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ABSTRACT The multi-port stowage planning problem investigates the ship’s whole route to make the
stowage plans for multiple ports. This paper formulates the multi-port stowage planning problem for
inland container liner shipping on the Yangtze River that hedges against container weight uncertainties.
A mathematical formulation based on stochastic programming of this problem is presented. Three solution
approaches, which include an exact approach based on robust optimization, an exact approach based on
stochastic chance-constrained programming, and a hybrid neighborhood search algorithm based on heuristics
are presented. Experimental results showed that the exact approaches and hybrid neighborhood search
algorithm could robustly solve the problem. With increasing ship size, numbers of operational ports, and
vessel loading rates, the exact approaches cannot guarantee the solutions for some large-scale experiments
within the time limit. The hybrid neighborhood search algorithm finds solutions for all the instances with an
average gap 1.67 %, and it outperforms the exact approaches with respect to calculation time and solution
quantity for the large-scale experiments.

INDEX TERMS Stowage planning, container weight uncertainty, stochastic programming, robust
optimization, heuristics.

I. INTRODUCTION
Inland container liner shipping connects domestic and foreign
markets and plays an important role in trade for inland cities.
In China, the total economic output of the Yangtze River
Economic Belt in 2017 had exceeded 40% of the country
as a whole. The fast development of urban economies in the
Yangtze River Economic Belt has enabled the rapid develop-
ment of container transport along the Yangtze River. In the
past 6 years, the container capacity of the Yangtze River
increased from 13.6 million Twenty-Foot Container Equiv-
alent Units (TEUs) to 16.5 million TEUs. By 2020, it is
expected that the container capacity of the Yangtze River will
reach 20million TEUs. Figure 1 shows the container shipping
network of the Yangtze River. In the network, Chongqing,
Wuhan, Nanjing, and Shanghai are hub ports belonging to
the trunk line of the river, while other ports serve as feeders
for the hub ports.

Container transport between different ports of the Yangtze
River is undertaken by inland container ships. Typical inland
container ships on the Yangtze River are made by refitting
bulk-cargo ships, which results in small ship size and no hatch

covers being installed (Figure 2). The ship is divided into
several sections called bays.Within each bay, there are several
stacks for stowing containers. Each stack has several slots,
with each slot representing a 1 TEU holding capacity.

Inland container liner shipping along the Yangtze River
primarily involves containers that are standard sized (i.e.,
20-ft containers, 40-ft containers), and the ratio of other
container types (i.e., hazardous containers, reefer containers,
and out-of-gauge containers) is very low. For hazardous con-
tainers, laws and regulations formulated by the government
have resulted in most of the inland ports of the Yangtze
River not qualifying to operate these containers. The exces-
sive management costs of these containers also make inland
ports not willing to undertake their transport. Due to the
influence of domestic consumption, there is a small mar-
ket for cold-chain logistics in China, and those cargos are
mainly transported by road. Additionally, shipping compa-
nies do not usually transport reefer containers due to their
long shipping times and high transport costs. The number of
out-of-gauge containers (e.g., 45-ft containers and high-cube
containers) is quite small, and they are stowed into the top
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FIGURE 1. The container shipping network of the Yangtze River.

FIGURE 2. The structure of typical inland container ships.

positions of stacks after stowing standard containers in prac-
tical slots. Therefore, inland container liner shipping on the
Yangtze River primarily concerns the transport of standard
containers.

Nowadays, economic competition between the inland con-
tainer ports of the Yangtze River has led to the ship owners
having dominant positions in the inland container transport
industry. Due to the surplus transport capacity in container
shipping, ship owners emphasize higher capacity utiliza-
tion in stowage planning. However, stowage planning for
container ships on the Yangtze River remains at the level
of single-port planning and relies on human experience.
Single-port stowage planning lacks consideration of stowage
plans necessary at subsequent ports along the route, which
may cause several re-handles at future ports. Re-handles
are the extra operations required to move containers within
a ship or temporarily unload containers to gain access to
containers stowed below them.Meanwhile, the physical char-
acteristics of inland ships (i.e., small size and no hatch
covers) leave them fewer options for using ballast water to
ensure stability. If the manually made stowage plan is

unreasonable, re-handles may also be necessary for ship
stability. Additionally, inland ports on the Yangtze River
generally do not weigh each container, so container weights
are usually reported by the cargo owner, which results in
inconsistencies between the actual and reported container
weights. Thus, stowage plans generated from reported con-
tainer weights would cause insufficient ship stability, necessi-
tating many re-handles. Therefore, existing stowage planning
methods for inland container liner shipping along the Yangtze
River force re-handles, which negatively effect operational
efficiency.

To meet the practical requirements of stowage planning
for inland container liner shipping along the Yangtze River,
the following aspects should be considered. First, multi-port
stowage planning for the full route should be incorporated
rather than single-port stowage planning. Second, higher
ship capacity utilization is emphasized rather than mini-
mizing the ship’s stay at ports. Third and more difficult
to achieve, is coordinating stability adjustments and effi-
ciently using full ship capacity. Finally, there are container
weight uncertainties. These characteristics make stowage
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planning for inland container liner shipping different from
that of maritime shipping.

The contribution of this article is that we formulated
a stochastic programming model (SPM) for multi-port
stowage planning that considered container weight uncertain-
ties. Three approaches were introduced to solve the prob-
lem: 1) an exact approach based on a robust optimization
model (ROM); 2) an exact approach based on a stochas-
tic chance-constrained programming model (SCPM); and
3) a hybrid neighborhood search (HNS) algorithm based on
heuristics. Finally, the solving performance and robustness of
the different methods were analyzed to give suggestions for
practical application.

The rest of the article is organized as follows: a review
of relevant literature is presented in Section 2; details of the
problem are described in Section 3; a mathematical model for
the problem based on stochastic programming is developed
in Section 4; three approaches to solving the problem are
introduced in Section 5; details of experiments performed
to assess optimization of these approaches are described in
Section 6; and finally, conclusions and future work are dis-
cussed in Section 7.

II. LITERATURE REVIEW
The existing research on stowage planning problems typi-
cally concerns maritime container shipping and is divided
into single-port stowage planning problems and multi-port
stowage planning problems. Single-port stowage planning
problems only consider making a stowage plan for a single
port, i.e. the plan of how to stow containers destined for dif-
ferent ports into the container ship at current port. Multi-port
stowage planning problems take the whole route of the ship
into account to generate stowage plans for multiple ports over
the full route.

For the single-port stowage planning problem,
Avriel et al. [1] proposed a suspensory heuristic procedure.
Later, Ding and Chou [2] developed a heuristic algorithm
that performed better than this suspensory heuristic proce-
dure. Dubrovsky et al. [3] used the genetic algorithm to solve
the problem. To study stowage planning as a whole, their
research assumed that container ships comprised a single
rectangular bay, and they formulated monolithic models for
the problem. However, this kind of grossly abstracted model
of container ship spaces made their findings unsuitable for
practical stowage planning.

Along with research that studied this problem as a whole,
there has been considerable research into solving this prob-
lem through a two-phase decomposition approach. This work
comes from Wilson and Roach [4], [5] and Wilson et al. [6],
where the stowage planning problem was decomposed
into two sub-problems, i.e. the master bay planning prob-
lem (MBPP) and the slot planning problem (SPP). For
MBPP, the master bay plan was generated to distribute
containers into ship bay sections. For SPP, the master bay
plan was treated as the input to make the slot plan for
stowing containers into slots. Kang and Kim [7] proposed

two heuristics for the sub-problems, i.e. a greedy heuristic
for solving MBPP and a tree search method for solving
SPP. Additional studies have also focused on one of the
sub-problems. Sciomachen and Tanfani [8] solved MBPP
through a heuristic method, while Ambrosino et al. [9], [10]
proposed a basic 0–1 linear programming model for MBPP,
and designed a heuristic procedure and a three-step heuristic
tabu-based search. In Moura et al. [11], a mixed integer pro-
gramming (MIP)model combingMBPPwith the ship routing
problem was presented. To solve SPP, Delgado et al. [12]
presented a constraint programming model and an integer
programming model. These studies took into consideration
single-port stowage planning, where potential stowage plan-
ning at subsequent ports along the route is missing. This
may cause re-handles and does not meet the requirement of
stowage planning for full container liner shipping routes.

The multi-port stowage planning problem can also be stud-
ied as a whole or can be decomposed into two sub-problems,
i.e. multi-port master planning problem (MP-MBPP) and
SPP. In Imai et al. [13], the problem was formulated as an
integer programming model, which was solved by a heuristic
algorithm based on the genetic algorithm. Azevedo et al. [14]
formulated the problem, which they called the ‘‘3D con-
tainership loading planning problem,’’ as a linear program-
ming model. Three meta-heuristics, including the genetic
algorithm, simulated annealing, and beam search, were
combined to solve the problem. Along with these stud-
ies that addressed the problem as a whole, some studies
have adopted decomposition approaches. Zhang et al. [15]
solvedMP-MBPP and SPP by different tabu search heuristics
based on the bin-packing problem. Pacino et al. [16] pre-
sented an integer programming model for MP-MBPP, and a
constraint programming and a local search procedure for SPP.
In Ambrosino et al. [17]–[19], they focused on MP-MBPP
and proposed a MIP model and heuristic algorithms to solve
the problem. These studies assumed that the container infor-
mation at ports is fixed and lacked considerations of the
uncertainties in multi-port stowage planning.

Studies investigating uncertainties in container shipping
have been primarily focused on scheduling problems, such
as the liner ship route schedule (Wang and Meng [20];
Meng and Wang [21]; Dong et al. [22]), liner ship fleet
deployment (Ng [23], [24]), cargo mix problems
(Ang et al. [25]), empty container repositioning
(Zhang et al. [26]), and berth allocation (Han et al. [27];
Ursavas and Zhu [28]). Among these studies, Wang and
Meng [20] proposed a mixed-integer non-linear stochas-
tic programming model for the liner ship route schedule
design problem that considered time uncertainties at sea
and at port. In Meng and Wang [21], a two-stage stochastic
integer programming model for the short-term liner ship
fleet planning problem was presented that considered the
uncertain container shipment demand. Dong et al. [22] for-
mulated a two-stage stochastic programming model for the
problem of joint service capacity planning and dynamic
container routing in liner shipping with uncertain demands.
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FIGURE 3. Multi-port stowage planning for inland container liner shipping along the Yangtze River.

Ng [23], [24] investigated the liner ship fleet deploy-
ment problem with stochastic dependencies in shipping
demand and proposed stochastic programming models.
Ang et al. [25] presented a two-stage stochastic integer pro-
grammingmodel for the cargomix problem under uncertainty
in the parameters of some scenarios. Zhang et al. [26] con-
sidered the empty container repositioning problems between
multi-port routes with stochastic demand and lost sales
based on stochastic programming. Han et al. [27] addressed
the simultaneous discrete berth and quay crane scheduling
problem with stochastic arrival and handling times through
a mixed-integer stochastic programming model. In Ursavas
and Zhu [28], the berth allocation problem with stochastic
arrival and handling times was modeled by a framework
based on the stochastic dynamic programing approach. These
studies showed that stochastic programming can be used to
formulate scheduling problems that consider the uncertainties
in container shipping.

In practice, there are other uncertainties in stowage plan-
ning for inland container liner shipping, especially container
weight uncertainties. Therefore, we focused on container
weight uncertainties in this study of the multi-port stowage
planning problem for inland container liner shipping along
the Yangtze River. To the best of our knowledge, this is the
first time to propose this specific problem considering con-
tainer weight uncertainties in inland container liner shipping.

III. PROBLEM STATEMENT
In multi-port stowage planning for inland container liner
shipping, the whole route of the ship must be investigated

to generate stowage plans for multiple ports over the full
route. In Figure 3, the inland container ship visits multiple
ports over the course of its voyage, while containers flow
from the current to subsequent ports through the shipping
line of the Yangtze River. The ship-side stowage planner uses
container information (e.g., number, size, destination, and
weight) provided by the cargo owner when booking shipping
space to generate the pre-stowage plan of the current port.
Then the port-side stowage planner combines the process
information and the pre-stowage plan to complete the stowage
plan for the ship.

In the inland container liner shipping example in Figure 3,
all ports over the full route are characterized by a set P.
The container flow from the original port o (o ∈ P) to the
destination port d (d ∈ P) is characterized by an o − d
shipping pair a, a = (o, d) ∈ Q(p), ∀p ∈ P. The o − d
shipping pair set Q(p) at port p includes two o − d shipping
pair subsets Qs(p) and Qt (p). Qs(p) includes all the o − d
shipping pairs that start at port p, and Qt (p) includes all the
o − d shipping pairs that indicate the o − d shipping pass
through port p. The stowage plan of the previous port p − 1
(p− 1 ∈ P) will be the input for the stowage planning of the
current port p (p ∈ P) in the multi-port stowage planning.
All the container weight classes including light, medium

and heavy ones are characterized by a set G. For port p,
all the containers with weight class g in o − d shipping
pair a should be loaded aboard, ∀a = (p, d) ∈ Qs(p),
p ∈ P, g ∈ G. The ship’s stability constraint can be satisfied
if the longitudinal and horizontal weight tolerances at port
p are both within their limits 1LG and 1CG respectively,
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TABLE 1. Mathematical notations for the multi-port stowage planning model.

∀p ∈ P (Ambrosino et al. [9]). To calculate the longitudinal
and horizontal weight tolerances, the ship stacks are divided
into different stack sets according to the front half, back half,
left half, and right half of the ship, as shown in Figure 2.
Meanwhile, the loading weight and capacity limits of ship
stack j (j ∈ J ) at port p should satisfy the ship’s constraints
SWj and STj respectively, ∀j ∈ J ,p ∈ P.
The parameter wg represents the average weight of con-

tainers of weight class g,∀ g ∈ G. The inconsistency between
the actual and reported weights of containers within weight
class g is described using the maximum weight deviation
of containers 1wg, ∀ g ∈ G. The parameter w̃g is used
to describe the uncertain weight of containers within weight
class g, and should satisfy w̃g ∈ [wg − 1wg,wg + 1wg],
∀ g ∈ G.
This article explores the multi-port stowage planning prob-

lem for inland container liner shipping along the Yangtze
River considering container weight uncertainties. This prob-
lem concerns assigning containers at each port of the route
into the ship’s stacks. The ship’s constraints of stability,
strength and capacity need to be satisfied at each port of
the route. The objective of the proposed solution is to min-
imize the number of occupied stacks in the ship over the
full route. Keeping containers with same o− d shipping pair

clustered and using as few stacks as possible can help increase
utilization of the ship’s capacity and decrease re-handles at
future ports.Moreover, re-handles are avoided in this problem
by constraints that do not allow stowing containers from
different o− d shipping pairs into one stack.

IV. THE MULTI-PORT STOWAGE PLANNING MODEL
The multi-port stowage planning model is inspired by that
of Ambrosino et al. [19] which considered the storage areas
called bay locations and the determined container weights.
For the model proposed in this article, the smaller storage
units in the bay locations called stacks are considered and the
container weights are described as the stochastic parameters
based on the practical operations in the inland container liner
shipping. Mathematical notations for the multi-port stowage
planning model are described in detail in Table 1.

Based on these mathematical notations, the proposed prob-
lem was formulated as a SPM:

f = min
∑
p∈P

∑
a∈Q(p)

∑
j∈J

yj(a) (1)

∑
j∈J

xjg(a) = Ng(a), ∀p ∈ P, a ∈ Qs(p), g ∈ G (2)
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∑
j∈J

yj(a) ≥ 1, ∀p ∈ P, a ∈ Q(p) (3)

∑
a∈Q(p)

yj(a) ≤ 1, ∀p ∈ P, j ∈ J (4)

yj(a) ≤
∑
g∈G

xjg(a) ≤ L · yj(a),

∀j ∈ J , a ∈ Q(p), p ∈ P (5)∑
a∈Q(p)

∑
g∈G

xjg(a)

≤ STj, ∀j ∈ J , p ∈ P (6)∑
a∈Q(p)

∑
g∈G

xjg(a) · w̃g

≤ SWj, ∀j ∈ J , p ∈ P (7)∣∣∣∣∣∣
∑
a∈Q(p)

∑
g∈G

(
∑
j∈JF

xjg(a) · w̃g −
∑
j∈JA

xjg(a) · w̃g)

∣∣∣∣∣∣
≤ 1LG, ∀p ∈ P (8)∣∣∣∣∣∣

∑
a∈Q(p)

∑
g∈G

(
∑
j∈JL

xjg(a) · w̃g −
∑
j∈JR

xjg(a) · w̃g)

∣∣∣∣∣∣
≤ 1CG, ∀p ∈ P (9)

xjg(a) ≥ 0, xjg(a) ∈ Z ,

∀j ∈ J , g ∈ G, a ∈ Q(p), p ∈ P (10)

yj(a) = {0, 1}, ∀j ∈ J , p ∈ P, a ∈ Q(p) (11)

The objective function (1) minimizes the number of occu-
pied stacks in the ship over the full route to help increase
utilization of the ship’s capacity and decrease re-handles at
future ports. Constraint (2) ensures that all containers can be
loaded aboard at each port along the route. The fact that all
containers of same o−d shipping pair should occupy at least
one stack is enforced by constraint (3). Constraint (4) guaran-
tees that each stack can at most be occupied by containers of
the same o−d shipping pair which means all the containers in
one stack have the same destination ports to avoid re-handles.
Relationships between different variables are defined by con-
straint (5). If there are containers of o − d shipping pair a
loaded in stack j at port p, xjg(a) > 0 and yj(a) = 1; otherwise,
xjg(a) = 0 and yj(a) = 0. Constraints (6) and (7) represent
the capacity and load weight constraints of each stack at
each port. The longitudinal and horizontal weight tolerances
of the ship are within their required limits at each port by
constraints (8) and (9). Constraints (10) and (11) define the
values of decision variables.

V. SOLUTION APPROACHES FOR THE MULTI-PORT
STOWAGE PLANNING PROBLEM
The SPM formulated in section 4 cannot be solved
by conventional optimization methods or solvers
(Al-Dhaheri et al. [29]). Thus, three solution approaches
were developed to optimize the multi-port stowage plan-
ning problem considering container weight uncertainties for
inland container liner shipping along the Yangtze River.

First, a solution method based on robust optimization is
presented to transform SPM into a ROM. Second, a solution
method based on stochastic chance-constrained program-
ming is proposed to build a SCPM based on SPM, which
is then solved through the deterministic equivalent method.
These two exact approaches can compute exact solutions in a
limited time. Third, because the exact approaches cannot find
solutions for some experiments within the time limit, a HNS
algorithm based on heuristics was designed to efficiently find
solutions.

A. EXACT APPROACH BASED ON ROBUST OPTIMIZATION
Following the approach of Goerigk et al. [30], strict robust-
ness in robust optimization was adopted to transform SPM
into a MIP model. In this approach, the strictly robust
solution was obtained over the worst-case scenarios. Con-
straints (7)–(9), which contain the stochastic parameters in
SPM were replaced following the descriptions below:
First, Epg or Fpg in equation (12) or (13) were defined

to represent the quantity difference of containers within the
same weight class between the front and back halves or left
and right halves of the ship at each port.

Epg =
∑
a∈Q(p)

(
∑
j∈JF

xjg(a)−
∑
j∈JA

xjg(a)), ∀g ∈ G, p ∈ P

(12)

Fpg =
∑
a∈Q(p)

(
∑
j∈JL

xjg(a)−
∑
j∈JR

xjg(a)), ∀g ∈ G, p ∈ P

(13)

Then, according to the definitions of Epg and Fpg, con-
straints (7)–(9) can be replaced by:∑
a∈Q(p)

∑
g∈G

xjg(a) ·
(
wg+1wg

)
≤ SWj, ∀j∈J , p ∈ P (14)∣∣∣∣∣∣

∑
g∈G

Epg · (wg +1wg)

∣∣∣∣∣∣ ≤ 1LG, ∀p ∈ P (15)∣∣∣∣∣∣
∑
g∈G

Fpg · (wg +1wg)

∣∣∣∣∣∣ ≤ 1CG, ∀p ∈ P (16)

Constraints (14)–(16) ensure that the loading weight of
each stack, the longitudinal weight tolerance, and the hori-
zontal weight tolerance of the ship are all within their maxi-
mum allowable values over the worst-case scenarios at each
port. Finally, the ROM for the proposed problem was formu-
lated as follows:

(ROM)

f = min
∑
p∈P

∑
a∈Q(p)

∑
j∈J

yj(a) :

(2) ∼ (6), (12) ∼ (16), (10), (11)

 .
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B. EXACT APPROACH BASED ON STOCHASTIC
CHANCE-CONSTRAINED PROGRAMMING
The SCPM is characterized by the rule that probabilities
of stochastic constraints being satisfied should be no less
than the confidence requirement. Studies have shown that the
SCPM can be solved through deterministic equivalents or the
hybrid intelligent algorithm (Charnes and Cooper [31],
Zhao and Liu [32]). The stochastic constraints (7)–(9) in SPM
were described using chance constraints, and then the SCPM
for the proposed problem was formulated as follows:

Pr

 ∑
a∈Q(p)

∑
g∈G

xjg(a) · w̃g ≤ SWj


≥ α, ∀j ∈ J , p ∈ P (17)

Pr


∣∣∣∣∣∣
∑
a∈Q(p)

∑
g∈G

(
∑
j∈JF

xjg(a) · w̃g −
∑
j∈JA

xjg(a) · w̃g)

∣∣∣∣∣∣ ≤ 1LG


≥ α, ∀p ∈ P (18)

Pr


∣∣∣∣∣∣
∑
a∈Q(p)

∑
g∈G

(
∑
j∈JL

xjg(a) · w̃g −
∑
j∈JR

xjg(a) · w̃g)

∣∣∣∣∣∣ ≤ 1CG


≥ α, ∀p ∈ P (19)

The chance constraints (17)–(19) guarantee the probability
of each stochastic event occurrence satisfying the confidence
requirement (α = 0.95).

(SCPM)

f = min
∑
p∈P

∑
a∈Q(p)

∑
j∈J

yj(a) :

(2) ∼ (6), (17) ∼ (19), (10), (11)

.
According to the deterministic equivalent method of

Charnes and Cooper [31], if a stochastic parameter is subject
to a normal distribution, the chance constraint can be trans-
formed into the deterministic constraint. To obtain tractable
results, the stochastic weights of containers within different
weight classes were assumed fall within normal distributions
of their average weights. As defined in the mathematical
notations, the stochastic weight of containers with weight
class g should satisfy:

β = Pr
(
wg −1wg ≤ w̃g ≤ wg +1wg

)
= φ(

wg +1wg − µ
σ

)

−φ(
wg −1wg − µ

σ
) ≈ 1, ∀g ∈ G (20)

In this equation, β represents the probability of parameter
w̃g ∈ [wg − 1wg,wg + 1wg], ∀g ∈ G, µ and σ represent
the expectation and standard deviation of the normal distri-
bution, respectively, and φ(·) represents the standard normal
distribution function. Then, the parameter w̃g is subject to the
normal distribution below by setting β = 0.995.

w̃g ∼ N (wg, (
1wg
2.81

)2), ∀g ∈ G (21)

To use the deterministic equivalents of Charnes and
Cooper [31], according to equations (12) and (13), con-
straints (18) and (19) were transformed as:

Pr

∑
g∈G

∣∣Epg∣∣ · w̃g ≤ 1LG
 ≥ α, ∀p ∈ P (22)

Pr

∑
g∈G

∣∣Fpg∣∣ · w̃g ≤ 1CG
 ≥ α, ∀p ∈ P (23)

Then Constraints (17), (22) and (23) were transformed
based on the deterministic equivalents as follows:

∑
a∈Q(p)

∑
g∈G

xjg(a) · wg + (
1wg
2.81

) · φ−1(α)
∑
a∈Q(p)

∑
g∈G

xjg(a)

≤ SWj, ∀j ∈ J , p ∈ P (24)∑
g∈G

∣∣Epg∣∣ · wg + (
1wg
2.81

) · φ−1(α)
∑
g∈G

∣∣Epg∣∣
≤ 1LG, ∀p ∈ P (25)∑

g∈G

∣∣Fpg∣∣ · wg + (
1wg
2.81

) · φ−1(α)
∑
g∈G

∣∣Fpg∣∣
≤ 1CG, ∀p ∈ P (26)

Then the chance constraints (17)–(19) in SCPMcan now be
replaced by constraints (24)–(26) to obtain its deterministic
equivalent form.

C. THE HNS ALGORITHM
Zhao and Liu [32] proposed a hybrid intelligent algorithm
to effectively solve the SCPM. Inspired by their approach,
a HNS algorithm is proposed, which consists of sample data
generation, neural network training, and neighborhood search
heuristics. First, for sample data generation, sample data
including input and output data were generated by solving a
non-objective model to train the neural network. Then, during
neural network training, a neural network was trained and
saved for testing the feasibility of stowage plans. Finally,
in the neighborhood search heuristics, an initial stowage plan
was first constructed and then improved by neighborhood
search strategies if it could not pass the test of trained neural
network.

1) SAMPLE DATA GENERATION
Monte Carlo stochastic simulation was used to generate the
sample data for training the neural network to approximate
the uncertain function U (x) : x → (U1(x),U2(x),U3(x))
below. The parameter w̃g is randomly generated within
[wg − 1wg,wg + 1wg] at each time, ∀g ∈ G. The sub-
functions (27)–(29) represent the possibility values of each
stochastic event occurrence, i.e. the loading weight of each
stack, the longitudinal weight tolerance, and the horizontal
weight tolerance of the ship are within their respective limits
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at each port.

U1(x) = Pr

 ∑
a∈Q(p)

∑
g∈G

xjg(a)·w̃g≤SWj

, ∀j∈J , p∈P
(27)

U2(x) = Pr

 ∑
a∈Q(p)

∑
g∈G

∣∣∣∣∣∣
∑
j∈JF

xjg(a) · w̃g

−

∑
j∈JA

xjg(a) · w̃g

∣∣∣∣∣∣ ≤ 1LG
 , ∀p ∈ P (28)

U3(x) = Pr

 ∑
a∈Q(p)

∑
g∈G

∣∣∣∣∣∣
∑
j∈JL

xjg(a) · w̃g

−

∑
j∈JR

xjg(a) · w̃g

∣∣∣∣∣∣ ≤ 1CG
 , ∀p ∈ P (29)

Step 1: The non-objective optimization model (CSM1:
{f = 0 : (2) ∼ (6), (10), (11)}) was defined to determine
the assignments between containers and ship stacks.
Step 2: Define the sample data capacity for training the

neural network.
Step 3: Solve CSM1 to produce the input data (i.e., stowage

plan-xjg(a)) for U (x).
Step 4: Adopt the Monte Carlo stochastic simulation

to get the output data (i.e., the possibility values of sub-
functions (27)–(29)) forU (x) with the input data from Step 3.
Then one sample is obtained for the neural network training.
Step 5: Repeat Steps 3–4 until reaching sample data

capacity.

2) NEURAL NETWORK TRAINING
With the sample data from the Monte Carlo stochastic sim-
ulation, a neural network was trained to approximate U (x).
The neural network consisted of one input layer, one hidden
layer, and one output layer. The back propagationmethodwas
adopted to update weights between different layers.

The trained neural network could output values of three
sub-functions in with a stowage plan as input. Then, the fea-
sibility of the stowage plan could be decided by comparing
these values with the confidence requirement.

3) NEIGHBORHOOD SEARCH HEURISTICS
a: CONSTRUCTING A SOLUTION
Step 1:Grouping containers: Containers at the current port

are grouped based on their characteristics of o − d shipping
pairs and weight classes. Containers with the same destina-
tion ports and weight classes are clustered into one container
group.
Step 2: Sorting container groups: Container groups are then

sorted by the rules ‘destination port from far to near’ and
‘weight class from heavy to light.’

Step 3: Numbering ship stacks: Ship stacks are numbered
successively by the rules ‘from the fore to the stern’ and ‘from
the left to the right.’
Step 4: Stowing container groups into ship stacks: Con-

tainer groups are then stowed into ship stacks one-by-one
considering some conditions, i.e. the capacity constraints of
each stack, and the constraint that does not allow stowing
containers of different o− d shipping pairs into one stack.
The heuristic rules above ignore the loading weight and

stability constraints of the ship. The number of occupied
stacksM (a) for each o−d shipping pair a can be obtained as
a lower bound through Steps 1–4.
Step 5: Solving the model to obtain an initial stowage plan:

For each o−d shipping pair a,M (a) is used to solve the non-
objective optimization model (Containers to Stack Model 2,
CSM2). Constraint (30) defines the number of ship stacks
that containers with o− d shipping pair a should occupy. For
the loading weight constraint of each stack, constraint (14) is
considered in CSM2.∑

j∈J

yj(a) = M (a), ∀a ∈ Qs(p) (30)

(CSM2){f = 0 : (2) ∼ (6), (14), (30), (10), (11)}.
If CSM2 cannot be solved within the time limit, M (a) is

updated to M (a) = M (a) + 1. Then, repeat Step 5 until all
the container groups at the current port have been stowed
into ship stacks to get an initial stowage plan. The plan does
not take into account the longitudinal and horizontal weight
tolerances of the ship.

b: IMPROVED SOLUTION
The longitudinal and horizontal weight tolerances of the ship
may not be satisfiedwith the constructed solution. Thus, three
different neighborhood search strategies were designed to
modify longitudinal and horizontal weight tolerances.
Strategy 1:Moving containers into another stack. All con-

tainers in one stack at the front (or back) half of the ship are
moved into an empty stack at the other end of the ship as
shown in Figure 4.

FIGURE 4. Moving containers in one stack into an empty stack on the
other side of the ship.

Strategy 2: Swapping containers between different stacks.
All containers in two different stacks from opposite ends of
the ship are swapped as shown in Figure 5.
Strategy 3: Splitting and moving containers. Containers

in one stack at the front (or back) half of the ship are split
and moved to an empty stack at the other side of the ship.
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FIGURE 5. Swapping all containers from two different stacks at opposite
ends of the ship.

To decrease the number of occupied stacks in the ship over
the full route, the stack that stows containers with the nearest
destination port is preferentially chosen for split as shown
in Figure 6.

FIGURE 6. Splitting and moving some containers to an empty stack at the
other end of the ship.

The pseudo code of HNS is shown in detail in Algorithm 1.
After obtaining the sample data and training the neural net-
work, the algorithm began generating stowage plans for each
port one-by-one through first constructing a solution, and suc-
cessively improving it by the neighborhood search strategies.
The algorithm ends when a multi-port stowage plan for the
full route has been generated.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
Three typical inland container ships on the Yangtze River are
listed in Table 2 according to the Chinese national standard
GB/T 19283-2010.

TABLE 2. Inland container ships on the Yangtze River.

Here, a series of test scenarios based on these ships
are designed to validate the effectiveness of the solution
approaches. Table 3 lists the number of operational ports for
four shipping lines on the Yangtze River. For each line, three
vessel loading rates were randomly generated corresponding
to real-life scenarios of inland container ships (Table 4).

TABLE 3. Inland container shipping lines on the Yangtze River.

Algorithm 1 HNS for SCPM
Require: CSM1, Containers to Stack Model 1

U (x), Uncertain function
Pop, Sample data capacity
N1, Stochastic simulation times
N2, Training times for each sample
P, Set of ports over the full route, P ={1,2,. . . ,pmax}
Sp0, Initial stowage plan of port p, p ∈ P
Fp0, Objective function value of Sp0, p ∈ P
Sp, Stowage plan of port p, p ∈ P
Fp, Objective function value of solution Sp, p ∈ P
TNN, Trained neural network

Ensure:S: Multi-port stowage plan, F : Objective function value
of S
1: if sample data do not reach Pop
2: repeat
3: Input data of U (x)← Solving CSM1 by using Gorubi
4: if stochastic simulation times do not reach N1
5: repeat
6: Output data of U (x)←Monte Carlo stochastic

simulation with input data
7: until stochastic simulation times reach N1
8: until sample data reach Pop
9: end if
10: Sample data←(Input data, Output data)
11: if training times for each sample do not reach N2
12: repeat
13: TNN← Neural network training with sample data
14: until training times reach N2
15: end if
16: Initialization p =1
17: if p does not reach pmax
18: repeat
19: {Sp, Fp}←{Sp0, Fp0} from construction solution
20: if Sp cannot pass TNN test
21: repeat
22: {Sp, Fp}← Update {Sp, Fp} with Strategy 1
23: until Sp cannot be improved
24: end if
25: ifSp cannot pass TNN test
26: repeat
27: {Sp, Fp}← Update {Sp, Fp} with Strategy 2
28: until Sp cannot be improved
29: end if
30: ifSp cannot pass TNN test
31: repeat
32: {Sp, Fp}← Update {Sp, Fp} with Strategy 3
33: until Sp cannot be improved
34: end if
35: return the stowage plan solution {Sp, Fp} of port p, p ∈ P
36: p← p+1
37: until port p reaches pmax
38: end if
39: return the multi-port stowage plan solution {S, F}

over the full route

TABLE 4. Different vessel loading rates for the ship.

All test instances are coded similar to S1-L1-C45. The first
part (S1) represents the ship type, the second part (L1) rep-
resents the shipping line, and the third part (C45) represents
the vessel loading rate of 45%.
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TABLE 5. Results of the different models and HNS for ship S1.

TABLE 6. Results of the different models and HNS for ship S2.

To compare performances of the different approaches,
the lower bound model (LBM) of the proposed problem
was developed by deleting constraints (7)–(9) in SPM.
LBM results can be used as the lower bound because it
ignores load weight and stability constraints of the ship.

(LBM)

f =min
∑
p∈P

∑
a∈Q(p)

∑
j∈J

yj(a) : (2)∼ (6), (10), (11)

.
B. EVALUATING THE PROPOSED APPROACHES
All mathematical models proposed in this article were solved
using the standard solver Gurobi 7.5.1. Stochastic parameters
in SPMwere calculated with their average weights. The HNS
algorithm was programed in Python 3.6. All tests were run
on an Intel Core I7-5500U 2.40 GHz processor with 4 GB of
RAM.

Average container weights within different weight
classes were set as 7, 14 and 21 ton, respectively

(Ambrosino et al. [19]). The maximum weight deviation of
containers within each weight class was set as 1 ton according
to regulations from the Ministry of Transport of China,
i.e. 1wg = 1,∀g ∈ G.
When solving the models with Gurobi, the CPU time

limit was first set at 60 s. If the model could not be opti-
mally solved, the time limit was extended to 600 s. The
solution results of different ships are shown in Tables 5–7.
In Tables 5–7, f represents the number of occupied stacks
in the ship over the full route; T represents CPU time (unit:
s); gap represents the gap in units of f compared with LBM
from different models (SPM, ROM, and SCPM) and HNS
(unit: %); and ∗ represents that a model could not be solved
within the time limit of 600 s.

Tables 5–7 show the number of occupied stacks in
the ship over the full route and CPU time results for
each situation. Table 5 shows that for the ship S1,
the number of occupied stacks in the ship from solv-
ing different models (SPM, ROM, SCPM) and HNS were
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TABLE 7. Results of the different models and HNS for ship S3.

quite close. HNS performed better in CPU time than the
models.

In Table 6, SPM had a lower average gap against other
models and HNS for ship S2. SPM performed better than
ROM, SCPM andHNS in solution quality and CPU time. The
differences between ROM and SCPMwere quite small, while
HNS had a longer CPU time and a bigger average gap.

In Table 7, the increased ship size increased the difficulty
of solving each instance. For ship S3, solving the models
(SPM, ROM and SCPM) could not guarantee a feasible solu-
tion within the time limit (e.g. S3-L2-C85, S3-L3-C85, and
S3-L4-C85). When the models could be solved, SPM had a
lower average gap against ROM and SCPM. The CPU time
for solving SPM, ROM, and SCPMwas the same. HNS could
solve all instances and performed better in CPU time.

In conclusion, SPM found better solutions by calculat-
ing stochastic parameters within the average weights, which
means it lacks considerations of container weight uncer-
tainties. When ship size increases, ROM and SCPM cannot
guarantee a solution within the time limit. HNS performed
better than the exact approaches, especially for solving the
large-scale experiments. Finally, HNS had a reasonable aver-
age gap (1.67%) for all instances, which is small and accept-
able in realistic scenarios.

C. ROBUSTNESS ANALYSIS
Monte Carlo stochastic simulation was adopted to analyze the
robustness of different approaches. A container weight with
weight class was randomly generated within at each time, .
Each instance was simulated 1000 times continuously, and
the results are listed in Table 8. The number in Table 8 repre-
sents the passing rate of different stowage plans per 1000 sim-
ulations. ∗ represents that a model could not find a solution
within the time limit of 600 s.

The results in Table 8 show that SPM can only ensure
that eight situations pass the test, while the others could not
satisfy the confidence requirement (α = 0.95), which means
it had the worst robustness for solving the problem. ROM
and SCPM ensured that all solved instances passed the test.

TABLE 8. Monte Carlo stochastic simulation results.

HNS guaranteed that all stowage plans satisfied the con-
fidence requirement. These results reveal that for practi-
cal application in inland container liner shipping along the
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Yangtze River, ROM and SCPM are more suitable for making
stowage plan decisions for small- and medium-size ships,
while HNS is the preferred method for making stowage plans
for large ships.

VII. CONCLUSION
In this study, multi-port stowage planning for inland container
liner shipping considering container weight uncertainties was
concerned. A SPM for the problem was proposed with the
objective of minimizing the number of occupied stacks in
the ship over the full route. As the model could not be
addressed by conventional optimization methods or solvers,
three different solution approaches were presented to solve
the problem: two exact approaches, which transformed SPM
into MIP models based on robust optimization and stochas-
tic chance-constrained programming, respectively, and were
solved using a standard solver, and third, a HNS algorithm
was also designed.

Experimental results demonstrated that SPM had the worst
robustness. ROM, SCPM and HNS could robustly make
multi-port stowage plans over the full route. The exact
approaches and HNS algorithm were all effective for solving
the proposed problem. Although the average gaps of the
exact approaches were better than the algorithm, the HNS
algorithm found solutions for all instances with an average
gap 1.67% and it outperformed the exact approaches in CPU
time and solution quantity for large-size ships.

In future studies, multi-port stowage planning for inland
container liner shipping considering quantity uncertainties
will be researched. This problem also exists in real-world
shipping scenarios along the Yangtze River, as the quantity of
foreign trade containers continuously changes due to customs
inspections at port.
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