where i and j are nodes.
It redirects all incoming edges of i towards j.

• a merge action mrg(i, j) where i and j are nodes. This
action merges the two nodes. It yields a new graph
in which the first node i is labeled with the union
of the labels of i and j and such that all incom-
ing or outgoing edges of any of the two nodes are
gathered.

• a clone action cl(i, j,Lin,Lout ,Ll_in,Ll_out ,Ll_loop)
where i and j are nodes and Lin, Lout , Ll_in, Ll_out and
Ll_loop are sets of basic roles. It clones a node i by
creating a new node j and connects j to the rest of a
host graph according to different information given in
the parameters Lin,Lout ,Ll_in,Ll_out ,Ll_loop.

The result of performing an elementary action a on a graph
G = (NG,EG,CG,RG,8G

N ,8
G
E , s

G, tG), written G[α], pro-
duces the graphG′= (NG′ ,EG

′

,CG′ ,RG
′

,8G′
N ,8

G′
E , s

G′ , tG
′

)
as defined in Fig. 1. An action, say α, is a sequence of
elementary actions of the form α = a1; a2; . . . ; an. The result
of performing α on a graph G is written G[α]. G[a;α] =
(G[a])[α] and G[ε] = G where ε is the empty sequence.

64730 VOLUME 6, 2018



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 2. Example of graph rewriting system with three rules.

We introduce the notion of logically decorated graph
rewriting systems (LDRS). These are extensions of the graph
rewriting systems defined in [26] where graphs are attributed
with formulas from a given logic. The left-hand sides of
the rules are thus logically decorated graphs whereas the
right-hand sides are defined as sequences of elementary
actions.
Definition 3 (Rule, LDRS): A rule ρ is a pair (LHS, α)

where LHS, called the left-hand side, is a logically decorated
graph and α, called the right-hand side, is an action. Rules
are usually written LHS → α. A logically decorated graph
rewriting system, LDRS, is a set of rules.

Fig. 2 shows a graph rewriting system consisting of three
rules (ρ0, ρ1 and ρ′0). Each rule has a (possibly empty)
labeled graph as left-hand side and a sequence of actions as
right-hand side.

In order to be able to use graph rewriting systems, one
needs to know where a given rule can be applied in a graph.
To do so, we introduce the notion of match.
Definition 4 (Match): A match h between a left-hand side

LHS and a graph G is a pair of functions h = (hN , hE ), with
hN : NLHS

→ NG and hE : ELHS → EG such that:
1. ∀n ∈ NLHS , ∀c ∈ 8LHS

N (n), hN (n) |H c
2. ∀e ∈ ELHS , 8G

E (h
E (e)) = 8LHS

E (e)
3. ∀e ∈ ELHS , sG(hE (e)) = hN (sLHS (e))
4. ∀e ∈ ELHS , tG(hE (e)) = hN (tLHS (e))

The third and the fourth conditions are simply indicating
that the source and target functions and the match have to
agree. The first condition says that for every node n of the
left-hand side, the node towhich it is associated, h(n), inG has
to satisfy every concept in 8LHS

N (n). This condition clearly
expresses additional negative and positive conditions which
are added to the ‘‘structural’’ pattern matching. The second
one ensures that the match respects the edge labeling.
Definition 5 (Rule Application): A graph G rewrites to

graph G′ using a rule ρ = (LHS, α) iff there exists a match h
from LHS to G. G′ is obtained from G by performing actions
in h(α).2 Formally, G′ = G[h(α)]. We write G→ρ G′.

2h(α) is obtained from α by replacing every node name, n, of LHS by h(n).

Rules by themselves are inadequate for building very com-
plex transformations. So, we extend the notion of transforma-
tion by using strategies that allow combining rules to perform
sophisticated transformations.
Definition 6 (Strategy): Given a graph rewriting system

R, a strategy is a word of the following language defined by s,
where ρ is any rule inR:
s := ε (Empty strategy) ρ (Rule)

s⊕ s (Choice) s; s (Composition)
s∗ (Closure) ρ? (Rule trial)
ρ! (Mandatory Rule)

We write G ⇒S G′ to denote that graph G′ is obtained
from G by applying the strategy S. In Fig. 3, we provide the
rules that specify how strategies are used to rewrite a graph.
For that we use the following atomic formula App(ρ) such
that for all graphsG,G |H App(ρ) iff the rule ρ can be applied
to G, i.e., iff there exists a match h from the left-hand side of
ρ to G. The definition is then extended to strategies.

• G |H App(ε)
• G |H App(s0 ⊕ s1) iff
• G |H App(s0) or G |H App(s1)
• G |H App(s∗0)
• G |H App(s0; s1) iff G |H App(s0)

Example 7: Let us assume that we want to use the
graph rewriting system R0 of Fig. 2. The strategy
s0 ≡ ρ1!; ρ1?; (ρ0 ⊕ ρ′0)

∗ consists in applying the rule ρ1
at least once. ρ1 is then applied a second time if possible.
This is followed by either ρ0 or ρ′0 as long as it is possible to
find a match for at least one of the two.

III. LOGICS
In the previous section, we have presented the definitions of
logically-decorated graphs and how to modify them. Each
definition relies on the use of a logic to label edges and nodes.
In this section, we present some logics that can be used for
such a purpose. We chose to focus on Description Logics,
as they have become a de facto standard for representing
ontologies, and some fragments of the First-Order Logic,
which make the satisfiability problem decidable.

VOLUME 6, 2018 64731



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 3. Strategy application rules.

Definition 8 (Concept, Role, ALC): Let A = (O, C0,R0)
be an alphabet where O (resp. C0,R0) is the set of nominals
(resp. atomic concepts, atomic roles), given o ∈ O, C0 ∈ C0,
r0 ∈ R0 and n and integer, ALC concepts C and roles R are
defined by:
C := > (tautology)
| C0 (atomic concept)
| ∃R.C (existential quantifier)
| ¬C (negation)
| C ∨ C (disjunction)

R := r0 (atomic role)

ALC can be extended by adding some of the following
concept and role constructors:
C := {o} (nominals)
| ∃R.Self (self loops)
| (< n R C) (counting quantifiers)

R := U (universal role)
| R− (inverse role)

For the sake of conciseness, we define:
⊥ ≡ ¬>

C ∧ C ′ ≡ ¬(¬C ∨ ¬C ′)
∀R.C ≡ ¬(∃R.¬C)
(≥ n R C) ≡ ¬(< n R C)

In most Description Logics-based ontologies the knowl-
edge is spread into three different parts: an ABox contain-
ing assertions about individual pieces of data, i.e., nodes
in a graph representation, a TBox containing assertions
about concepts, i.e., classes of nodes, and an RBox

containing assertions on roles, i.e., classes of edges/pairs
of nodes.
Definition 9 (ABox, TBox, RBox): An ABox is a set of

assertions of the form C(i), R(i, j), ¬R(i, j), i = j or i 6= j
where i and j are individuals, C is a concept and R is a role.
A TBox is a set of assertions of the form C ⊆ C ′ where

C and C ′ are concepts.
An RBox is a set of assertions of the form R ⊆ R′ or

Prop(R) where R and R′ are roles and Prop is a role property.
Examples of role properties commonly employed in DLs are
Transitive, Reflexive, Irreflexive, Symmetric, Asymmetric or
Functional.

We now define the semantics of these formulas by defining
their interpretations.
Definition 10 (Interpretation): An interpretation over an

alphabet (C0,R0,O, ) is a tuple (1I , ·I ) where ·I is a func-
tion such that cI0 ⊆ 1I , for every atomic concept c0 ∈ C0,
rI0 ⊆ 1

I
×1I , for every atomic role r0 ∈ R0, oI ∈ 1I for

every nominal o ∈ O. The interpretation function is extended
to concept and role descriptions by the following inductive
definitions:

• >
I
= 1I

• (¬C)I = 1I
\CI

• (C ∨ D)I = CI
∪ DI

• (∃R.C)I = {n ∈ 1I
|∃m, (n,m) ∈ RI and m ∈ CI

}

• (∃R.Self )I = {n ∈ 1I
|(n, n) ∈ RI}

• (< n R C)I = {δ ∈ 1I
|#({m ∈ 1I

|(δ,m) ∈ RI and
m ∈ CI

}) < n}
• (R−)I = {(n,m) ∈ 1I

×1I
|(m, n) ∈ RI}

• UI
= 1I

×1I

64732 VOLUME 6, 2018



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

This definition is extended to ABoxes, TBoxes and RBoxes.
It is worth noting that the interpretation of an assertion is a
truth value and not a sub-graph.

• (C(i))I = iI ∈ CI

• (R(i, j))I = (iI , jI ) ∈ RI

• (¬R(i, j))I = (iI , jI ) 6∈ RI

• (i = j)I = (iI = jI )
• (i 6= j)I = (iI 6= jI )
• (C ⊆ C ′)I = (CI

⊆ C ′I )
• (R ⊆ R′)I = (RI ⊆ R′I )
• (Transitive(R))I = > iff ∀x, y, z ∈ 1I .R(x, y)I and
R(y, z)I implies R(x, z)I

• (Reflexive(R))I = > iff ∀x ∈ 1I .R(x, x)I

• (Irreflexive(R))I = > iff ∀x ∈ 1I .¬R(x, x)I

• (Symmetric(R))I = > iff ∀x, y ∈ 1I .R(x, y)I implies
R(y, x)I

• (Asymmetric(R))I = > iff ∀x, y ∈ 1I .R(x, y)I implies
¬R(y, x)I

• (Functional(R))I = > iff ∀x ∈ 1I there exists at most
one y ∈ 1I such that R(x, y)I

Definition 11 (Interpretation Induced by a Decorated
Graph): Let G = (N ,E,8N ,8E , s, t) be a graph over an
alphabet (C,R) such that C0 ∪ O ⊆ C and R0 ⊆ R. The
interpretation induced by the graph G, denoted (1G, ·G) such
that 1G

= N, cG0 = {n ∈ N | c0 ∈ 8N (n)}, for every atomic
concept c0 ∈ C0, rG0 = {(n,m) ∈ N ×N |∃e ∈ E .s(e) = n and
t(e) = m and r0 = 8E (e)}, for every atomic role r0 ∈ R0,
oG = {n ∈ N |o ∈ 8N (n)} for every nominal o ∈ O.
We say that a node n of a graph G satisfies a formula φ,

written n |H φ if n ∈ φG . We say that a graph G is a model
of formula φ (or satisfies φ), written G |H φ if φG = N that
is every node of G belongs to the interpretation of φ induced
by G.

Many different ontologies use smaller fragments of ALC
because many inference problems turn out to be untractable
for more expressive logics. The Web Ontology Language
OWL [28], the standard language for publishing and sharing
ontologies on the World Wide Web, defines several variants
(OWL DL, OWL EL, OWL QL and OWL RL) that are
compatible with Description Logics of various expressive
powers, and thus of various complexity.

It is also worth mentionning that there are two ways to
consider an ontology in relation to the data. In many actual
uses of ontologies, the size of the instantiated data is a prob-
lem and one of the goals is to keep it as small as possible
without loosing any information. Ontologies are then used to
generate the complete knowledge fromwhat is actually stored
in the data. This can be crucial as some of these logics lack the
finite-model property. The other approach is to consider that
the ontology forms a set of conditions that have to be met by
the data, i.e., to consider that the data is the complete model of
the accessible knowledge. In the following, we define a pre-
and postcondition, conditions that have to be true in the graph
and not the ones that cannot be proven to be false. At this
point, we do not worry about the data and instead focus on the

theoretical model which, do not need to be instantiated and
can thus be infinite. Even though Description Logics are the
de facto standard to express ontologies, they may not be the
best tool to describe some properties of the data or some of the
changes that one needs to make. We present a dynamic logic,
introduced in [29], that can be used to represent properties
that focus more on the edges and the paths in the graph.
Definition 12 Given three countably infinite and pairwise

disjoint alphabets 6, the set of names,80, the set of atomic
propositions,50, the set of atomic programs, the language of
C2PDL is composed of formulas and programs.3 We parti-
tion the set of names 6 into two countably infinite alphabets
61 and 62 such that 61 ∪ 62 = 6 and 61 ∩ 62 = ∅.
Formulas φ and programs α are defined as:

φ := > | {o} | φ0 | ¬φ | φ ∨ φ | 〈α〉φ

α := α0 | νS | α;α | α ∪ α | α
∗
| α− | φ?

where i ∈ 6, φ0 ∈ 80, α0 ∈ 50 and S ⊆ 6.
We denote by 5 the set of programs and by 8 the set of

formulas. As ususal, φ∧ψ stands for ¬(¬φ∨¬ψ) and [α]φ
stands for ¬(〈α〉¬φ).
Definition 13 Given a signature (80,50, 6), where80 is

the set of atomic formulae, 50 is the set of atomic programs
and 6 the set of nominals and partition it into 6E and 6O,
an interpretation is a tuple (1, ·I , χ) where N ⊆ 1, ·I is a
function that takes a formula φ (resp. a program π ) and such
that ∀φ0 ∈ 80.φ

I
0 ⊆ 1 (resp. ∀π0 ∈ 50.π

I
0 ⊆ 1 × 1)

and χ is the naming function, from 6 to 1. χ is such that
χ (6E ) = N and χ (6O) = 1\N. We require that χ and 8N
agree on 6E . In the following, φ0 ∈ 80, π0 ∈ 50, o ∈ 6,
S ⊆ 6:
• >

I
= 1

• {o}I = χ (o)
• (¬φ)I = 1\φI

• (φ ∨ ψ)I = φI ∪ ψI

• ([π ]φ)I = {x ∈ 1|∀y ∈ 1.(x, y) ∈ πI
⇒ y ∈ φI}

• (π ∪ α)I = πI
∪ αI

• (π;α)I = {(x, y) ∈ 1 × 1|∃z ∈ 1.(x, z) ∈ πI and
(z, y) ∈ αI}

• (π−)I = {(x, y) ∈ 1×1|(y, x) ∈ πI
}

• (π∗)I = {(x, y) ∈ 1×1|x = y or ∃z ∈ 1.((x, z) ∈ πI

and (z, y) ∈ (π∗)I )}
• (νS )I = {(x, y) ∈ 1×1|x ∈ χ (S) and y ∈ χ (S)}
• (φ?)I = {(x, y) ∈ 1×1|x = y and x ∈ φI}

We write ν instead of ν6 in order to shorten formulae.
As usual, 〈π〉φ is shorthand for ¬([π ]¬φ) and φ ∧ ψ is
shorthand for ¬(¬φ ∨ ¬ψ).
The notion of interpretation induced by a decorated graph

is obtained in the same way as it was in the case of description
logics.

None of the logics we used before contain existentially or
universally quantified variable. This will become important
in the next section. We introduce the first-order logic that
enables us to define existential and universal variables.

3This notion of programs is borrowed from Propositional Dynamic Logic.

VOLUME 6, 2018 64733



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 4. Weakest preconditions w.r.t. actions and strategies, where a (resp. α, αρ ) stands for an elementary action (resp. action, the right-hand side
of a rule ρ) and Q is a formula.

FIGURE 5. Verification conditions for strategies.

Definition 14 (First-Order Formula): Let A = (V, C,R)
where V is a set of variables, C is a set of unary predi-
cates, and R is a set of binary predicates including equal-
ity ( = ). Given x, y ∈ V , C ∈ C and R ∈ R,
the set of first-order formulas φ we consider is defined by:
φ := > | C(x) | R(x, y) | x = y | ¬φ | φ ∨ φ | ∃x.φ
For the sake of conciseness, we define ⊥ ≡ ¬>, φ ∧ ψ ≡
¬(¬φ ∨ ¬ψ), ∀x.φ ≡ ¬(∃x.¬φ).
A variable x is free in φ iff φ = C(t0), φ = R(t0, t1)

or φ = ‘‘t0 = t1’’ and x occurs in t0 or t1, or φ = ¬ψ
or φ = ψ ∨ ψ ′ and x is free in ψ and ψ ′, or φ = ∃y.ψ
and x is free in ψ and x is different from y. A formula with
no free variable is a sentence. We only consider sentences
hereafter.
Definition 15 (Model): Let G = (N ,E,8N ,8E , s, t) be

a graph over the alphabet (C,R), an interpretation over the
alphabet (V, C,R) is a tuple (1, ·I ) such that N ⊆ 1 and ·I

is a function over formulas defined by:

• >
I is true

• C(x)I is true if and only if C ∈ 8N (x)
• R(x, y)I is true if and only if ∃e ∈ E .s(e) = x and
t(e) = y and R ∈ 8E (e)

• x =I y is true if and only if x is y
• (∃x.φ)I is true if and only if ∃n ∈ N .φ[x → n]I where
φ[x → n] is φ where each occurrence of x is replaced
with n

• (¬φ)I is true if and only if not φI

• (φ ∨ ψ)I is true if and only if φI or ψI

We say that a graph G models a first-order formula φ,
written G |H φ if there exists an interpretation (1, ·I ) such
that φI is true.
Satisfiability of formulae in first-order logic is known to

be undecidable. We thus advise to use decidable fragments
of first-order logic such as C2 [30], the two variable fragment
of first-order logic with counting, i.e., only two variables (for
instance, x and y) can be ever be used.

IV. VERIFICATION

Previously, we have shown how to use logics to label edges
and nodes of graphs. We now go a little further and show how
we can use logics to define specifications for the transforma-
tions we want to perform, i.e., how to define conditions that
wewant to be satisfied by the graph after the transformation is
performed, given that it may have satisfied another (possibly
identical) set of conditions initially.
Definition 16 (Specification): A specification SP is a

triple {Pre}(R, s){Post} where Pre and Post are formulas
(of a given logic), R is a graph rewriting system and s is a
strategy.
Example 17 If we reuse the strategy s0 ≡ ρ0!; ρ0?;

(ρ1 ⊕ ρ′0)
∗ previously defined in Example II, a specification

could be {C ⊆ 8A}(R0, s0){¬B(o)}.
Definition 18 (Correctness): A specification SP is said to

be correct iff for all graphs G, G′ such that G ⇒s G′ and
G |H Pre, then G′ |H Post.
In order to prove the correctness of a specification, we use

a Hoare-like approach [31]. The idea is that it is possible to
split the transformation into elementary changes that impact
the graph in a known and controlled way. In such a situation,
given the postcondition that needs to be achieved, it becomes
possible to generate the weakest precondition that ensures
that the postcondition will be satisfied. This can then be
iterated to generate the weakest precondition for the whole
transformation.

This process is achieved by two functions: the weakest-
precondition wp(s,Q) and the verification condition vc(s,Q)
for a strategy s and a postcondition Q. More details can be
found in [32]. The definitions of these functions are given
in Fig. 4 and Fig. 5 respectively.

The weakest preconditions and verification conditions
introduce new logic constructors to deal with elementary
actions called substitutions and written Q[a] where Q is a
logic formula and a is an action. Intuitively, a graph G is

64734 VOLUME 6, 2018



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

a model of the formula Q[a] if and only if G[a], the graph
obtained by performing action a on G, is a model of φ.
Definition 19 (Substitutions): To each elementary action

a is associated a substitution, written [a], such that for all
graphs G and DL formula φ, (G |H φ[a])⇔ (G[a] |H φ).
It is worth noting that the weakest precondition of a

closure, s∗, is invs, an invariant for that closure. This invariant
is not part of the original specification but needs to be speci-
fied. We thus modify the notion of specification.
Definition 20 (Annotated Specification): An annotated

specification SP is a triple {Pre}(R, s){Post} where Pre and
Post are formulas (of a given logic), R is a graph rewriting
system, s is a strategy and every closure in s is annotated with
an invariant.
Example 21 As the strategy s0 ≡ ρ0!; ρ0?; (ρ1 ⊕ ρ′0)

∗

previously defined contains a closure, we annotate it. This
yields, for instance, s1 ≡ ρ0!; ρ0?; (ρ1 ⊕ ρ′0)

∗
{C ⊆

∃agents_in.Cp} and the associated annotated specification is
{C ⊆ 8A}(R0, s1){¬B(o)}.
Now that the notions of the weakest precondition and the

verification condition are defined, we can look back at the
original problemwewere trying to solve.We define a formula
that represents the correctness of a specification.
Definition 22 (Correctness Formula): We call correctness

formula of an annotated specification SP = {Pre}(R, s)
{Post}, the formula:

correct(SP) = (Pre⇒ wp(s,Post)) ∧ vc(s,Post).

Theorem 23 (Soundness): Let SP = {Pre}(R, s){Post} be
an annotated specification. If correct(SP) is valid, then for
all graphs G, G′ such that G ⇒s G′, G |H Pre implies
G′ |H Post.

Deciding whether a specification is correct can be trans-
lated into deciding the validity of a given formula. This is
one of the main reasons why we focused on decidable logics
in Section III. Another possible choice is to only consider
tractable logic so that verification becomes achievable in a
reasonable timeframe.

The decidability of the validity problem for the logic used
to label the graph is not, however, the only condition for the
decidability of the correctness problem. The definitions of
the weakest preconditions introduced substitutions as a new
formula constructor. In order for the correctness problem to
be decidable, these new constructs must be expressible in
the logic, i.e., the logic must be closed under substitutions.
We repeat here some relevant theorems from previous papers
[25], [29], [32] dealing with substitutions.
Theorem 24 [25]: The Description Logics ALCUO,

ALCUOI, ALCUOSelf , ALCUOIQ, ALCUOISelf and
ALCUOIQSelf are closed under substitutions.
Theorem 25 [25]: The Description Logics ALC, ALCU ,

ALCO, ALCI, ALCQ, ALCSelf , ALCUI, ALCUQ,
ALCUSelf , ALCOI, ALCOQ, ALCOSelf , ALCIQ,
ALCISelf , ALCQSelf , ALCUOQ, ALCUIQ,
ALCUISelf , ALCUQSelf , ALCOIQ, ALCOISelf ,
ALCOQSelf , ALCIQSelf , ALCUOQSelf ,

ALCUIQSelf and ALCOIQSelf are not closed under
substitutions.
Theorem 26 [29]: C2PDL is closed under substitutions.
Theorem 27 [32]: C2 is closed under substitutions.
For all the logics that are closed under substitution,

the proof consists in a set of rewrite rules that conserve the
interpretation. For instance, given C0 an atomic concept, σ a
substitution, i and j individuals and π0 a program:

• >σ  >
• C0[addC (C0, i)] C0 ∨ {i}
• (∃r0.C)[delE (i, j, r0)] (¬{i}∧∃r0.(C[delE (i, j, r0)]))∨
(∃r0.(¬{j} ∧ C[delE (i, j, r0)]))

Another possible problem is that the logic needs to be able
to express the existence (and absence) of a match. First-order
logic can express App(ρ) by using an existential variable for
every node of the left-hand side of the rule ρ. This is not
possible in the other types of logics we considered as they
do not allow to define an unlimited number of variables.
There is thus a limitation on what can appear on the left-hand
side of the rules.

It is possible to express that a match exists at specific
nodes by introducing new nominals as existential variables.
If the correctness formula is valid, the formula is to be correct
no matter which nodes of the graph are labeled with the
additional nominals. However, the resulting formula is not
equivalent to the existence of a match and, in particular, its
negation is not equivalent to the non-existence of amatch. It is
possible to express the non-existence of a match when some
conditions on the rules are satisfied (for instance, if the
left-hand side is acyclic) but we do not go into details in this
paper.

V. APPLICATION TO MALARIA SURVEILLANCE
Now that we have formally introduced the verification of
graph transformations, we show how this framework can be
used in the context of malaria surveillance and prevention,
where dealing with dynamic data sources andmaintaining the
integrity of integrated data sources are utmost importance.

We present a few examples of graph transformations that
can take place in the context of malaria surveillance and
demonstrate how our method for verification can be used to
verify their correctness.

A. VERIFICATION OF DATA EVOLUTION
Let us assume that we are maintaining a database, i.e., a
graph, that contains data about the drugs used to treat malaria.
We assume that this database is aligned and consistent with
the IDOMAL ontology [7]. A new drug n is added to the
database and an old one o is removed. We know that n is a
version of Chloroquine and o is a version of bulaquine. Such
a change is, for instance, the result of the SQL code in Fig. 6.

For the sake of simplicity, we only report here parts of
the IDOMAL ontology that are relevant. The axioms that
we use are ψ0 ≡ Bulaquine ⊆ 8 − aminoquinoline, ψ1 ≡

Chloroquine ⊆ 4 − aminoquinoline, ψ2 ≡ Chloroquine ⊆
∃agent_in.Chemoprolaxis, ψ3 ≡ Chloroquine ⊆

VOLUME 6, 2018 64735



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 6. Example of SQL codes that modify a database.

∃part_of .ArtesunateAndChloroquineCombination andψ4 ≡

Reflexive(has_part). In this example, we assume that the
ontology represents both the initial state of the data, i.e., we
assume that the data is consistent with the ontology, and the
expected final state of the data, i.e., we want the data to still
be consistent with the ontology after the change. We add to
the precondition that there exists a drug named ‘‘o’’ of type
‘‘Bulaquine’’.

We use the rule system in Fig. 2 to represent the change.
The corresponding strategy is ρ0!; ρ1!, i.e., apply ρ0 and then
ρ1 exactly once.

Let us rewrite the precondition in ALCUOSelf . For
the sake of conciseness and to make the formulas more
readable, we will abbreviate Bulaquine as B, Chloroquine
as C , 8 − aminoquinoline as 8A, 4 − aminoquinoline as 4A,
Chemoprolaxis as Cp and ArtesunateAndChloroquine
Combination as A&C . The axioms become ψ0 ≡ ∀U .
(B ⇒ 8A), ψ1 ≡ ∀U .(C ⇒ 4A), ψ2 ≡ ∀U .(C ⇒
∃agent_in.Cp), ψ3 ≡ ∀U .(C ⇒ ∃part_of .A&C) and
ψ4 ≡ ∀U .(∃has_part.Self ). We now define the specification.
The postcondition is Post ≡ ψ0∧ψ1∧ψ2∧ψ3∧ψ4 and the
precondition is Pre ≡ Post ∧ ∃U .({o} ∧ B).

It is now possible to generate the correctness formula for
the specification {Pre}(R0, ρ0!; ρ1!){Post}. In order to save
space, we do not show the algorithm and the proof of its cor-
rectness that lead to the exact formula but interested readers
can find it in [25].

The result is Pre⇒ (∃U .({o} ∧B)∧ (∃U .({i} ∧ {o} ∧B)∧
φ0 ∧ φ1 ∧ φ2 ∧ φ3 ∧ φ4)) where:

• φ0 ≡ ∀U .((B ∧ ¬{i})⇒ (8A ∧ ¬{i})),
• φ1 ≡ ∀U .(((C ∨ {n}) ∧ ¬{i})⇒ (4A ∧ ¬{i})),
• φ2 ≡ ∀U .(((C ∨ {n}) ∧ ¬{i})⇒
(¬{i} ∧ ∃.agent_in.(Cp ∧ ¬{i}))),

• φ3 ≡ ∀U .(((C ∨ {n}) ∧ ¬{i})⇒
(¬{i} ∧ ∃.part_of .(A&C ∧ ¬{i}))) and

• φ4 ≡ ∀U .(¬{i} ⇒ ∃has_part.Self ).

Let us now check if the specification is correct. The eva-
lution of the φi’s is affected by the labeling of the node n,
the node i and all the other nodes globally. All the implica-
tions of theψi are trivially true at i because the left side of the
inclusion is false. It is also straighforward that for every node
that is neither i nor n, ψi ⇒ φi. This is not true, however,
for n as there is no reason for 4A to be a label of n. This
specification is thus incorrect.

In order to solve this problem, we modify the rule ρ0.
We obtain the rule ρ′0 of Fig. 2. The left-hand side is modified
to make possible the creation of the missing edges by adding
their targets, a and c. The right-hand side of the rule now adds
that n is an 8− aminoquinoline and creates edges leading to
a and c respectively labeled with part_of and agents_in. The
resulting correctness formula is:
Pre⇒ ∃U .(({a} ∧ A&C) ∧ ∃U .({c} ∧ Cp)) ∧

(∃U .({o} ∧ B) ∧ (∃U .({i} ∧ {o} ∧ B) ∧
χ0 ∧ χ1 ∧ χ2 ∧ χ3 ∧ χ4)) where:

• χ0 ≡ φ0,
• χ1 ≡ ∀U .(((B ∨ {n}) ∧ ¬{i})⇒ ((4A ∨ {n}) ∧ ¬{i})),
• χ2 ≡ ∀U .(((C ∨ {n}) ∧ ¬{i})⇒
(¬{i} ∧ ({n} ∨ ∃.agent_in.(Cp ∧ ¬{i})))),

• χ3 ≡ ∀U .(((C ∨ {n}) ∧ ¬{i})⇒
(¬{i} ∧ ({n} ∨ ∃.part_of .(A&C ∧ ¬{i}))) and

• χ4 ≡ ∀U .(¬{i} ⇒ ({n} ∨ ∃has_part.Self )).

The problem of n is now solved as it appears on both sides of
the implications.4

As proved in [25] the least expressive logics are not suit-
able for verification. It is, however, possible to express the
less expressive specifications in more expressive logics. This
has a cost in terms of complexity of verification. The com-
plexity of verification itself depends on the size of the specifi-
cation, and not the size of data, thus it is usuallymuch smaller.

The grammar used for OBO [33] is more expressive than
the one used in [25]. For instance, the OBO format also
allows the use of some axioms like Transitive(R) or R ⊆ R′

that cannot be easily expressed in those logics. It is, however,
possible to split the specifications into multiple parts and use
a combination of several types of logics depending on the
needs and requirements.

We use the same rules and strategy as before but the
precondition and the postcondition are now Antisymmetric
(has_part). This can be translated to C25 [30]: ∀x, y.part_of
(x, y)⇒ ¬part_of (y, x). As C2 is known to be closed under
substitution and to be able to express the existence of a
match for the rules we used, it is possible to prove that this
specification is correct.

4The fact that n and i are different is important here. The actual correctness
formula checks that as well but it would require us to introduce details that
do not add much to the narrative of this paper.

5C2 strictly contains the logics in [25] but the complexity of its satisfia-
bility problem is harder than the ones for some of the least expressive logics.

64736 VOLUME 6, 2018



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 7. Example of rules used in the knowledge base model example. They form the rewrite rule system Rkb.

The correctness formula that we obtain is Pre ⇒

∃x, y.(c(x) ∧ Cp(x) ∧ a(y) ∧ A&C(y)) ∧ ∃x.(o(x) ∧ B(x)) ∧
∀x, y.(part_of (x, y) ∨ (n(x) ∧ a(y)) ⇒ ¬part_of (y, x) ∧
(¬n(y)∨¬a(x))). To prove that this formula is correct, we dis-
tinguish between the case where (x, y) = (n, a) and the case
where it is not so. As n was created by the transformation,
it has no incoming or outgoing edge labeled with part_of
except for the one to a. The former case is thus correct. The
latter case is implied by the precondition and the fact that y
cannot be n as n has no incoming edge.

It is also likely that data is modified in order to have
an impact on what it represents. This means that either the
ontology or some specific relations between elements of the
data will be modified to reach the goal. In such a situation,
one can use a logic completely different from the ones used
in the ontology.

Let us assume that the goal of the introduction of the
new drug n is to have a drug that is part_of something
that is an agent_in ChemotherapyOfMalaria and part_of
something, possibly a different one, that is an agent_in
MalariaPreventionInIndividuals. The ontology says that
part_of and agent_in are transitive but this is usually
not reflected in the data. To simulate this, we use the
transitive closure from C2PDL [29] after the transforma-
tion 〈ν〉(〈part_of ∗; agent_in∗〉ChemotherapyOfMalaria) ∧
(〈part_of ∗; agent_in∗〉MalariaPreventionInIndividual).
A correct specification can then be found if the data is such
that, i.e., satisfies a precondition containing, for instance,
[ν](A&C ⇒〈part_of ∗; agent_in∗〉ChemotherapyOfMalaria)
∧[ν](Cp⇒ 〈agent_in∗〉MalariaPreventionInIndividual).
Splitting a verification problem into smaller problems

using different logics is far from trivial. One needs to be
able to express the labels occuring in the right hand-side of
the rules in all of the logics and determining the part of the
precondition and postcondition that form the right specifica-
tion. This, however, allows the user to have access to more
expressive power when defining the pre- and postconditions.

B. GRAPH TRANSFORMATION FOR
ONTOLOGY REALIZATION
As mentioned in Section III there were two ways to view
ontologies: as constraints that the data has to follow or as
rules to obtain the knowledge from a model containing all
the information needed to infer the data. In the application
of verifications, we tend to use the first view more. It is,

however, possible to realize the second view via graph trans-
formations.

Let us assume that the ontology we are working with
contains the axiom C ⊆ ∃agents_in.Cp. One can use the
rules ρ0 and ρ1 of Fig. 7 to make the axiom true. The rule
ρ0 and ρ1 both search for a C that does not have an outgoing
edge labeled with agents_in leading to a Cp. This means that
they look for an element that does not satisfy the axiom. ρ0
connects that element to an existingCpwhile ρ1 creates a new
one. A correct specification would then be {>}(Rkb, (ρ0 ⊕
ρ1)∗{>}){C ⊆ ∃agents_in.Cp}. This specification is cor-
rect because the correctness formula is, when translated to
first-order logic, ∀x.(¬C(x)∨∃y.Cp(y)∧agents_in(x, y))⇒
∀x.(C(x) ⇒ ∃y.Cp(y) ∧ agents_in(x, y)). That formula is
trivially valid because both sides of the implication are the
same formula. The left-hand side is the negation of the appli-
cation condition of ρ0 and ρ1 and the right-hand side is the
postcondition.

Assuming there are rules for every axiom of the ontology,
it is possible to generate all its instances. This method can
then be used to reason about every possible model of the
knowledge. The rules become much more complex when
dealing with more than one axiom. In such a case, one needs
to make sure that the axioms interact in a meaningful way.

C. VERIFICATION OF ONTOLOGY UPDATE
Data is not the only part that can change or that can be
modeled as a graph. Ontologies represented in OBO format
are alreadymodeled as graphs with every concept represented
as a node.

The five axioms of IDOMAL we used previously can
be expressed as is_a(B, 8A), is_a(C, 4A), agents_in(C,Cp),
part_of (C,A&C) and Reflexive(has_part).
The ontologies evolve as new axioms, concepts and rela-

tionships are added, removed, or renamed, etc. These changes
and transformations can be expressed as graph transforma-
tions, similar to what has been done for data.

The ontologies VSMO [5] and NCBITaxon [34] both
define the concept Anopheles, a genus of mosquito known
as a primary vector for transmitting malaria. Both describe
the same entities but they are not always interchangeable.
If an ontology imports these two ontologies, it might end
up with some Anopheles according to the VSMO definition
and some according to the NCBITaxon. A solution would be
to search for every instance of only one of the Anopheles

VOLUME 6, 2018 64737



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 8. Example of rules used for the ontology update. They form the rewrite rule system Rou.

definitions and add the missing one. The rules doing that
action, ρ2 and ρ3, are shown in Fig. 8. The strategy would
then be sou ≡ (ρ2 ⊕ ρ3)∗. In order to use it in an annotated
specification, we annotate it with the tautological invariant:
sou ≡ (ρ2 ⊕ ρ3)∗{>}.
Let us now look at the specification {>}(Rou, sou){VSMO_

Ano ≡ NCBI_Ano}. It says that after the transformation the
two definitions of Anopheles will be interpreted the same
way. This can easily be proved to be correct.

However, in the final result, there are still two differ-
ent names for the same concept even if they agree on
every interpretation. This makes things error-prone as, hence-
forth, every time any of the two concepts is modified the
other has to be modified as well. Another solution would
be considering the ontologies as the data and modifying
them. To do so we use rule ρ4 of Rou that merges the
two concepts. One can then prove that the specification
{>}(Rou, ρ4; ρ

′∗

2 {>}){∀U .¬{VSMO_Ano} ∧ VSMO_Ano ⊆
⊥} is correct. The result of applying this strategy is shown
in Fig. 9. The graph that is modified in that case contains
both the ontologies and the data they represent. It is possible
to split that into two different specifications, for instance
{>}(Rou, ρ4){∀U .¬{VSMO_Ano}} dealing with the ontology
and {>}(Rou, ρ

′∗

2 {>}){VSMO_Ano ⊆ ⊥} dealing with the
data. Another possibility is to replace the specification deal-
ing with the data with another one where the initial state of
the ontology, sayO as the precondition and the postcondition
is the result we are looking for, say O ∪ {VSMO_Ano ⊆ ⊥}.

D. VERIFICATION OF ONTOLOGY INTERACTIONS
It is also possible to consider ontologies as nodes of the
graphs. In this way, the edges of graphs represent how the
ontologies interact with each other. It would, for instance,
keep track of which ontologies import any given ontology or
which ontologies are in conflict with each other.

Importing ontology o0 in the ontology o1 would then
result in a specification of the sort {∀x, y.imports(x, y) ⇒

¬conflict(x, y)}(R, ρ){∀x, y.imports(x, y) ⇒ ¬conflict
(x, y)} where ρ is a rule that simply executes the elementary
action addE (o0, o1, imports).
Once again, the various levels of graph transformation

might work together. Let us again consider the transformation
shown in the previous subsection where the definitions of
Anopheles in the VSMO ontology and the NCBI ontology
are merged. That means these two ontologies are modi-
fied, inducing a new transformation at the ontology level:
addC (VSMO,Modified); addC (NCBI ,Modified). This could
prevent the import of those ontologies until it has been proven
that changes do not harm the consistency of the underlying
knowledge bases. If all the knowledge bases are still con-
sistent, the Modified tags can be removed. Otherwise, some
alterations to the ontology or data may be induced by the
changes, possibly inducing new changes in other dependent
ontologies in the process, until a new stable state is reached.
All of these changes can be modeled using graph transforma-
tions and proven to be correct, or not, using verification.

E. LANGUAGE INTEROPERABILITY
Malaria affects many people living in different countries or
regions of the world and using a variety of different languages
to communicate. Therefore, maintaining language interoper-
ability is crucial in malaria surveillance systems with data
sources scattered in various geographical locations and set-
tings. There are many ways to look at language interoperabil-
ity. One way is to consider that there exists a set of uniform
and homogeneous ontologies, supposedly written in English,
that describe malaria surveillance. However, some pieces
of data coming from other countries may use a different
language. To create an interoperable knowledge base, it is
required to express the non-English data into the English
ontologies (and vice-versa).

For instance, we plan on using IDOMAL with another
piece of data expressed in French and containing the
information that d is a mosquito on which a test t has been
done 2 hours after a blood meal. This corresponds to the data

64738 VOLUME 6, 2018



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

FIGURE 9. Example of application of the strategy ρ4; ρ
′∗

2 . Blue rectangles are nodes labeled with NCBI_Ano, red ellipses are
labeled with VSMO_Ano, black circles are labeled with MosquitoPopulation and green diamonds with Bioassay .

Moustique(d);TestSurMoustique(t); 2HeuresApresRepas
(i); SujetTest(t, d); InstantTest(t, i). In order to express it into
IDOMAL, one has to look at the ontology and find similar
relations and concepts. For instance, IDOMAL contains the
concepts Culicidae, InvestigationRelatingToTheInsectVector
and 2Hours
AfterBloodMeal that are near perfect translations of the con-
cepts in French. It is thus possible to apply a transformation
similar to the one that was done in the case NCBI_Ano and
VSMO_Ano to modify the data so that it is now accessible in
both languages.

The issue is that such a task has to be executed for every
data source, ontology pair by someone that is proficient in
both languages to create the rules instantiating the data in both
languages. A more efficient way to deal with the problem,
notwithstanding the problems of maintaining both versions
at the same time, would be to create equivalent ontologies in
both languages so that data can be linked to the ontology in
the target language. The exact same transformations would
then be used but they can be generated automatically instead
of being created by hand.

Another way to approach the problem is to assume that
ontologies already exist in different languages and that we
want tomake them cross-compatible. This amounts to finding
equivalent concepts in both ontologies, e.g. Moustique and
Culicidae and adding an equivalency edge between those
concepts: addE (Moustique,Culicidae, equivalent). As men-
tioned previously, such a change would trigger some other
changes to both ontologies (it makes sense that equivalent
be an equivalence relation and thus symmetric, transitive and
reflexive) and in the data that they model.

VI. DISCUSSION AND CONCLUSION
In this paper, we introduced the notions of logically dec-
orated graphs, graph transformation and verification for
change management in malaria surveillance data sources and
systems.

The goal is to use these theoretical tools to model, rep-
resent, integrate and manage the dynamic knowledge neces-
sary for efficient disease surveillance and response at local,
national and global scales. This approach has been
successfully applied through multiple experiments within

VOLUME 6, 2018 64739



J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

the Semantics, Interoperability, and Evolution for Malaria
Analytics (SIEMA) platform [35]–[37]. The proposed frame-
work is domain independent and can be generalized to other
domains, where maintaining interoperability of dynamic
evolving and temporal data sets is the integral focus. Our
method isolates the parts that remain unchanged and there-
fore enables concurrent changes within an integrated system
with minimum interruption to the system’s operation for a
certain time interval. This results in improved interoperability
between different data sources and health systems, minimiza-
tion of errors and uncertainties in malaria analytics, better
utilization of limited health-care resources and improved
timeliness of data collection to analysis and decision-making
to reduce morbidity and mortality from Malaria.

Our use of graphs and graph transformations yields three
very important results. First, they offer a standard and simple
way to represent the data and, more importantly, the way
it evolves. Second, the proposed framework is independent
of any particular domain, algorithm, protocol, or implemen-
tation language. This is critical for improving reusability
and portability of our solution for several other application
domains. Third, another major contribution of our work is
in terms of correction and automation. Being able to prove
that the transformations have the anticipated effect is vital in
maintaining interoperability and generating timely responses
to temporal queries regarding the disease surveillance. Not
only does it allow to check that data and ontology updates do
not conflict with the domain knowledge, it allows to safely
work with disparate and distributed data sources, most of
which are outside of the end-users’ control to modify. Being
able to prove the existence of a conflict or an inconsistency is
a step forward in adressing the interoperability problem. The
fact that this verification can be automatedmakes it alsomuch
easier for anyone to manage the interoperability between
heterogeneous dynamic knowledge bases in the field. Veri-
fication of graph transformation is still a recent development
and there are many opportunities to improve the tools and
formalisms presented in this manuscript.

Multiple stakeholders will benefit from utilizing this
graph-based toolset including but are not limited to knowl-
edge engineers, epidemiologists and biostatisticians and
surveillance experts. The choice of the logic(s) used to
express the conditions and label the graphs is one of the
most important decisions that needs to be made in our pro-
posed framework. While making this decision, there is a lot
of ground that needs to be covered at the border between
tractability or decidability and expressive power required for
each specific task. Furthermore, in particular in Descriptions
Logic, the validity of a formula is an unusual problem for
which efficient tools and heuristics need to be researched
and created. This means that the complete automation of the
verification is not yet achieved. There are also many tangen-
tial ways to look at the problem from finding ways to use the
values in the data in the logics, to automatic generation of
specifications and transformations induced by known trans-
formations to different definitions of graphs and the logic

adapted to deal with them. To the best of our knowledge,
this work is the first attempt to exploit the theories of graph
transformation and verification to address change manage-
ment and evolution in distributed global health surveillance
systems and resources.

Our future works will focus on different directions. In this
paper, we have generally assumed that the verification hap-
pened in a context where the exact changes to the data or
the ontologies are known. This is not always the case in
many real-world applications, where many types of changes
may occur unplanned. So, we will continue our efforts on
automatically identifying and classifying these changes. Fur-
thermore, the ability to use different types of logics increases
the expressivity of the specifications, however, using expres-
sive logics may cause verification problems and an added
complexity. We are including more expressive constructors,
e.g., transitivity, as well as finding fragments for which the
verification is tractable.

ACKNOWLEDGMENTS
This work was submitted on 08/08/2018.

REFERENCES
[1] World Health Organisation. The Top 10 Causes of Death, 2015. Accessed:

Jun. 28, 2017. [Online]. Available: https://www.who.int/mediacentre/
factsheets/fs310/en/index1.html

[2] ‘‘World malaria report 2017,’’ World Health Org., Geneva, Switzerland,
Tech. Rep., 2017.

[3] S. Hales, S. J. Edwards, and R. S. Kovats, Impacts on Health of Climate
Extremes. 2003, pp. 79–102.

[4] J. Sachs and P. Malaney, ‘‘The economic and social burden of malaria,’’
Nature, vol. 415, no. 6872, pp. 680–685, Feb. 2002, doi: 10.1038/
415680a.

[5] S. Lozano-Fuentes, A. Bandyopadhyay, L. G. Cowell, A. Goldfain, and
L. Eisen, ‘‘Ontology for vector surveillance and management,’’ J. Med.
Entomology, vol. 50, no. 1, pp. 1–14, Jan. 2013.

[6] P. Topalis, E. Mitraka, V. Dritsou, E. Dialynas, and C. Louis, ‘‘IDOMAL:
The malaria ontology revisited,’’ J. Biomed. Semantics, vol. 4, p. 16,
Sep. 2013, doi: 10.1186/2041-1480-4-16.

[7] Malaria Ontology. Accessed: Jul. 2, 2017. [Online]. Available:
https://bioportal.bioontology.org/ontologies/IDOMAL

[8] E. Dialynas, P. Topalis, J. Vontas, and C. Louis, ‘‘MIRO and IRbase:
IT tools for the epidemiological monitoring of insecticide resistance in
mosquito disease vectors,’’ PLOS Neglected Tropical Diseases, vol. 3,
no. 6, p. e465, Jun. 2009, doi: 10.1371/journal.pntd.0000465.

[9] Mosquito Insecticide Resistance Ontology. Accessed: Jul. 2, 2017.
[Online]. Available: https://bioportal.bioontology.org/ontologies/
MIRO

[10] A. Shaban-Nejad and V. Haarslev, ‘‘Bio-medical ontologies maintenance
and change management,’’ in Biomedical Data and Applications. 2009,
pp. 143–168, doi: 10.1007/978-3-642-02193-0_6.

[11] H. H. Goldstine and J. von Neumann, Eds., Planning and Coding of
Problems for an Electronic Computing Instrument. Princeton, NJ, USA:
Institute for Advanced Study, 1947.

[12] A. M. Turing, ‘‘Checking a large routine,’’ in Proc. Rep. Conf. High Speed
Autom. Calculating Machines, 1949.

[13] Sparql Protocol and RDF Query Language. Accessed: Jul. 2, 2017.
[Online]. Available: https://www.w3.org/TR/rdf-sparql-query/

[14] A. Shaban-Nejad and V. Haarslev, ‘‘Managing changes in distributed
biomedical ontologies using hierarchical distributed graph transforma-
tion,’’ Int. J. Data Mining Bioinf., vol. 11, no. 1, pp. 53–83, Dec. 2015,
doi: 10.1504/IJDMB.2015.066334.

[15] A. Shaban-Nejad and V. Haarslev, ‘‘Incremental biomedical ontology
change management through learning agents,’’ in Proc. KES Int. Symp.
Agent Multi-Agent Syst., Technol. Appl., Incheon, South Korea, Mar. 2008,
pp. 526–535, doi: 10.1007/978-3-540-78582-8_53.

[16] A. Shaban-Nejad, O. Ormandjieva, M. Kassab, and V. Haarslev, ‘‘Man-
aging requirement volatility in an ontology-driven clinical lims using
category theory,’’ Int. J. Telemedicine Appl., vol. 2009, Dec. 2009,
Art. no 917826. [Online]. Available: http://arxiv.org/abs/0906.1842

64740 VOLUME 6, 2018

http://dx.doi.org/10.1038/415680a
http://dx.doi.org/10.1038/415680a
http://dx.doi.org/10.1186/2041-1480-4-16
http://dx.doi.org/10.1371/journal.pntd.0000465
http://dx.doi.org/10.1007/978-3-642-02193-0_6
http://dx.doi.org/10.1504/IJDMB.2015.066334
http://dx.doi.org/10.1007/978-3-540-78582-8_53


J. H. Brenas et al.: Applied Graph Transformation and Verification With Use Cases in Malaria Surveillance

[17] A. Rensink, Á. Schmidt, and D. Varró, ‘‘Model checking graph transfor-
mations: A comparison of two approaches,’’ in Proc. Int. Conf. Graph
Transformation, in Lecture Notes in Computer Science, vol. 3256. Rome,
Italy: Springer, 2004, pp. 226–241.

[18] A. Habel and K. Pennemann, ‘‘Correctness of high-level transformation
systems relative to nested conditions,’’Math. Struct. Comput. Sci., vol. 19,
no. 2, pp. 245–296, 2009, doi: 10.1017/S0960129508007202.

[19] C. M. Poskitt and D. Plump, ‘‘A hoare calculus for graph programs,’’ in
Proc. ICGT, 2010, pp. 139–154, doi: 10.1007/978-3-642-15928-2_10.

[20] P. Baldan, A. Corradini, and B. König, ‘‘A framework for the verification of
infinite-state graph transformation systems,’’ Inf. Comput., vol. 206, no. 7,
pp. 869–907, 2008.

[21] P. Balbiani, R. Echahed, and A. Herzig, ‘‘A dynamic logic for term-
graph rewriting,’’ in Proc. 5th Int. Conf. Graph Transformations (ICGT),
in Lecture Notes in Computer Science, vol. 6372. Springer, 2010,
pp. 59–74.

[22] J. H. Brenas, R. Echahed, and M. Strecker, ‘‘Proving correctness of
logically decorated graph rewriting systems,’’ in Proc. 1st Int. Conf.
Formal Struct. Comput. Deduction (FSCD), Porto, Portugal, Jun. 2016,
pp. 14:1–14:15, doi: 10.4230/LIPIcs.FSCD.2016.14.

[23] B. König and J. Esparza, ‘‘Verification of graph transformation systems
with context-free specifications,’’ in Proc. Int. Conf. Graph Transforma-
tion, in Lecture Notes in Computer Science, vol. 6372. Enschede, The
Netherlands: Springer, Sep./Oct. 2010, pp. 107–122.

[24] A. Schürr, ‘‘Logic based programmed structure rewriting systems,’’
Fundamenta Informaticae, vol. 26, nos. 3–4, pp. 363–385, 1996,
doi: 10.3233/FI-1996-263407.

[25] J. H. Brenas, R. Echahed, and M. Strecker, ‘‘Verifying graph transforma-
tion systems with description logics,’’ in Proc. Int. Conf. Graph Transfor-
mation, Toulouse, France, Jun. 2018, pp. 155–170, doi: 10.1007/978-3-
319-92991-0_10.

[26] R. Echahed, ‘‘Inductively sequential term-graph rewrite systems,’’ in Proc.
4th Int. Conf. Graph Transformations (ICGT), in Lecture Notes in Com-
puter Science, vol. 5214. Springer, 2008, pp. 84–98.

[27] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, Eds., The Description Logic Handbook: Theory,
Implementation, and Applications. New York, NY, USA: Cambridge Univ.
Press, 2003.

[28] Web Ontology Language. Accessed: Mar. 22, 2018. [Online]. Available:
https://www.w3.org/2001/sw/wiki/OWL

[29] J. H. Brenas, R. Echahed, and M. Strecker, ‘‘C2PDLS: A combination
of combinatory and converse PDL with substitutions,’’ in Proc. 8th
Int. Symp. Symbolic Comput. Softw. Sci. (SCSS), Gammarth, Tunisia,
Apr. 2017, pp. 29–41. [Online]. Available: http://www.easychair.
org/publications/paper/C2PDLS_A_Combination_of_Combinatory_and_
Converse_PDL_with_Substitutions

[30] E. Gradel, M. Otto, and E. Rosen, ‘‘Two-variable logic with counting
is decidable,’’ in Proc. 12th IEEE Symp. Logic Comput. Sci. (LICS),
Warschau, Poland, 1997. [Online]. Available: http://www.logic.rwth-
aachen.de/pub/graedel/gorc2.ps

[31] C. A. R. Hoare, ‘‘An axiomatic basis for computer programming,’’
Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969, doi: 10.1145/
363235.363259.

[32] J. H. Brenas, R. Echahed, and M. Strecker, ‘‘Ensuring correctness of
model transformations while remaining decidable,’’ in Proc. Int. Colloq.
Theor. Aspects Comput., Taipei, Taiwan, Oct. 2016, pp. 315–332, doi:
10.1007/978-3-319-46750-4_18.

[33] The OBO Foundry’s Operations Committee.Open Biological and Biomed-
ical Ontology Foundry. Accessed: Mar. 14, 2018. [Online]. Available:
http://obofoundry.org

[34] National Center for Biotechnology Information. National Center
for Biotechnology Information Organismal Classification. Accessed:
Mar. 14, 2018. [Online]. Available: https://bioportal.bioontology.org/
ontologies/NCBITAXON

[35] M. S. A. Manir, J. H. Brenas, C. J. O. Baker, and A. Shaban-Nejad,
‘‘A surveillance infrastructure for malaria analytics: Provisioning data
access and preservation of interoperability,’’ JMIR Public Health Surveill.,
vol. 4, no. 2, p. e10218, 2018.

[36] J. H. Brenas, M. S. A. Manir, C. J. O. Baker, and A. Shaban-Nejad,
‘‘A malaria analytics framework to support evolution and interoper-
ability of global health surveillance systems,’’ IEEE Access, vol. 5,
pp. 21605–21619, 2017, doi: 10.1109/ACCESS.2017.2761232.

[37] J. H. Brenas, M. S. A. Manir, K. Zinszer, C. J. O. Baker, and
A. Shaban-Nejad, ‘‘Exploring semantic data federation to enable malaria
surveillance queries,’’ Studies Health Technol. Inform., vol. 247, pp. 6–10,
2018, doi: 10.3233/978-1-61499-852-5-6.

JON HAËL BRENAS received a double mas-
ter’s degree in mathematical modeling and digi-
tal imagery specialized in modeling, computation
and simulation from the ENSIMAG, Grenoble,
France, and in computer engineering from the
Politecnico di Torino, Torino, Italy, and the Ph.D.
degree fromUniversité Grenoble Alpes, Grenoble,
France. He is currently a Post-Doctoral Fellow
with the Oak Ridge National Laboratory, Center
for Biomedical Informatics, and the Department of

Pediatrics at the University of Tennessee Health Science Center, Memphis,
TN, USA. His Ph.D. dissertation focus was on the verification of graph trans-
formation. His research interests lie in graphs’ and graph transformations’
application to biomedical and health informatics.

MARTIN STRECKER received the Diploma
degree in computer science from the Technical
University of Darmstadt, Germany, and the INP
Grenoble, and the Ph.D. degree from the Univer-
sity of Ulm, where he was involved on the topic of
program and proof development in Type Theory.
He was a Teaching and Research Associate at the
University of Ulm. He then joined Etas GmbH,
a subsidiary of the Bosch group, where he was
responsible for the quality assurance of a code

generator used in the embedded (in particular automotive) market. He then
participated in the Verificard project at the TU München which resulted
in the definition of a semantics for Java and the Java runtime system and,
in particular, the verification of a Java source to Java bytecode compiler.
Since joining the faculty of the Université de Toulouse in 2004, he has par-
ticipated in projects in particular on the verification of graph transformations
and possible applications in the database domain.

RACHID ECHAHED received the M.Sc. degree,
the Ph.D. degree, and the Habilitation degree.
He has been a Researcher at the CNRS (the French
Centre National de la Recherche Scientifique)
since 1991. He is also the Head of the Compu-
tation, Algorithm, Programs and Proofs (CAPP)
Group, Laboratoire d’Informatique de Grenoble,
Université Grenoble Alpes, Grenoble, France. The
research topics investigated by the CAPP group
belong to the domains of theoretical foundations

of programming, automated reasoning and quantum computing. His main
research interests are around graph and term rewriting and narrowing, pro-
gram verification, and multiparadigm programming.

ARASH SHABAN-NEJAD received theM.Sc. and
Ph.D. degrees in computer science from Concor-
dia University, Montreal, and the Master of Pub-
lic Health from the University of California at
Berkeley. He is currently an Assistant Professor
with the OAK-Ridge National Lab (ORNL), Cen-
ter for Biomedical Informatics, and the Depart-
ment of Pediatrics at the University of Tennessee
Health Science Center (UTHSC), Memphis, TN,
USA. He is also an Adjunct Faculty at the Bre-

desen Center for Interdisciplinary Research and Graduate Education, Uni-
versity of Tennessee, Knoxville, TN, USA. Prior to joining UTHSC-ORNL,
he was a Post-Doctoral Fellowwith theMcGill Clinical and Health Informat-
ics Group,McGill University. Additional training was accrued at the Harvard
School of Public Health. His primary research interest is clinical and popu-
lation health intelligence, epidemiologic surveillance and big-data semantic
analytics using tools and techniques from artificial intelligence, knowledge
representation, and semantic Web. He is also the Principal Investigator in
a global health and development research project for malaria elimination,
funded by the Bill & Melinda Gates Foundation.

VOLUME 6, 2018 64741

http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1007/978-3-642-15928-2_10
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.14
http://dx.doi.org/10.3233/FI-1996-263407
http://dx.doi.org/10.1007/978-3-319-92991-0_10
http://dx.doi.org/10.1007/978-3-319-92991-0_10
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-319-46750-4_18
http://dx.doi.org/10.1109/ACCESS.2017.2761232
http://dx.doi.org/10.3233/978-1-61499-852-5-6

	INTRODUCTION
	GRAPHS AND TRANSFORMATIONS
	LOGICS
	VERIFICATION
	APPLICATION TO MALARIA SURVEILLANCE
	VERIFICATION OF DATA EVOLUTION
	GRAPH TRANSFORMATION FOR ONTOLOGY REALIZATION
	VERIFICATION OF ONTOLOGY UPDATE
	VERIFICATION OF ONTOLOGY INTERACTIONS
	LANGUAGE INTEROPERABILITY

	DISCUSSION AND CONCLUSION
	REFERENCES
	Biographies
	JON HAËL BRENAS
	MARTIN STRECKER
	RACHID ECHAHED
	ARASH SHABAN-NEJAD


