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ABSTRACT Nowadays, the voice over Internet protocol (VoIP) communication service is widely adopted,
and it counts with many users across the world. However, the users’ quality of experience is not guaranteed
because the voice signal quality can be affected by several degradations that happen in the network
infrastructure. Thus, it is relevant to have a global speech quality assessment method that considers both
wired and wireless networks to provide reliable results. In this paper, several network scenarios that consider
different packet loss rates (PLRs) and wireless channel models are implemented in which the impaired signals
are evaluated using the algorithm described in ITU-T Recommendation P.862. Preliminary results showed
a relationship between both fading and PLR parameters and the global speech quality index. However,
the P.862 algorithm is not viable in real VoIP scenarios. The ITU-T Recommendation P.563 describes a
non-intrusive speech quality assessment method; nevertheless, its results are not confident. In this context,
the main objective of this paper is to propose a non-intrusive speech quality classification model based
on a deep belief network (DBN) that considers the wired and wireless impairments on the speech signal.
Experimental results demonstrated a high correlation between the proposed model based on the DBN and
P.862 algorithm, reaching a F-measure of 97.01%. For validation, the non-intrusive P.563 algorithm is
used; the proposed model and P.563 reached an average accuracy of 96.14% and 72.12%, respectively.
Furthermore, subjective tests were carried out, and the proposed DBN model reached an accuracy of 94%.

INDEX TERMS Speech quality, degradation, wireless network, wired network, ITU-T P.862, MOS, deep

neural networks.

I. INTRODUCTION

The traffic amount of the Voice over Internet Protocol (VoIP)
service has increased over the past years due to several
factors, such as the network capacity, the enhanced digital
processing techniques for voice signals [1], the high number
of mobile devices, and the lower cost for VoIP calls. These
factors turn VoIP a very advantageous and attractive service,
specially for commercial uses. According to [2], the VoIP
service will be responsible for 21% of the total mobile voice
traffic by the end of 2020.

Currently, the communication systems to support an end-
to-end VoIP call use wired and wireless network infrastruc-
tures. Therefore, the speech signal can be affected by various
degradation factors, which impact on the speech quality at
the reception point. The quality degradation in a wired net-
work can occur due eventual packet losses, which may be

associated with overloaded routers and other network infras-
tructure problems [3]. In wireless systems, other degradation
factors may occur, such as, obstacles between the transmitter
and receiver, reflecting agents, signal amplitude variations,
among others [4].

Two popular wireless channel models are the Rayleigh and
Rician fading channels [5]-[7]. An important characteristic
associated to a channel model is the Doppler shifts that is
related to the channel frequency-variation in a radio commu-
nication, in which the transmitter or the receiver are moving
relative to each other [8].

In order to improve their annual incoming, communication
service operators need to increase the number of subscribers.
In this sense, a mechanism of speech quality assessment of a
communication service is necessary [9]. This fact encourages
the service providers to search fast and inexpensive methods
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to accomplish this goal; and computational methods have
these characteristics.

There are different speech quality assessment methods,
most of them described in International Telecommunication
Union (ITU) recommendations. In general, these methods
can be classified into subjective and objective. Subjective
tests are carried out in a laboratory environment. Their
result, known as Mean Opinion Score (MOS), are the most
confident, but the test conduction is expensive and time-
consuming. On the other hand, the objective methods use an
algorithm to predict a MOS index value.

The objective models, based on speech signals, are sub-
divided in intrusive and non-intrusive methods [10]. Algo-
rithms that only use a signal correspond to non-intrusive
method; and algorithms that use both reference and impaired
signal are considered as intrusive method. The Perceptual
Assessment of Speech Quality (PESQ) described in ITU-T
Recommendation P.862 [11] and the Perceptual Objective
Listening Quality Assessment (POLQA) [12] algorithm are
intrusive methods. The ITU-T Recommendation P.563 is the
most representative non-intrusive objective metric, but it does
not have a satisfactory performance [13], [14] in lossy net-
works.

In recent years, solutions based on Deep Neural Net-
works (DNN) have been applied in different solutions that
involve speech signals, such as, medical applications [15],
speech recognition [16], speech classification [17], packet
loss concealment method [18], among others. In those
solutions, different speech signal parameters are extracted
from speech samples, and this information is used on the
DNN. However, these studies, based on DNN, do not per-
form speech quality assessment considering the degradations
caused by network impairments; specifically, degradations
originated by fading in a wireless network. In this arena,
the main contribution of this work is to propose a non-
intrusive speech quality classifier model with a high accuracy,
based on a DNN architecture that uses five speech quality
classes. For this, a large speech database is built to be used
as test material, in which different packet loss rate (PLR)
values and fading channel parameters are applied over orig-
inal speech files. Thus, a DNN architecture compounded by
a Deep Belief Network (DBN) with a Softmax function is
proposed, which extracts automatically the features of the
impaired signal to perform a speech quality assessment. It is
worth noting that the proposed model estimates a speech
quality class and it does not determine a MOS index value; the
quality classes are based on the 5-point MOS scale introduced
in the Absolute Category Rating (ACR) methodology [19].
For validation purposes, the non-intrusive P.563 algorithm is
also used. The results obtained by the proposed speech quality
assessment model outperformed the P.563 results; in this
case, the P.862 results are used as ground-truth. Furthermore,
to validate the performance of the proposed model in more
realistic manner, subjective tests are also performed and the
results are compared with the classification results generated
by the DBN.
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TABLE 1. 5-point MOS scale - absolute category rating.

Speech Quality  MOS Index Score

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

The remainder of this paper is structured as follows.
Section II introduces some concepts and related works about
speech quality assessment, deep neural networks and degra-
dations, such as packet loss rate and fading channel models.
Section III presents the test methodology used in this work
that includes the construction of a speech data base, the pro-
posed model and subjective test of speech quality assessment.
The results are presented in Section V and then, some discus-
sions are described in Section VI. Finally, the conclusions are
presented in Section VIIL.

Il. RELATED WORK

In this section, studies and concepts regarding the speech
quality assessment methods, DNN and degradation factors in
the speech signal quality are treated.

A. SPEECH QUALITY ASSESSMENT METHODS
As stated before, speech quality assessment methods can be
classified in two groups, subjective and objective methods.

The subjective tests are conducted in a laboratory environ-
ment and following a specific procedure [19], in which an
assessor indicates the perceived speech quality. At the end of
the tests, the average result, known as MOS, is determined.
The ITU-T Recommendation P.800 [19] introduces different
test methodologies to perform subjective evaluation of speech
quality in telephony services, they are: conversation-opinion
test, listening-opinion tests, and interview and survey tests.
These methods are applicable for any type of degradation,
such as, error transmission, circuit and environmental noise,
distortion arising from packet switching, codecs distortions,
among others.

In this work, we use the ACR methodology that is used
for listening-opinion tests; this method is well-established
and uses the 5-point MOS listening-quality scale, presented
in Table 1. The speech signals, used as test material, are
simple and short sentences that were impaired by different
degradation types. Also, it is recommendable that assessors
have not participated in similar tests for at least the previous
six months, and do not know the sentences used in the tests.

Objective models try to predict a MOS index value using
and algorithm. According to the kind of the algorithm input,
objective methods are classified mainly in three models,
based signal, parametric and hybrid models [20].

Models based on speech signal are classified in intru-
sive and non-intrusive methods. The P.862 recommenda-
tion, is the most popular intrusive method for narrow band
signals [21]-[23]. PESQ compares an original signal X(¢)
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with a degraded signal Y (¢) that is the result of passing X (¢)
through a communication system. The output of PESQ is
a prediction of the perceived quality, a Listening Quality
MOS-like score, that would be given to Y (¢) by subjects in a
subjective listening test. In the PESQ, the quality scale from
0.5 to 4.5 is used. It is important to note that the ITU recom-
mendation P.862.1 [24] describes a mathematical relation to
approximate the PESQ output to the quality scale described
in Table 1. The index value obtained by P.862.1 is known as
MOS-Listening Quality Objective (MOS-LQO). The PESQ
has a good performance in several scenarios, which contain
degradation factors, such as errors distortions, channel codifi-
cation, packet loss, delay variation effect, among others [25].
In 2014, the ITU-T Rec. P.863 was launched as a evolution
of PESQ. The P.863 algorithm incorporates current industry
requirements, and in particular it allows the quality assess-
ment of narrow-band to super-wideband speech signals [8].
It is worth noting that a license is necessary to use the
P.863 algorithm implementation.

Currently, the P.563 recommendation is the most accepted
standardized objective non-intrusive metric. The quality
score predicted by the P.563 algorithm is related to the
perceived quality of a speech signal at the reception point.
Basically, the P.563 algorithm works identifying the main
distortion class of the degraded signal, and after applying
a speech quality model, it returns the MOS index value
expressed in the same quality scale presented in Table 1.
Nowadays, a new ITU-T standard for non-intrusive speech
quality assessment for wideband and super wideband is in
development [26].

The most representative standardized parametric model is
the ITU-T Rec. G.107 [27], which introduced the E-model
algorithm that can be useful to telecommunication network
planners. The quality score of the E-model is the rating factor
R that uses a 100-point scale for narrowband signals that has
a correlation with the scale presented in Table 1. The ITU-T
Rec. G.107.1 [28] describes the wideband E-model algorithm
that is used in different studies [29]. However, it is important
to note that E-model algorithm only considers wired network
parameters.

Finally, hybrid models use as algorithm input, the speech
signal and network parameters to determine a MOS
index [30].

B. DEEP NEURAL NETWORK
The human brain is a biological model with a high processing
power. Understand its functionality and create algorithms
to represent a biological neural network, by a conventional
computer, has been a hard task [31]. The brain is a non-
linear and parallel mechanism, with the ability to organize its
structural constituents, the neurons, in order to perform faster
processing than the existing fastest digital computer [32].
The Artificial Neural Networks (ANN) are mathematical
models that resemble biological neural structures and they
have the computational capacity acquired through learning
and generalization [33]. The ANN, seen as adaptive machine,
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is defined as a distributed parallel processing [32] composed
of simple processing units, that have natural propensity to
store experimental knowledge.

The ANN architecture is defined by the number of layers,
the number of neurons by layer and connections between the
neurons build the network topologies [32], [34]. There are
many models for the implementation of a structure of ANN,
such as the Self-organizing Map (SOM), Radius Basis Func-
tion (RBF), Least Mean Square (LMS), Multi-Layer Percep-
tron (MPL), among others [32], [33].

The DNN is an ANN and it has been applied in many areas
in the recent years, such as in images [35], [36] and speech
signal studies. A DNN algorithm is composed of multiple
processing layers to learn data representations through mul-
tiple abstraction levels. It is important to note that the DNN
algorithms have obtained excellent results to classify speech
patterns [37], [38].

A DNN is a feed-forward ANN, which presents more than
one layer of hidden units between its inputs and outputs. The
DNN can be trained by back-propagating derivatives using
a cost function, which measures the discrepancy between
target and actual outputs, that are produced in each train-
ing case [39]. A DNN presents hidden layers and many
units per layer which makes the DNN capable of modeling
complex and non-linear relationships between inputs and
outputs [39]; such ability is very important to determine
high-quality acoustic models [40].

In a DNN, the relation between the input feature (¢) and
output of the first hidden layer £ is given by

hy=H Wit +iy), ey

where W and i correspond to weight matrix and bias vector,
respectively, in the first layer. H(-) represents an activation
function, which determines the neurons’ output.

The relation between the current and next hidden layer is
expressed by

h,=HW,h,_1+i,), n=2,...,N 2)

In the DNN, N represents the total number of layers.
In order to execute classifications or regressions, H(-) is
applied on the output layer.

y=H (hy) 3

where y represents the DNN output. The Softmax func-
tion [41], a multinomial logistic regression, can be used
in classification tasks, forming a powerful classification
method [42] to recognize patterns in a speech signal.

In the speech signal processing, in order to estimate
with more accuracy the DNN parameters, a sufficient
training data is necessary. Otherwise, a pre-training pro-
cess can be performed by a DBN to work the training
data limitation [43], [44]. A set of Restricted Boltzmann
Machine (RBM) models forms a DBN model. The DBN
has been widely used as generative models in studies about
speech signals [45], [46].
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RBM

FIGURE 1. DBN Architecture formed by RBMs, indicating the weight W; of
the hidden unit h;.

Fig. 1 presents the DBN formed by RBMs, with the weight
W, of the hidden unit h;.

Although the DNN algorithms has been used in several
speech applications, there is a scarce number of studies
regarding the analysis of speech quality in an environ-
ment with the presence of wireless network degradation,
such as fading, which commonly occur in a communication
system. In [18], a packet loss concealment method using
DNN is proposed, but the speech quality is not treated.
Affonso et al. [47] introduce a speech quality classification
method that only considers wired network impairments,
such as PLR. Monika and Rama [48] use Neural Net-
work with Hidden Markov Model in speech transmission,
but they do not consider the network parameters effects
in the communication. In [49] a speech enhancement tech-
nique to improve noise corrupted speech via DNN is pro-
posed, but degradations that correspond to communication
systems are not considered. Martin-Donas et al. [5S0] pro-
pose a speech enhancement DNN-based solution for smart-
phones. Xie et al. [15] evaluate pathological speech quality
using acoustical parameters, extracted from speech samples,
through a DNN. Bhamre and Kulkarni [51] apply an DNN to
map the relationship between a noise and a reference speech
signal, considering different acoustical environments.

C. DEGRADATION FACTORS: PACKET LOSS RATE AND
FADING CHANNEL MODELS

As stated before, the degradation of the speech signal quality
can occur in any stage of a communication system.

In the wired network, the most common impairment factor
is the PLR [52], which can occur due to overloaded transmis-
sion channels. A PLR distribution can be determining using
the Gilbert-Elliot model [53] that is represented by:

a=P(g =Blg-1=G) b=Pg;=GClg-1=B) ‘)

where, a is the probability to pass from a bad state (B) that
represents a packet loss to a Good state (G) that indicates a
success in the packet delivery; b is the probability to pass
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FIGURE 2. Wireless communication system with LOS and NLOS between
the transmitter and receiver, representing the Rician and Rayleigh fading
channel models, respectively.

from G to B state; and ¢, and g, represent the states at the
instants ¢ and t — 1, respectively. It is important to note that
a same PLR value can be implemented using different packet
losses distributions. This manner, different burst intensities
are configured [47]. A PLR distribution model is determined
with the variation of a and b, as follow:

PIR = (5)
a+b

On the other hand, in wireless networks other speech qual-
ity impairment factors are found. In a real communication
scenario, usually the end-points of a communication are in
different places and with many obstacles between them, as in
the cities, where the user-device can be inside of a establish-
ment or between buildings. Thus, it is probably that there is
no line of sight (LOS) between the sender and the receiver;
the communication is established by the mirroring of the
waves or by diffraction around the objects [8]. To simulate
a real wireless channel there are different channel models.
In this work, two channel models, which are very accepted in
the literature, are used. The Rayleigh fading channel model,
in which there is no LOS, and the signal spreads among the
various obstacles till reach the receiver. In Rician model, there
is a LOS among sender and receiver, but also different phases
and amplitudes of the signal arrive at the receiver. Fig. 2
shows a typical urban scenario where there is a LOS and
NLOS situations that are described by Rician and Rayleigh
fading models, respectively.

The fading can occur due to several condi-
tions [4], [54]-[56], such as the presence of obstacles in
the signal path, various paths formed by reflectors, channel
frequency-variation, among others. Some physical phenom-
ena that occur in wireless communication are multipath,
reflection, diffraction, mirroring and absorption. These phe-
nomena lead to fading in the signal traveling through the
air and can be divided into two types: the large and small
scale [8], [57], [58].

Large-scale fading occurs in longer distances from the
transmitter. The power of the received signal decreases as the
distance increases due to the path loss or obstacles in the path,
such as buildings, vegetation and mountains. Atmospheric
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FIGURE 3. Experimental test scenario for voice quality evaluation,
representing degradation in the wired and wireless network.

phenomena such as rain, snow, hail also contribute to the
fading; the shadowing factor is also another known problem.

In small-scale fading scenario, the signal suffers variation
in its amplitude and frequency [59]. Two phenomena that
are related to the fading are the Doppler and the multipath.
In multipath effect, the signal travels by several paths between
the transmitter and the receiver due to reflections and refrac-
tions when it encounters obstacles. This phenomenon gener-
ates the reception of several versions of the signal, presenting
different amplitudes and phases.

On the other side, the Doppler effect occurs due to the rela-
tive movement between the transmitter and receiver, suffering
a frequency variation of the signal received [8], [60]. The
Doppler shift can be calculated according to:

ViV,
V Vs

ﬁ=ﬁ< (©6)
where, fg' represents the expected frequency, fg is the emitted
frequency, v is the constant of propagation speed, V,, and V;
represent the receiver and transmitter speed, respectively.

lll. TEST METHODOLOGY

In this work, the degraded speech signals consider impair-
ments caused by wired and wireless network. Fig. 3 illustrates
the proposed scenario for the realization of the experiments.

In the wired network, different PLR values were applied
on the original speech files; for each file and each PLR,
the tests were repeated 10 times. Then, each impairment file
was evaluated by PESQ and a MOS index was calculated.
Considering the probabilistic nature of the PLR formulation,
in which a lesser PLR value can obtain a higher MOS score
value and vice-versa; the impairment file with the MOS index
closer to the average, for each PLR value, was separated and
used in the subsequent phase.

The Wav2rtp Open Source software [61] was used for
application of different PLR values and distribution models
according to equations (4) and (5). This software is able to
convert a “.wav” file into a RTP data stream, generating a
new degraded file.

In the wireless network, the fading effect was performed
considering the Rayleigh and Rician channel models, imple-
mented in MATLAB software, in which different Doppler
shifts are considered. The channel model with a specific
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TABLE 2. Characteristics of original speech files.

Speech Min. / Max.  Average

Database Length silence
ITU-T Rec. P. Sup. 23 [63] 7-10s. 45%
ITU-T Rec. P.862 [62] 8-10s. 41%

configuration was applied in each resulting files with PLR,
and the experiments were also repeated 10 times. Later,
the algorithm ITU-T P.862 was applied in each speech file and
its MOS index was calculated. Thus, different degradation
scenarios with PLR and fading channel models were created.

Consequently, with the knowledge of resulting MOS for
each degradation scenario, an DNN can be trained to discover
the relation between the fading and packet loss parameters
and the voice quality index.

A. CONSTRUCTION OF A SPEECH DATABASE
CONSIDERING PLR AND FADING

In order to determine a speech quality classification model,
an impaired speech database (DB) was built. It is important
to note that a DB that considers degradations caused by fading
effects is not available in the current literature.

40 unimpaired speech files were considered to create the
speech samples to be used as test material; 20 files from [62]
and the remaining from [63]. All the speech samples have a
maximum and a minimum percentage of silence of 80% and
20%, respectively, as recommended in [11]; and the sampling
rate considered for all the speech samples is 8 kHz, because
our study is regarding narrow-band signals. The main charac-
teristics of the original speech files are presented in Table 2.

The objective is to create speech samples containing wired
and wireless network degradations. Thus, the process to
obtain these samples can be divided in three phases:

o In the wired network simulation, the PLR values
of 0.5%, 1%, 3%, 5%, 7%, 10%, 15% and 20% were
applied in the 40 speech original files. As stated before,
the application of PLR was repeated 10 times for the
different rates in each file, resulting in 3,200 impairment
files, in which 80 different versions of the same file
were obtained. The MOS index of each impaired file
was obtained using the ITU-T P.862 algorithm. Then,
an average value for each 10 repetitions was determined,
and the speech file with the MOS index closest to
each average value were separated. Thus, 320 files were
selected for the next step.

o Later, in the wireless network simulation, the Rayleigh
and Rician channel models were used, and con-
figured using 10 different Doppler shifts (Hz):
0,5, 10, 15, 20, 50, 75, 100, 150 and 200. The 320 files,
obtained from the first phase, passed trough to each
channel model and Doppler shift, and each simula-
tion was repeated ten times, resulting in total 64, 000
impaired files. Thus, each speech file contain degrada-
tion caused by PLR and fading.
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FIGURE 4. Flowchart for the Speech Quality Assessment Classification by
Deep Belief Networks.

« Finally, a MOS index of each impaired file was deter-
mined using the PESQ algorithm

Thus, the impairment is related to the PLR and fading
channel model with several Doppler values. All these speech
files were used in the training and testing phases of the
proposed model based on DBN.

B. PROPOSED MODEL USING A DEEP BELIEF NETWORK
Fig. 6 presents the flowchart for the speech quality assess-
ment classification.

The speech signal features were automatically extracted
by the proposed DBN classifier. These features correspond
to the Zero-crossing rate (ZCR) parameter in the tempo-
ral domain [64], 13 Mel-Frequency Cepstrum Coefficients
(MFCC) static features (12 MFCCs and log energy) and the
first and second derivatives of the static features [65], twenty
FFT Power Spectrum, the spectral centroid, the spectral roll-
off and the spectral flux. In total, 63 features from the speech
signal over 25 ms of frames with 10 ms overlap are extracted.

Once the features were extracted, the DBN is trained and
different classifiers are tested. Linear Regression (LR) and
Support Vector Machine (SVM) classifiers were used with
the aim of performance comparison with the DBN containing
the Softmax function. The LR model was used because it is
a classification model very used to maximize the conditional
log-likelihood [66]. The SVM classifier was used because it
represents, in a good manner, how to separate different classes
in the training step [67]. In the training phase the DBN and the
LR and SVM classifiers are considered only for performance
evaluation.

In order to obtain the final DBN model, the correlation
between the classification performance and different DNN
architecture configuration were tested in the training phase.
The variables were the number of hidden layers and neurons
in each hidden layer. From one to six hidden layers, with
each hidden layer containing 50, 100, 150, 200, 250 and 300
neurons were tested.

The contrastive divergence (CD) algorithm was used to
estimate the parameters in the RBM, which is an efficient
approximate training procedure, making it suitable as build-
ing blocks for learning DBNs [68].
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TABLE 3. Speech quality classes according to MOS index values.

Speech Quality  Perceived quality MOS index
Class (ACR Scale) values
Class-A Excellent 5.00-4.00
Class-B Good 3.99-3.00
Class-C Fair 2.99-2.00
Class-D Poor 1.99-1.00

Class-E Very Poor 0.99 and lower

The parameters of the first RBM were used for estimating
a DBN model, which were estimated by using a training data.
A learning algorithm trained other RBM by using as the input
data the activation of the previous layer. This mechanism
continued until reached the last layer of RBM, forming the
DBN. The Softmax function was used in the top of the DBN
model, and the back-propagation was applied for estimating
the parameters of the model.

The result obtained by the proposed DBN model corre-
sponds to a speech quality class. Thus, five quality classes
are defined according to the 5-point MOS scale, which are
introduced in Table 3.

In the training phase, the precision, recall, and F-measure
were used as performance assessment metrics to compare the
results obtained by our proposed model with other classifi-
cation methods. These performance metrics are very used in
classification systems of different applications [69]-[71].

The accuracy is also a performance assessment metric and
it was used in our experiments to compare the results obtained
by different network configurations and different classifier
algorithms. The accuracy is given by (7):

T, + T,
Ty+Ty+Fy+Fy
where, T, and T}, represent the number of true positive and
true negative classification in the data sample, respectively.
Conversely, F), and F), represent the number of false positive
and false negative classification, respectively.

Additionally, the confusion matrix was used to compare the
results obtained by the proposed solution and the P.563 algo-
rithms. The MOS scores obtained by P.563 were grouped into
a specific quality class described in Table 3.

Accuracy =

(N

C. SUBJECTIVE TESTS IN A LABORATORY ENVIRONMENT
Once the proposed model was defined, its performance was
evaluated by subjective tests carried out in a laboratory
environment that accomplished the acoustic requirements
described in [19]. 63 assessors participated of the subjective
listening tests, consisting of 29 women and 34 men; they did
not have experience in speech quality assessment tests, and
they also reported no hearing problems.

The tests were conducted for 11 weeks, and during this
period, the test room was with the same acoustic character-
istics, without noise or disturbance sound. At the beginning
of the subjective tests, a supervisor explained the instruc-
tions to the assessors, who listened some degraded speech
sequences for a better understanding of the test procedure;
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FIGURE 5. Impact of different PLR values on speech quality index (MOS).

those speech sequences were not used in the next test phases.
Later, the assessors scored each speech file using the 5-point
MOS scale described in Table 1. The tests were performed in
a computer. Each speech file received at least 15 scores from
different assessors. The tests were performed individually and
without a time limit.

Comparative studies were performed between the MOS
index results obtained in the subjective tests and the classi-
fication performed by the proposed method. For this compar-
ison the quality classes presented in Table 3 were used.

Additionally, the non-intrusive ITU-T Recommendation
P.563 was also used to determine a MOS index of each speech
files used in the proposed method. Thus, a performance com-
parison of these non-intrusive models is performed.

IV. RESULTS

The preliminary test results show a relationship between
MOS index values and the degradation factors considered
in this work, specifically, PLR, fading channel model and
Doppler shift. Note that the values of these degradation fac-
tors are known and the MOS scores correspond to the PESQ
algorithm results.

Fig. 5 shows how the speech quality, represented by a MOS
index value, decreases when PLR values increase. In this test
scenario, only the degradation in wired networks is taken into
account.

Fig. 6 shows the impact of Doppler shift values on the MOS
index values considering the Rayleigh fading channel. Note
that the impact of the same PLR values considered in Fig. 5
are also added to the effects of the Rayleigh channel model.

Similarly, the impact of Doppler shift values on the MOS
index values, considering the Rician fading channel, is pre-
sented in Fig. 7.

As can be observed in Figures 6 and 7, the Rayleigh
channel model has a higher negative impact on the speech
quality than the Rician channel model.

Based on the results presented in Figures 5, 6 and 7,
the study of the speech signal parameters of impairment
files is performed via DBN. It is worth noting that the pro-
posed solution in this work is an non-intrusive speech quality
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TABLE 4. Accuracy obtained by DBN with respective number of layer and
neurons.

Number of neurons
50 100 150 200 250 300
2 11791% | 792% | 79.1% | 79.1% | 79.0% | 79.1%
% 2 1903% | 91.1% | 90.1% | 91.3% | 90.2% | 90.5%
= | 3] 925% | 93.1% | 93.0% | 92.1% | 92.0% | 91.8%
5 [ 4] 928% | 945% | 94.0% | 93.6% | 93.7% | 93.2%
E 51939% | 96.1% | 94.3% | 93.8% | 92.8% | 92.2%
T [6 | 931% | 94.6% | 94.1% | 93.8% | 93.7% | 93.5%

TABLE 5. Accuracy, recall and F-measure of DBN, LR and SVM classifiers.

LR (%) SVM (%) DBN (%)
Accuracy  95.33% 92.50% 96.14%
Recall 81.06% 88.76% 97.89%
F-measure  87.62% 90.59% 97.01%

classification model; then, it is useful in scenarios in which
the PLR and fading problems occur in the communication
system, but their values are unknown.

Table 4 presents the accuracy obtained by DBN using
different architecture configurations. The numbers of hidden
layers varied from 1 to 6, and the numbers of neurons were:
50, 100, 150, 200, 250 and 300. In order to determine the
accuracy, the results obtained by the PESQ algorithm were
considered as ground-truth. It is important to note that 80% of
the total number of impaired speech files (51, 200) were used
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TABLE 6. Confusion matrix for speech quality classification (in percentage) using the proposed model and P.563 algorithm.

Speech P. Model /P.563  P.Model / P.563  P. Model/ P.563  P. Model / P.563  P. Model / P.563
Qual. Class Class-A Class-B Class-C Class-D Class-E
Class-A 97.23/51.13 2.30/9.53 0.47/18.16 0.0/16.45 0.0/4.73
Class-B 1.25/1.21 95.86/58.13 2.93/16.25 0.0/17.34 0.0/7.07
Class-C 0.0/0.31 1.17/4.26 95.70/78.24 2.85/12.15 0.27/5.04
Class-D 0.0/0.08 0.55/0.23 2.23/4.73 94.96/83.13 2.27/11.84
Class-E 0.0/0.0 0.0/0.0 0.78/3.75 2.30/6.29 96.95 / 89.96

in the training phase, in order to guarantee data independence
in the next phase.

As can be observed in Table 4, the highest accuracy was
obtained in the network configuration of 5 hidden layers and
100 neurons. This configuration was used in the subsequent
tests.

The performance results, in terms of accuracy, recall and
F-measure metrics, of the DBN with Softmax, LR and SVM
classifiers are presented in Table 5. These results represent the
average value obtained in each one of the five quality classes.

Results presented in Table 5 demonstrated that the pro-
posed DBN with Softmax classifier outperforms the other
classifiers considering all the performance metrics used.
Thus, the proposed speech quality classifier considers the
Softmax.

In the testing phase, 20% of all impairment files were used.
In this phase, the performance of our proposed model is also
compared considering the results obtained by the current non-
intrusive quality algorithm described in the ITU-T Recom-
mendation P.563. In order to compare the results, each MOS
score determined by P.563 is attributed according to each
quality class presented in Table 3. The results are presented
in Table 6 using the confusion matrix format. As stated before
the PESQ results are used as ground-truth.

Finally, in the subjective test, 50 extra impairment files
were used as test material, which are different to those used
in the training and testing phases of the proposed model. It is
worth noting that 10 speech files correspond to each quality
class defined in Table 3, and there are speech samples with
MOS scores closer to the border of the classes. Experimen-
tal results demonstrated that 47 speech files were correctly
classified, that represents a global accuracy of 94%.

V. DISCUSSIONS

In case of a wired network, we focus on the PLR, because it
is the parameter that represents the most impairment factor
in a wired network [47], [52], [72]. The impact of wireless
channel models and the Doppler shift on speech communi-
cation quality is not widely discussed in current literature.
The results obtained in this work shows the relations between
degradation parameters and quality speech assessment. By
means of this relation, it is possible to emphasize the impor-
tance of considering the fading and Doppler shift in the
wireless communication research area. In this context, a DB
of speech samples impaired by wireless network problems
is relevant to analyze the performance of speech quality
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assessment algorithms, because the samples represent more
realistic scenarios.

The experimental results obtained demonstrated that the
proposed model for speech quality assessment by the DBN
can be applied in any realistic communication scenario and
achieved a high accuracy. In Table IV, it is possible to observe
that DBN structure with five hidden layers, each layer with
100 neurons, reached the best results, demonstrating that a
larger number of neurons does not increase the accuracies
of DBN. Though the DBN model is possible to apply it in
a realistic scenario without computational complexity.

As can be observed in Table V, the DBN with the Softmax
function, that is a multi-classifier, reached the best accuracy
(96.14%). Thus, the results obtained are very closer to the
intrusive PESQ algorithm. Also, it can be observed that the
other classifiers reached an accuracy greater than 92% indi-
cating that speech signal characteristics belong to any class
are well defined.

The performance comparison of the proposed DBN
model and the P.563 algorithm, which results are presented
in Table VI, demonstrated that the proposed model largely
outperforms the P.563 results. Furthermore, in subjective tests
the proposed model reached an accuracy of 97% that is a
confident result.

VI. CONCLUSION

In this work, a study of impairments on voice communi-
cation services caused by PLR and fading effects is pre-
sented. For this, 64, 000 impaired speech samples were cre-
ated, each of them considering different degradation levels.
In order to classify the different speech qualities, in a non-
intrusive manner, a new classification model based on DBN
was proposed. Different number of layers and neurons by
layer are tested to determine the best performance of the
DBN. The results obtained by DBN model with Softmax
classifier outperformed the LR and SVM algorithms, reach-
ing an accuracy of 96.14% considering the P.862 results as
ground-truth.

The subjective tests, carried out in a laboratory environ-
ment, validate the performance of the proposed method based
on DBN, reaching an accuracy of 94%. Also, the proposed
model outperformed the most representative non-intrusive
quality metric, ITU-T P.563, that reaches 72.12%.

Furthermore, the proposed speech quality classifica-
tion model, for being non-intrusive, can be used in real
applications of speech communications. The quality class
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determined by the proposed DBN model can be useful for
telephone network operators, a range of MOS values can be
enough to satisfy the providers necessities.
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