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ABSTRACT Traditional magnetic resonance imaging (MRI) acquires three contrasts of T1, T2, and proton
density (PD), but only one contrast can be highlighted in an imaging process, which not only restricts the
reference standard for disease but also increases the discomfort and medical expenses of the patients due to
requiring two different weightedMRI. In order to solve such a problem, we proposed amethod based on deep
learning technology to provide two MRI contrasts after one signal acquisition. In this paper, a new model
(PTGAN) based on generative adversarial networks is devised to convert T2-weighted MRI images into
PD-weighted MRI images. In addition, we have devised four different network structures as the reference
model of PTGAN, by which the different brain dissection MRI images, different noise MRI images, knee
cartilage MRI images, and pathological MRI images from different body parts are used to test PTGAN.
The research results show that the proposed PTGAN can effectively preserve the structure and texture and
improve resolution in the conversion. Moreover, each T2-weighted MRI conversion takes only about 4 ms
and can provide more information for disease diagnosis through different image contrasts.

INDEX TERMS T2-weighted MRI, PD-weighted MRI, deep learning, generative adversarial
networks (GAN), fast conversion, accurate diagnosis, preserve texture.

I. INTRODUCTION
MRI is a multi-functional imaging modality [1]. Since dif-
ferent body structures have different tissue characteristics,
the images obtained through the MR scanner can be used
to study both the structure and function of the body. The
goal of MRI is to construct a digital matrix corresponding to
the spatial location. This digital matrix describes the spatial
distribution of some characteristics of the sample nucleus [2]
such as the density of the nucleus or the relaxation time of the
tissue.

Unlike single-density parameter imaging of Computed
tomography (CT) [3] examination, the MRI examination has
several parameters including T1 value reflecting T1 relaxation
time, the T2 value reflecting T2 relaxation time, and the PD
value reflecting the relaxation time of the proton density [4].

The fundamental difference between MRI and other medi-
cal imagingmethods is that the user can control the method of
data acquisition and image reconstruction. The software con-
trols the pulse time, the data acquisition sequence, the inten-
sity and the rate of auxiliary magnetic field to change the

contrast, resolution, acquisition of MRI Speed, field of view
and artifact effects, etc [5]. The core of these controls is the
k-space [2].

Different weighted MRI methods have their own advan-
tages in observing different tissue features. To diagnose
diseases, multiple weighted MRI can greatly help medical
experts to make a decision. Because of the limitations of med-
ical expenses and the constraints of medical image collection
regulations, the fixed contrast display method is applied for
different tissues of the body [1]. Medical experts can only
roughly make a judgment according to the single-weighted
MRI. For the more complicated and serious diseases, fur-
ther checkings are required through different weighted MRI,
which also increases patients discomfort and medical costs
during the secondary acquisition.

In recent years, deep learning has developed rapidly in
many different fields, and has shown amazing advantages [6].
The artificial neural network model learns the statistical
rules from a large number of training samples through the
backpropagation algorithm [7] and forms a more abstract
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high-level representation by combining the lower-level fea-
tures to discover the distributed features representing the
data [8]. This kind of statistical rules-based deep learning
method is superior to the past system based artificial rules [9].
Some excellent deep neural network models are then widely
used, such as convolutional neural networks (CNN) [10] for
images processing and recurrent neural networks [11] for
speech processing.

We use the improved Generative Adversarial Networks
(GAN) [12] to creatively convert T2-weighted MRI images
into PD-weighted MRI images, which provides more refer-
ences for disease diagnosing. At the same time, for the prob-
lem of image segmentation [13], [14], detection [15], [16],
classification [17]–[19] and registration [20], [21] caused by
medical image training data, we devised an efficient method
to preprocess the training data. The follows are our specific
contributions:
• We proposed a U-Net architecture [22], [23], with seven
skip connections for the generator model, where the
L2 loss [24] and normalized mean square error (NMSE)
consists of the generator loss of the model.

• We proposed to append k-space frequency domain loss,
including frequency edge loss and frequency center loss,
to the generator loss, by which to obtain high organiza-
tional similarity and resolution after image conversion.

• We performed a large number of comparative exper-
iments to evaluate PTGAN, which illustrate both the
effective and efficiency of our proposed method.

II. METHOD
The key to traditional MRI is the radio frequency (RF) pulse
sequence. Different RF pulse sequences highlight the con-
trast of different tissue signals. Different pulse sequences
are distinguished by sequence parameters such as RF pulse
duration and interval time. Under the support of traditional
MRI principles, we use the improved deep GAN to obtain
multi-weighted MRI images after one signal acquisition.

A. TRADITIONAL MRI METHOD
The existing MRI method place patients in strong magnetic
field and uses radio RF pulse with the same frequency for
proton precession [1], [25]. The protons resonated after
absorbing energy. The radio frequency pulse with the same
precession frequency can be calculated by the Larmor
equation [26]:

ω0 = δ · B0 (1)

where ω0 denotes the precession frequency; δ denotes the
gyromagnetic ratio. The gyromagnetic ratio of different mate-
rials is different. B0 denotes the magnetic field strength in
the RF pulse. Its frequency increases as the field strength
increases.

Under the action of a strong magnetic field, the protons
are arranged in an order and rotate in a cone along the axis of
rotation, and the longitudinal magnetization is then reduced
to produce transverse magnetization [27].

The RF pulse sequence determines the contrast of the tissue
signal. For long repetition time (TR) of pulses (>1500ms),
the difference of tissue signal depends on PD contrast instead
of T1 contrast. When echo time (TE) is extremely short
(<20ms), the difference among T2 signal intensities is small.
When TE is great than 50ms and less than 200ms, the dif-
ference among signal intensities depends on T2 contrast. For
spin echo pulse sequences, T1-weighted MRI, T2-weighted
MRI, and PD-weighted MRI can be obtained through differ-
ent TR and TE [28], [29].

In the case of a long TR and a long TE, T1 contrast is
weakened and T2 contrast is prominent. In the case of short
TR and short TE, T1 and T2 contrasts are weaken. In the
case of long TR and short TE, the longitudinal magneti-
zation of the two different tissues has completely recov-
ered after TR time, which leads to the inability to highlight
T1 contrast [26], [30]; in the short TE, the T2 contrast of
different tissues cannot be highlighted, and the compari-
son of different tissue signals only rely on the difference
of PD [31].

Fig.1 shows T2-weighted MRI and PD-weighted MRI
principles. In T2-weighted pulse sequence, the longitudinal
magnetization vector in the scan period of the long TR has
been fully relaxed by the T1 time constant, and the long TE
further excludes T1 effect in the signal. In PD-weighted pulse
sequence, the long TR allows the longitudinal magnetization
vector of the tissue to fully relax before the next excitation,
which reduces the effect of T1 on the signal. The short TE
mainly reduces the effect of T2 on MRI, which makes the
contrast of MRI only related to the PD [30], [31]. Different
sequence parameters highlight some contrasts in the image
and greatly reduce the effects of other contrasts [32], [33].

Transverse magnetization and longitudinal magnetization
synthesize the total magnetic vector, and MRI scanner senses
the current as well as receives the signal from body. The
strongest signal M after 90◦ pulse is:

M = M0(1− e−TR/T1)e−TE/T2 (2)

in which T1 is the time required for the recovery of the
longitudinal magnetization to 63% of the original magnetic
vector and T2 is the time required for the transverse magneti-
zation to decrease to 37% of the original magnetic vector [4].
No matter which kind of weighted MRI, there will always be
three contrasts: PD, T1 and T2. In particular, regardless of the
TR and TE values, the signal received by NMR instrument is
always affected by the proton density [28], [29], [31]. A cer-
tain degree of relaxation has occurred before the available
measurement signals appearing, which provides the possi-
bility of that convert T2-weighted images to PD-weighted
images.

B. GENERATIVE ADVERSARIAL NETWORKS
1) GENERAL GAN
Generative Adversarial Networks provides a way to learn
deep representations [8] without extensively labeling train-
ing data. The GAN includes a generator model G and
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FIGURE 1. T2-weighted and PD-weighted MRI principles.

a discriminator model D, which are completely independent
of the two models. G captures the data distribution and
D estimates the probability of the sample from real data. The
two networks are updated by a back propagation algorithm to
perform competitive learning for training purposes [7], [12].

The generator model and the discriminator model are
usually composed of a multi-layer network containing con-
volution or fully connected layers. The generator G learns
the distribution Pg of the real data x and uses fake
data G(z) to map the priori variable Pz(z) of the input noise.
The discriminator model D outputs a single scalar. The train-
ing of D and G is a minimax game problem of the value
function K (G,D):

max
D

K (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))] (3)

min
G
K (D,G) = Ez∼Pz(z)[log(1− D(G(z)))] (4)

Dmaximizes the assignment of the correct label to the real
data andG-generated the samples through training [12]. After
optimization by the stochastic gradient ascent algorithm [34],
D(x) is continuously improved and D(G(z)) is then gradually
reduced.
At the same time, G minimizes the log(1 − D(G(z))) by

stochastic gradient descent algorithm [35], [36], which max-
imizes the probability used by the G-generated sample to
judge the real data.

D∗G(x) =
Pdata(x)

Pdata(x)+ Pg(x)
(5)

In equation (5), the generator model and the discriminator
model eventually reach a balance optimal state as Pg =
Pdata [12] during the adversarial training process. The gener-
ator model captures the data manifold of Pdata and maps the
generated data distribution to the real data, which indicates
that the GAN network achieves the best training effect.

2) LEAST SQUARES GAN
General GAN use the KL divergence [37] to measure the dif-
ference betweenPg andPdata. The optimization of the general

GAN loss function is equivalent to minimizing the Jensen-
Shannon divergence [38]. And the least-squares GAN [40]
redefines the loss function as follows:

min
D
K (D,G) =

1
2
Ex∼Pdata(x)[D(x)− a]

2

+
1
2
Ez∼Pz(z)[D(G(z))− b]

2 (6)

min
G
K (D,G) =

1
2
Ex∼Pdata(x)[D(x)− c]

2

+
1
2
Ez∼Pz(z)[D(G(z))− c]

2 (7)

In min
G
k(D,G) of equation (7), there is one more

Ex∼Pdata(x)[D(x)−c]
2 as a constant independent ofG network

than the original loss function [12]. The constants a and b
respectively represent the mark of real images and generated
images; the role of c is to maximize D(G(z)) which deter-
mines the probability thatG(z) is the real data. After fixingG,
the optimization formula of discriminant model D is:

D∗(x) =
bPdata(x)+ aPg(x)
Pdata(x)+ Pg(x)

(8)

The optimization objective function of Jensen-Shannon
divergence based on the least-squares loss is equivalent to
minimizing the Pearson χ2-divergence [39] between Pdata +
Pg and 2Pg under the constraints a− c = 1 and a− b = 2.

2S(G) = χ2
pearson(Pdata + Pg‖2Pg) (9)

According to the constraints for a, b, c, the adversarial loss
under the least-squares loss function is:

min
D
K (D,G) =

1
2
Ex∼Pdata(x)[D(x)− 1]2

+Ez∼Pz(z)[D(G(z))]
2 (10)

min
G
K (D,G) =

1
2
Ez∼Pz(z)[D(G(z))− 1]2 (11)

The loss function in equation (10) and (11) is a basic
adversarial loss for PTGAN that replaces the sigmoid cross-
entropy loss function in the conventional GAN. It has better
conversion effect and more stable training process than that
of the conventional GAN.
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FIGURE 2. Schema for our proposed GAN-based preserving-texture for fast multi-weighted MRI(PTGAN).

FIGURE 3. Network structure of U-Net as generator.

C. PROPOSED METHOD
1) PROPOSED ARCHITECTURE
In the proposed PTGAN, U-Net with well performance in
medical image processing is used as a generation model,
which can effectively preserve the organization structure of
T2-weighted images during the conversion. Fig. 2 shows the
overall structure of PTGAN model.

The network structure of U-Net as the generation model
in PTGAN is shown in Fig. 3. Generator G contains 8 con-
volution modules and 8 deconvolution modules [10]. The
symmetry encoder and decoder perform additional operation
as the output of the decoder, which preserves the structural
texture details of MRI images as much as possible. Discrim-
inator D uses a classical convolutional neural network with
10 convolutional modules.

2) GENERATOR LOSS
In order to obtain better image conversion quality, we add
the normalized mean square error loss, L2 loss and frequency
loss to the loss function of the generator G based on the basic
adversarial loss of PTGAN. The normalizedmean square loss
can be expressed as:

min
G
Lnmse(G) =

∥∥xt − x̂u∥∥22
‖xt‖22

(12)

where xt is the real PD-weightedMRI images acquired by the
pulse sequence, and x̂u is the PD-weighted images converted
by T2-weighted images.

In order to prevent over-fitting [41], [42] during the train-
ing, L2 regularization is performed in the generation loss,
which is the penalty [41] of the sum of L2 norms [43] with
parameters:

min
G
Ll2(G) =

θ

2n

∑
w w

2 (13)

C = C0 + Ll2 (14)

where w is the weight in neural network; C0 represents the
original cost function; and n is the number of samples; θ is
a regular term coefficient that weighs the proportion of the
regular term and C0.
In L2 regularization, the parameters in the neural network

are updated by:

w := w+ µ
∂C0

∂w
+ φ

θ

n
w (15)

where µ < 0 and φ < 0 in the gradient descent algorithm
and µ > 0 and φ > 0 in the gradient ascent algorithm.

In order to solve low image quality after conversion,
we calculate the loss function by reflecting the characteristics
of the spatial frequency. In the k-space of MRI, the edge
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Algorithm 1 Proposed Preserving-Texture GAN Algorithm
1: Initialize all parameters of the generator G and discrim-

inator D
2: for number of epoch do
3: for k steps do
4: Input: minibatch of m T2-weighted MRI images

z(1), . . . , z(m) from Pz(z) and minibatch of m PD-
weighted MRI images x(1), . . . , x(m) from Pdata(x)

5: Output: G(z), D(G(z)), D(x)
6: Updade the discriminator D by Adam-based

stochastic gradient descent:

∇θg
1
m

m∑
n=1

[(D(x)− 1)2 + (D(G(z)))2]

7: Updade the generator G by Adam-based stochastic
gradient descent:

∇θd
1
m

m∑
n=1

(αLnmse + βLl2 + γLfft + λLls)

8: end for
9: evaluation for validation data based on early stop strat-

egy strategy
10: end for

portion determines the overall structure of the image, while
the central portion determines the image resolution [44].

min
G
Lfft (G) =

1
2

∥∥yt − ŷu∥∥22 (16)

where yt and ŷu are the data of k-space with respect
to xt and x̂u. The G-generated MRI images and the real
MRI images are mapped to k-space by Fourier transform. The
high resolution and structural boundary of the MRI images
are preserved by reducing the difference between yt and ŷu at
low and high frequencies.

In this paper, the least-squares loss function replaces the
sigmoid cross-entropy loss function, the loss function of the
generator model in the basic adversarial loss can be expressed
as:

min
G
Lls(G) =

1
2
‖D(G(xu))− 1‖22 (17)

Therefore the total loss function can be expressed as:

Ltotal = αLnmse + βLl2 + γLfft + λLls (18)

in which α, β, γ , and λ are hyperparameters for each part
of the loss. Model training and optimization are included
in Algorithm 1.

3) EVALUATION METHOD
In order to fully test the conversion effect of PTGAN model,
we first perform conversion of T2-weighted MRI images in
DICOM format from three different brain sections including
horizontal plane, sagittal plane, and coronal plane. Secondly,
we also convert T2-weighted MRI images at the knee where
PD contrast is often used. Finally, T2-weighted MRI images
of tumors from 7 different parts of the body and T2-weighted

MRI images containing 1%, 3%, 5%, and 7% noise rate were
tested. The converted PD-weightedMRI images are evaluated
by three evaluation indicators: NMSE, PSNR, and SSIM.

a: MODEL COMPARISON
We devised four different network models as the references in
the paper: (1) Convolutional Neural Network (CNN): Includ-
ing 8 convolution modules and 8 deconvolution modules;
(2) U-Netmodel: Compared to CNN model, U-Net uses skip
connections to attach symmetrical convolution module and
deconvolution module; (3) CNN-based GAN (CNN-GAN):
CNN as the generation model of GAN; (4) U-Net_refine-
GAN [45]: Adding a skip connection in PTGAN. In the
above four cases, the test results were compared by which
to measure the conversion quality of each case.

b: LOSS FUNCTION COMPARISON
In our work, the conversion effects of PTGAN were tested
separately in the cases of different loss functions: (1) only
the least-squares loss (LS) in the basic adversarial loss;
(2) the least-squares loss and the L2 loss (LSL); (3) Least-
squares loss, L2 loss and normalized mean square error loss
(LSLN); (4) Contains least-squares loss, L2 loss, normalized
mean square error loss and frequency loss (LSLNF). In the
above four cases, the test results were compared by which to
measure the conversion quality of each case.

III. EXPERIMENTS
A. EXPERIMENT SETTINGS
1) DATASET
The training data and test data used in the paper are from the
IXI database (http://brain-development.org/ixi-dataset/). The
raw data samples are 3D brain MRI images in NIFTI format
acquired at a magnetic field strength of 1.5T. We extracted
47,252 2D training images and 17,848 2D evaluation images
from 499 3D brain images. At the same time, 10,230 2D
test images were extracted from 78 3D brain MRI images,
and 50 2D images were randomly selected for compar-
ison. We also used seven different tissue tumor images
(http://www.cancerimagingarchive.net/) for testing. The size
of the 2D MRI image is 256×256. The pixel values of
T2-weighted MRI images and PD-weighted MRI image
acquired by a pulse sequence are normalized within
[−1, 1], which ensures that each part of the entire image can
be trained to the same extent. In addition, the training datawas
mixed with 3%, 5%, and 7% of Gaussian white noise, which
increased data diversity and improves the anti-interference
ability of the model.

2) IMPLEMENTATION
The implementation of PTGAN model relies on Tensor-
Layer [46] framework, an advanced deep learning library that
provides an easy-to-use API based on TensorFlow. The hard-
ware configuration of the implementation includes Intel(R)
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FIGURE 4. Conversion result of PTGAN model under LSLNF loss. Blue box represents the zoomed-in Region of Interest (ROI) (50×) of the
T2-weighted MRI images. Red box indicates zoomed-in ROI (50×) corresponding to the PD-weighted MRI images after the PTGAN conversion. White
box indicates zoomed-in ROI (50×) corresponding to the PD-weighted MRI image acquired by a pulse sequence. Yellow box indicates the difference
between the generated images and PD-weighted MRI image acquired by a pulse sequence. Color bars are shown at the bottom.

Xeon(R) CPU E5-2630 v4 (×4), 128GB RAM and Tesla
P100-PCIE-16GB GPU (×2).

3) TRAINING SETTING
After comparing the simulation results under different param-
eter settings, the loss function in the experiment was set by
the hyperparameters of α = 15, β = 1, γ = 1, and λ = 1.
The PTGAN was initialized at a learning rate of 0.1E-3 and
a batch size of 50. In model optimization, the PTGAN use a
standard Adam optimization algorithm [47] with momentum
of 0.9. The generator G and the discriminator D contain a
batch normalization module [48] before the input of each
layer, which solves the problem that is difficult to train due to
the increase in the number of neural network layers.

B. RESULTS
Fig. 4 is the conversion results of PTGAN model under
LSLNF loss. The physical condition of a patient is the basis
for acquiringMRI images. Therefore, it is necessary to ensure
that the image texture cannot be changed during the conver-
sion, which is the rule we must be followed. In Fig. 4, we can

get overall structural similarity between the generated images
and the real PD-weighted MRI images. Furthermore, we can
continue observing the similarity of texture details from the
zoomed-in ROI (50×).

We selected 50 differently shaped brain horizontal plane
conversion images to compare with ground truth (GT). The
average SSIM reached 0.971, while the converted images had
an average PSNR of 32.944 dB. Evaluation indicator such
as SSIM or PSNR is a digital only representation, so we
also provided MRI images and zoomed-in ROI in the paper.
In order to show the changes in detail, we enlarged the ROI
by 50 times and used GT as the quality reference for the
generated images in Fig. 4. As a result, different highlights
can be observed by the visual comparison between blue box
and red box in the zoomed-in ROI. It can be seen from
Fig. 4 that the T2-weighted MRI images have obvious tissue
structure with the poor detail effects. Although contrast of
the converted PD-weighted MRI images is relatively low,
the edge of the organizational structure is clear and the details
are contrasted, which is conducive to the accuracy of disease
diagnosis.
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TABLE 1. Quality evaluation of brain MRI images conversion under
different noise.

In addition to evaluation indicator,MRI images, zoomed-in
ROI, we also in Fig. 4 provided the image difference between
red boxes and white boxes by the yellow boxes. The smaller
the pixel value in the yellow boxes is, the smaller the differ-
ences are. It can be observed from the yellow boxes in Fig. 4
that there is no obvious texture structure distribution, which
shows that the difference in texture and structure between the
generated images and GT is extremely small. It also verifies
that the generated images retaining the texture and structure
during the conversion.

In this study, we test T2-weighted MRI images under five
different degrees of Gaussian noise. It can be seen from Fig. 5
that when the Gaussian noise ratio is less than 5%, the black
portion in the yellow box is relatively large, which indicates
that the conversion difference is relatively smaller. In Table 1,
the average PSNR of the converted images is great than 32 dB
when the Gaussian noise is less than 5%. However, when the
Gaussian noise is great than 5%, the PSNR of the converted
PD images is great than 31 dB. As the noise increases,
the quality of the conversion decreases. Although the
T2-weighted images with 9% Gaussian noise is not included
in the training data, a better conversion effect with an average
SSIM as 0.949 can still be obtained.

IV. DISCUSSION
In order to fully test the conversion effect of PTGAN model,
we converted T2-weighted MRI images from different parts
of the body. We also designed five different network mod-
els for comparisons. In addition, the conversion effects of
PTGAN were tested separately in the case of different loss
functions.

A. MODEL COMPARISON
There are no other methods for multiple-weighted MRI,
in order to evaluate PTGAN, we additionally applied four
deep learning networks to multiple-weighted MRI. Based on
the principle of fair comparison, CNN or U-Net in different
models have the same network depth, and the discriminators
in different GAN also have the same network depth. All mod-
els are in the same training data, test data and experimental
environment. Due to the requirements of the model structure,
CNN and U-Net use the Lnmse, Ll2 and Lfft , and the remaining
GAN models use the LSLNF loss function.

It can be seen from Fig. 6 (b) that the image after conver-
sion is blurred, which can only identify the outline of the hor-
izontal plane of the brain and cannot observe the structure of

FIGURE 5. Conversion results under different noises ratio, where blue
box represents the zoomed-in ROI of the T2-weighted MRI images; red
box indicates zoomed-in ROI (50×) corresponding to the PD-weighted
MRI images after the PTGAN conversion; yellow box indicates the
difference between the generated images and GT. Color bars are shown at
the bottom.

FIGURE 6. Converted PD-weighted MRI images under five different
network models. (a) is ground truth (GT) that a PD-weighted MRI image
acquired by a pulse sequence. Red box indicates zoomed-in ROI (50×)
corresponding to the PD-weighted MRI images. The image conversion
results with CNN (b), U-Net (c), CNN-GAN (d), U-Net_refine-GAN (e),
PTGAN (f) under LSLNF loss were presented after five different networks
conversion, the yellow box indicates the difference between the
generated images and GT. Color bars are shown at the bottom.

the brain. In summary, there are more image noise and poorer
image quality in Fig. 6 (b). Compared to Fig. 6 (b), the basic
brain structure of section can be observed in Fig. 6 (c) and
the black area in the yellow box increases, which indicates
that the difference between the generated image and GT has
been reduced. However, the image resolution is not high and
the details are blurred, which is not conducive to observing
the texture in Fig. 6 (c). At the same time, irregular black
blocks appear at horizontal anatomical surface in Fig. 6 (c),
which is easy to mislead the observation of the condition.
The image in Fig. 6 (d) has a higher resolution and a clear
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FIGURE 7. Changes of NMSE and PSNR in different models with LSLNF
loss under training.

structure, but the number of black irregular blocks increases,
which adversely affects the diagnosis. In Fig. 6 (e), the black
irregular block disappears and the image quality is increased
accordingly. The SSIM in Fig. 6 (f) is 0.971, where the image
texture is prominent and the structure is clear. As a result, It is
of great help to brain structure research and disease diagnosis.

Fig. 7 shows the changes in NMSE and PSNR of dif-
ferent models with the training. As the NMSE decreases,
the PSNR continues to increase, which proves that the quality
of the conversion is also improving. It can be seen that GAN
has obvious advantages over applying CNN alone. U-Net
also exhibits similar conversion effects to CNN-GAN by
virtue of its advantages in medical image processing. Since
U-Net_refine-GAN adds the input image to the output image
directly through a skip connection in the last layer of the
generator model, the output PD-weighted MRI contain-
ing more T2-weighted components. Therefore, the effect of
U-Net_refine-GAN is not as good as that of PTGAN.

B. LOSS FUNCTION COMPARISON
The selection of the loss function is extremely important
for the conversion quality and training process of PTGAN.

TABLE 2. Quality evaluation of brain MRI images conversion under
different losses.

Since the sigmoid function in the cross-entropy loss is easy
to reach the saturation state, the GAN training is unstable,
and the least-squares function is saturated at only one point.
But this is only theoretically proven, and still requires a
true comparison of results. Therefore, we trained the cross-
entropy loss and least squares loss models under the same
experimental conditions and compared them under the same
evaluation criteria. In addition, loss functions correspond to
the properties of MRI images and will have a significant
impact on the resolution and detail of the converted images
during training.We used the incremental loss function to train
and test separately under the same experimental conditions
and evaluation criteria, which can more intuitively observe
the impact of the loss function on image conversion.

It can be seen from Fig. 8 that the least-squares loss is
superior to the sigmoid cross-entropy loss in both the NMSE
and PSNR evaluation indexes and converges smoothly. The
sigmoid cross-entropy loss with large convergence fluctua-
tions caused the training to end prematurely at 13th epoch,
which is not conducive to finding the global optimal solution.
Although the NMSE of the least-squares loss function is
large at the beginning of training, the fluctuation begin to
gradual after 5 epochs, and finally the training stops at 28th
epoch. The convergence of the whole training process is less
fluctuating and the training is stable.

In Table 2, as the type of loss function increases, the NMSE
continues to decline and the conversion quality is also
improved to varying degrees. At the same time, while
the standard deviation of the NMSE continues decreasing,
the data fluctuation range is reduced accordingly. Therefore,
the PTGANmodel tends to be stable. When only LS loss was
used, the average SSIM of the converted images reached an
observable level of 0.960. As the increase of loss function,
the conversion accuracy of PTGAN have also been improved.
The texture details of the structure were preserved while
maintaining the transformation of the organizational struc-
ture. Compared to the LS loss function, the PSNR of the
converted images under LSLNF was increased by 1.732dB
when NMSE was reduced by 0.018. And the conversion time
under LSLNF is extremely short (about 52ms in independent
CPU processing or only 4ms in dedicated GPU computing).

C. LOSS WEIGHT COMPARISON
Different loss functions contribute differently to the generated
image, and the proportion of the loss function determines
the speed of training. Lnmse determines the quality of the
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FIGURE 8. Comparison of sigmoid cross-entropy loss and least square loss on PSNR and NMSE under training.

FIGURE 9. Comparison of NMSE and PSNR with different hyperparameters under LSLNF loss.

converted images, a appropriate proportion of Lnmse is ben-
eficial to the fast convergence of PTGAN.We compared nine
weights for the hyperparameters of the total generated loss
function under PTGAN model. First, α = 15, β = 1,
γ = 1, and λ = 1 are taken as initial values. When the
variable-controlling approach were used to keep the other
three variables fixed, the four parameters of α, β, γ , and λ
were changed by 10 times and 0.1 times of initial values,
respectively. In Fig. 9, although the values of the nine dif-
ferent values of α, β, γ , and λ do not fluctuate significantly
under three different evaluation criteria, the evaluation index
with NMSE, SSIM and PSNR at α = 15, β = 1, γ = 1, and
λ = 1 are better than the other 8 values.

D. ROBUSTNESS OF PTGAN
Robustness is an important indicator of model stability and
practical application. Robustness testing of PTGAN needs
to follow the principle of increasing difficulty so that the

conversion results of non-training data can be better observed.
Since our training data are all from MRI images of the
brain, we first tested different sections images and patho-
logical MRI images from brain. Secondly, in order to verify
that PTGAN does not learn the shape characteristics of the
image, we need to test the MRI image of other parts. Con-
sidering the application scope of PTGAN, and T2-weighted
MRI is most commonly used on soft tissue, this is a good
validation option. Finally, although we initially tested the
tumors in the brain, in order to rule out the interference
of brain image features contained in the training, we chose
another conventional tumor images in six different parts for
testing. T2-weighted images from the coronal plane, sagittal
plane, and horizontal plane of the brain were transformed
to test the robustness of the PTGAN model. It can be
seen from Fig. 10 that the conversion effect of the coronal
plane and horizontal plane is better, and the SSIM reached
medical observation levels of 0.956 and 0.975, respectively.
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FIGURE 10. Conversion of three different brain anatomical planes under
PTGAN. Blue box represents the zoomed-in ROI of the input T2-weighted
MRI images. Red box indicates zoomed-in ROI (50×) corresponding to the
PD-weighted MRI images after the PTGAN conversion. Yellow box
indicates the difference between the generated images and GT.
Color bars are shown at the bottom.

FIGURE 11. Conversion of different grades of glioma in the brain under
PTGAN. Blue box represents the zoomed-in ROI of the input T2-weighted
MRI images. Red box indicates zoomed-in ROI (50×) corresponding to the
PD-weighted MRI images after the PTGAN conversion. Yellow box
indicates the difference between the generated images and GT.
Color bars are shown at the bottom.

Although the converted sagittal image shows motion artifacts
at the neck, the brain region is structurally intact and the tissue
is clearly visible, which does not have a decision-making
impact on the diagnosis for brain problems.

In Fig. 10 (b), it also can be observed from the ROI
magnified that the texture distribution of the difference image
and the texture distribution of the converted image are in the
same position, which also shows that the texture distribution
of the converted image has not changed. In different contrast
experiments, the quality of the converted images is different
due to the difference of the models and the input images,

FIGURE 12. Conversion results at knee cartilage. Blue box represents the
zoomed-in ROI of the input T2-weighted MRI images. Red box indicates
zoomed-in ROI (50×) corresponding to the PD-weighted MRI images after
the PTGAN conversion. Yellow box indicates the difference between the
generated images and GT. Color bars are shown at the bottom.

so the image after subtracting the converted image from the
real image leave different texture distribution at the same
position.

Fig. 11 (a) shows the results of PTGAN conversion of
Low Grade Gliomaand and Fig. 11 (b) shows the results
of PTGAN conversion of Glioblastoma. In the absence of
brain tumor images for training, SSIM of different scales of
glioma after transformation is great than 0.96. The glioma
edge details in the converted MRI images are highlighted to
facilitate observation of tumor lesions.

PD-weighted MRI is often used at the site of the knee
cartilage. Fig. 12 shows the conversion results of T2-weighted
MRI images on three different observation surfaces at the
knee. The converted image is clear, and the higher quality
details can be seen in the zoomed-in ROI.

We selected six different tissue tumor images for testing,
including lung adenocarcinoma, liver hepatocellular carci-
noma, prostatic cancer, mammary cancer, renal carcinoma
and endometrial cancer. It can be observed from Fig. 13 that
the conversion results for lung adenocarcinoma and prostatic
cancer are relatively good. In Fig. 13 (b), comparing the
50× ROI of the tumor at the same site before and after the
conversion, it can be found that the image is changed from the
original strong contrast display mode to the prominent detail
display, and the surface contour and the wrinkle direction of
the tumor can be observed in the red box. The hepatic hep-
atocellular carcinoma image after conversion in Fig. 13 (a)
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FIGURE 13. Six different tissue tumor images for testing. Blue box represents the zoomed-in ROI of the input T2-weighted MRI images. Red box indicates
zoomed-in ROI (50×) corresponding to the PD-weighted MRI images after the PTGAN conversion. Yellow box indicates the difference between the
generated images and GT. Color bars are shown at the bottom.

has a relatively low contrast and a prominent edge shape.
In Fig. 13 (c), the transformed prostatic tumor area becomes
clear, and the shape and size of the tumor can be observed in
the red box. In Fig. 13 (d), it can be observed that the diffusion
path of the mammary tumor in the converted PD-weighted
sagittal image is more prominent, and more details can be
observed around the mammary tumor.

V. CONCLUSION
Traditional MRI can only provide a single disease diagnosis
reference due to single contrast in an imaging process. Our
PTGAN model based on GAN is the first method to pro-
vide two MRI contrasts in an imaging process to the best
of our knowledge. Any weighted MRI always contains a
small amount other contrasts, which provide a theoretical
support for the conversion of T2-weighted MRI images into
PD-weighted MRI images. The research in this paper pro-
vides a new imaging method for MRI. A large number of
T2-weighted and PD-weighted images are trained in pairs
by PTGAN to map the generated data distribution to real
data. The results of various comparative experiments show
that our PTGAN model reaches a diagnostic level in brain
MRI images and achieves medical observation levels in
pathological MRI images.
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