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ABSTRACT In order to obtain accurate position information, a federated extended finite impulse
response (EFIR) filter which includes sub-filters and main filter is proposed for inertial navigation system
(INS)/ultrawideband (UWB)-integrated human positioning in this paper. Here, the EFIR filter is employed as
the sub-filter, which is able to fusion the UWB- and INS-measured distances between the reference nodes and
the target human. The main filter is used to provide the optimal INS position error estimation by fusing the
outputs of the sub-filters, which is able to correct the INS position. The test results show that the performance
of the proposed method is better than the traditional federated extended Kalman filter in position accuracy.

INDEX TERMS Indoor human positioning, inertial navigation system (INS), ultra wide band (UWB),
tightly-coupled model, federated EFIR filtering.

I. INTRODUCTION
Nowadays, numerous applications need the position informa-
tion of the person [1], especially in indoor environment [2].
Consequently, the topic of pedestrian navigation has attracted
wide attention [3], [4]. However, it should be pointed out that
although there are many topic on the human positioning for
indoor environment, this topic is still the challenge.

In order to obtain the accurate position information, many
approaches have been proposed. First of all, many localiza-
tion technologies have been proposed. For example, an radio
frequency identification (RFID) indoor positioning algorithm
has been designed in [5]. A smartphone-based cooperative
indoor localization with RFID technology is proposed in [6].
An active RFID trilateration and location fingerprinting based
on RSSI for pedestrian navigation have been proposed in [7].
Meanwhile, a smartphone-based indoor localization with
Bluetooth beacons is designed in [8]. The ZigBee-based
underground localization algorithm is proposed in [9]. The
Wi-Fi is also used by many approaches for the indoor
localization. For example, a Wi-Fi-based indoor localization
has been proposed in [10]. Moreover, a novel method for

constructing a Wi-Fi positioning system with efficient man-
power is designed in [11]. However, it should be pointed
out that although the RFID and Wi-Fi are able to achieve
the localization, their accuracy are not suitable for the high
precision positioning and navigation requirements [3], [12].
In order to improve the accuracy, the UltraWide Band (UWB)
is used to indoor positioning systems. For example, the
UWB-based human positioning system is proposed in [13].
On the other hand, inertial navigation system (INS) has been
used for indoor pedestrian navigation, for example in [14],
pedestrian tracking with shoe-mounted inertial sensors has
been designed. The advantage of the INS is that it does not
rely auxiliary equipment such as the Reference nodes (RNs)
in UWB. However, we have to say that the INS is not good at
long-term navigation.

It should be emphasized that there are many short-
comings in the approaches mentioned above. In order to
overcome the shortcomings of the localization technolo-
gies mentioned above, the integrated navigation has been
proposed in [15]. For example, Zhuang et al. [16] pro-
posed a PDR/INS/Wi-Fi integration for indoor tracking.
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A INS/UWB-integrated navigation has been proposed
in [15]. To the integrated navigation, it includes three forms:
loosely-coupled, tightly-coupled, and ultra-tightly-coupled
integration [17]. The loosely-coupled integrated navigation
is widely used since it is easy to achieve, however, its
performance is limited by the requirements of the signal
navigation method. For example, the UWB has to employ
at least three RNs to complete the positioning indepen-
dently. In order to overcome this problem and to further
improve the accuracy, the tightly-coupled integrated navi-
gation is proposed [18], [19]. For instance, [12] designs an
accurate pedestrian indoor navigation by tightly coupling
foot-mounted inertial measurement unit (IMU) and RFID
measurements. And a tightly-coupled integration of Wi-Fi
andMEMS sensors on handheld devices for indoor pedestrian
navigation is proposed in [20]. In this model, the sensor data
is input to the data fusion filter directly compared with the
loosely-coupled integrated navigation.

On the other hand, it should be pointed out that the data
fusion filter also plays an important roles on the improve-
ment of the accuracy. To the filtering algorithm, Kalman
filter (KF)-based filter, such as extended KF (EKF) [21],
iterated EKF (IEKF) [22], Unscented KF (UKF) [23], has
been proved to be effective for optimal estimation. However,
the KF-based filter has to get accurate noise statistics for
the good performance [24]. In practice, this condition is dif-
ficult to be guaranteed. In order to get good performance,
the finite impulse response (FIR) filters [25] fusing most
recent data has been proposed. For example, a FIR filter-
ing for accurate RFID-based self-Localization is designed
in [26]. In [3], an improving UFIR filter-based adaptive
INS/UWB-integrated human tracking is proposed.

In [4] and [27], we proposed a distributed EKF-based
approaches for the INS/UWB-integrated indoor tracking,
which employ the EKF and IEKF as the sub-filter and the
main filter to fuse the outputs of the sub-filter. It should be
pointed out that although the EKF is able to improve the accu-
racy of the data fusion filter, its performance is not robustness.
In order to improve the robustness of the data fusion filter,
we present an improving federated extended finite impulse
response (EFIR) filter for INS/UWB-integrated human posi-
tioning in this paper. In this model, we employ EFIR filter
as the sub-filter for the data fuse in each wireless channel,
and the distances measured by the UWB and that values
measured by the IMU are both sent to the EFIR filter. Then,
the main filter works with the output of the sub-EFIR filter
and output the estimation of the INS position error. The
optimal estimation of the navigation solution is calculated by
the INS position and the filter output. A real indoor test is
implemented for evaluating the performance of the proposed
filtering method.

The remainder of the paper is organized as follows:
Section II presents the principle of the tightly-coupled inte-
grated human positioning and the design of the federated
EFIR filter. Section III discuss the real test and its results.
Section IV gives the conclusions.

II. THE SCHEME OF FEDERATED EFIR FILTER-BASED
TIGHTLY-COUPLED INTEGRATED HUMAN POSITIONING
In this section, firstly, the scheme of the tightly-coupled inte-
grated human positioning used in this paper will be reviewed.
Then, the federated extended finite impulse response (EFIR)
filter will be designed based on tightly-coupled integrated
scheme.

A. TIGHTLY-COUPLED INTEGRATED HUMAN
POSITIONING
Fig. 1 pictures the structure of the tightly-coupled INS/UWB
model for human positioning used in this work, which is also
used in [4], [15], and [28]. Thus, we briefly review the tightly
integrated navigation model. The INS/UWB-integrated sys-
tem includes INS and UWB systems. To the UWB system,
it contains one blind node (BN) andN reference nodes (RNs),
here, N is the number of the RNs. To the INS, it employs the
inertial measurement unit (IMU), which fixed on the foot of
the target human. The federated EFIR filter will be employed
as the data fusion filter of the integrated system, which uses
the distances between the RNs and BNmeasured by the UWB
(denote as d (UWB)(i) , i ∈ (1,N )) and that values measured by
the INS (denote as d (INS)(i) , i ∈ (1,N )). The federated EFIR
filter is able to estimate the optimal INS position error, which
will be used to correct the INS positionmeasured by the IMU.
The design of the federated EFIR filter will be present in the
next section.

B. THE FEDERATED EFIR FILTER FOR THE
TIGHTLY-COUPLED INTEGRATED
HUMAN POSITIONING
In this section, the federated EFIR filter based on the
tightly-coupled scheme which is proposed in the Section II-A
will be designed in detail. The block diagram of the federated
EFIRfilter is pictured in Fig. 2. To the scheme of the federated
EFIRfilter, it includesN sub-filters and onemain filter. In this
federated mode, the sub-filter is employing to provide the
local estimation of INS position error by fusing the d (UWB)(i)
and the d (UWB)(i) based on the ith channel. Then, the main
filter is used to provide the final output of the data fusion
filter, which fuses the local estimations of the sub-filters.

Based on the structure of the federated EFIR filter, the state
equation and the measurement equation will be designed as
following. To the ith sub-filter, the state equation used by the
sub-filter at the time index q can be written as follows
δP(i)E,q
δV (i)E,q
δP(i)N ,q
δV (i)N ,q


︸ ︷︷ ︸

x(i)q|q−1

=


1 1T 0 0
0 1 0 0
0 0 1 1T
0 0 0 1


︸ ︷︷ ︸

A(i)q−1


δP(i)E,q−1
δV (i)E,q−1
δP(i)N ,q−1
δV (i)N ,q−1


︸ ︷︷ ︸

x(i)q−1

+w(i)q−1,

(1)

where
(
δP(i)E,q, δP

(i)
N ,q

)
represent the INS position errors

derived from the ith sub-filter in east and north directions at
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FIGURE 1. The block diagram of the tightly-coupled INS/UWB-integrated scheme.

FIGURE 2. The block diagram of the federated EFIR filter.

time index q respectively.
(
δV (i)E,q, δV

(i)
N ,q

)
represent the INS

velocity errors derived from the ith sub-filter in east and north
directions at time index q respectively.1T is the sample time,
and thew(i)q is the system noise, its covariance isQ(i)q . The x(i)q
denotes the state vector for the ith sub-filter at time index q,
and the A(i)q denotes systemmatrix for the ith sub-filter at time
index q.
The measurement equation for the ith sub-filter can be

written as Eq. (2), as shown at the bottom of the next page,
where

(
P(i)E ,P

(i)
N

)
is the position of the ith RN in east direc-

tion and north direction. η(i)q is the measurement noise for the
ith sub-filter at time index q, its covariance is R(i)q . It should
be emphasized that the detailed deducing can be find in [15]
and [29].

With the system (1) and (2), the data fusion filter can be
designed. To the data fusion filter, one of the famous example

is the Kalman filter (KF) [12], [15]. It should be pointed out
that the KF has to employ the accurate noise statics [30] to
obtain good performance of the estimation. However, one can
find it is hard to get accurate noise statics in real test. On the
other hand, the current filtering algorithm is dominated by
centralized filtering, which is not good at the fault detection
compared with the distributed filter. In this paper, in order to
obtain the good performance, we use the EFIR filter as the
sub-filter. With the system (1) and (2), the pseudo code of the
EFIR filter is listed in Algorithm 1.

With the sub-filter, the main filter can work to fusion the
outputs of the sub-filter, then, the final output of the data
fusion filter can be calculated as Eq. (3).

x̂q = Pq

((
P(1)q

)−1
x̂(1)q +

(
P(2)q

)−1
x̂(2)q

+

(
P(3)q

)−1
x̂(3)q + . . .+

(
P(N )q

)−1
x̂(N )q

)
, (3)

Pq =


(
P(1)q

)−1
+

(
P(2)q

)−1
+

(
P(3)q

)−1
+ . . .+

(
P(N )q

)−1

−1

, (4)

The pseudo code of the federal EFIR filter is listed in
Algorithm 2. From the algorithm, one can find that the federal
EFIR filter firstly employ the Algorithm 1 to complete the
local estimation (lines 4–15). Then, the main filter fuses the
outputs of the sub-filters (lines 16–17).

III. TEST
In this section, a real test will be done to verify the perfor-
mance of the proposed federal EFIR filter. Firstly, the setting
of the test will be designed. Then, the performances of the
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Algorithm 1 EFIR Filter for the ith Channel

Data: Y (i)
q , ME , NE , Q(i), R(i)

Result: x̂(i)q , P̂(i)qq
1 begin
2 for q = NE

: ∞ do
3 p = q− NE

+ 1, r = p+ME
− 1

4 for qq = r + 1 : q do
5 x̃(i)qq|qq−1 = A(i)qqx̃

(i)
qq−1 + w

(i)
qq

6 P(i)qq|qq−1 = A(i)qq−1P
(i)
qq−1

(
A(i)qq−1

)T
+ Q(i)

7 G(i)
qq =

[
HT
qqHq +

(
AqqGqq−1ATqq

)−1]−1
8 K (i)

qq = G(i)
qq

(
H (i)
qq

)T
9 x̃(i)qq = x̃(i)qq−1 + K

(i)
q (Y (i)

qq − h
(
x̃(i)qq|qq−1

)
)

10 P(i)qq =(
I − K (i)qqH

(i)
qq

)
P(i)qq|qq−1

(
I − K (i)qqH

(i)
qq

)T
+

K (i)qq R(i)
(
K (i)qq

)T
11 end for
12 x̂(i)qq = x̃(i)qq
13 P̂(i)qq = P(i)qq
14 end for
15 end
16 † ME represents the error state vector size
17 † NE represents the horizon size

18 † H (i)
qq =

∂h
(
x(i)qq|qq−1

)
∂x(i)qq|qq−1

federal Kalman filter and the proposed federal EFIRfilter will
be compared.

A. SETTING
In this subsection, the setting of the real test will be discussed.
In order to show the performance of the proposed federal
EFIR filter, the real test has been done in the mechanical
experiment building, University of Jinan. In this paper, both
the UWB system and INS are used for the test. The real test
environment is pictured in Fig. 3. To the UWB system, in this

Algorithm 2 Federal EFIR Filter

Data: Y (i)
q , ME , NE , Q(i), R(i)

Result: x̂q, P̂q
1 begin
2 for q = NE

: ∞ do
3 p = q− NE

+ 1, r = p+ME
− 1

4 for i = 1 : N do
5 for qq = r + 1 : q do
6 x̃(i)qq|qq−1 = A(i)qqx̃

(i)
qq−1 + w

(i)
qq

7 P(i)qq|qq−1 = A(i)qq−1P
(i)
qq−1

(
A(i)qq−1

)T
+ Q(i)

8 G(i)
qq =

[
HT
qqHq +

(
AqqGqq−1ATqq

)−1]−1
9 K (i)

qq = G(i)
qq

(
H (i)
qq

)T
10 x̃(i)qq = x̃(i)qq−1 + K

(i)
q (Y (i)

qq − h
(
x̃(i)qq|qq−1

)
)

11 P(i)qq =(
I − K (i)qqH

(i)
qq

)
P(i)qq|qq−1

(
I−K (i)qqH

(i)
qq

)T
+

K (i)qq R(i)
(
K (i)qq

)T
12 end for
13 x̂(i)qq = x̃(i)qq
14 P̂(i)qq = P(i)qq
15 end for
16 x̂q =

Pq


(
P(1)q

)−1
x̂(1)q +

(
P(2)q

)−1
x̂(2)q +

(
P(3)q

)−1
x̂(3)q

+ . . .+
(
P(N )q

)−1
x̂(N )q


17 Pq =


(
P(1)q

)−1
+

(
P(2)q

)−1
+

(
P(3)q

)−1
+ . . .+

(
P(N )q

)−1

−1

18 for i = 1 : N do
19 x̃(i)q = x̂q
20 P(i)q = Pq
21 end for
22 end for
23 end

24 † H (i)
qq =

∂h
(
x(i)qq|qq−1

)
∂x(i)qq|qq−1

[
δ
(
d (i)q

)2]
︸ ︷︷ ︸

Y (i)q

=

[(
d INS(i),q

)2
−

(
dUWB(i),q

)2]

= 2
(
P(i)E,q − P

(i)
E

)
δP(i)E,q + 2

(
P(i)N ,q − P

(i)
N

)
δP(i)N ,q −

((
δP(i)E,q

)2
+

(
δP(i)N ,q

)2)
︸ ︷︷ ︸

h
(
x(i)q|q−1

)
+
[
ηd(i),q

]︸ ︷︷ ︸
η
(i)
q

, (2)
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FIGURE 3. The real test environment.

test, we employ four UWBRNs and one UWBBN.We assign
four IDs (A0, A1, A2, A3) to the UWB RNs. Here, the UWB
RNs are fixed on the known position, meanwhile, the UWB
BN is fixed on the target human. The UWB system used in
this paper is able to measure the distance between the UWB
RNs and the UWB BN which is shown in Fig. 1. The size of
the UWB RNs is 45×45×85 mm (length×width×height),
and it weighs 34.2 g, the size of the UWBBN is 45.4×45.4×
33.5 mm (length × width × height), and it weighs 42.3 g.
To the INS, the inertial measurement unit (IMU) is used to
measure the INS position, which can be used to computed
the distance between the UWB RNs and the target human.
The IMU is fixed on the foot of the target human. Its size is
48 × 28 × 13 mm (length × width × height), and it weighs
20 g, the performance of the IMU used in this paper are
summarized in Table 1. In the test, the Visual software based
on C++ is used to collect the sensor data, then, the software
will periodically store sensor data.

TABLE 1. The performance of the IMU used in this paper.

Meanwhile, in order to provide the reference velocity of the
target human, we employ a reference system, which includes
the encoder. Here, we firstly build the mapping f () of the
distance from the start point Lp and reference coordinations(
P(r)E ,P

(r)
N

)
. Then, the Lp is measured by the encoder, and the(

P(r)E ,P
(r)
N

)
can be computed via the mapping f (). Moreover,

in order to obtain the sensor data, the computer is used. In this

work, to the system (1) and (2), we can obtain that ME
= 4,

a and we set NE
= 5 and the sample time 1T = 0.03 s.

Here, it should be pointed out that the setting method of NE

in Algorithms 1 and 2 can be find in [15]. The target human
used in the test is pictured in Fig. 4. The setting for the EKF
and the EFIR filter is listed in Table 2.

FIGURE 4. The target human used in the test.

TABLE 2. The setting for the EKF and the EFIR filter.

B. PERFORMANCES OF THE INS AND UWB
Fig. 5 pictures the reference path and the trajectories pro-
duced by the INS and UWB. And the position errors in
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FIGURE 5. The reference path and the trajectories measured from the INS
with ZUPT and UWB.

FIGURE 6. The east position errors estimated by the UWB and INS.

east and north estimated by the INS and UWB are shown
in Figs. 6 and 7. Here, the INS solution is corrected by
the zero velocity updating (ZUPT), thus, we denotes this
model as INS+ZUPT model. Moreover, the UWB solution
is computed by the least square method, and we denote this
model as UWB. From the figure, we can see that the INS
solution is close to the reference path in the initial stage of
the test. However, the position error gets bigger at the end of
the test due to the error accumulation. Consequently, we can
get the conclusion that INS is not suitable for long-time
working. To the UWB, it can be seen obviously that the UWB
position error does not appear error accumulation compared
with the INS solution. The position error of UWB is random.
The mean square error (MSE) of the position in east and
north directions produced by the INS and UWB are listed in
Table 3. From the table, it can be seen that the localization
accuracy of UWB is better than that of INS.

C. PERFORMANCE OF THE PROPOSED
FEDERATED EFIR FILTER
In this subsection, the performances of the UWB, federal
EKF, and federal EFIR filter will be compared using two test
with the groups of parameters listed in Table 4.

FIGURE 7. The north position errors estimated by the UWB and INS.

TABLE 3. MSE of the position in east and north directions produced by
the INS and UWB.

TABLE 4. Two groups of parameters for the test.

TABLE 5. RMSE of the position in east and north directions produced by
the UWB, the federated EKF, and the federated EFIR filter (Test 1).

D. COMPARISON OF LOCALIZATION ERRORS – TEST 1
In this subsection, we do the test with the Test 1 of parameters
(listed in Table 4). The reference path and the trajectories
estimated by the INS, UWB, federated EKF, and federated
EFIR filter are shown in Fig. 8. The east and north position
errors estimated by the UWB, the federated EKF, and the
federated EFIR filter are shown in Figs. 9 and 10. The root
mean square error (RMSE) of the position in east and north
directions produced by the UWB, the federated EKF, and
the federated EFIR filter are listed in Table 5. From the
figures and the table, one can find easily that the both the fed-
erated EKF, and federated EFIR filter are able to reduce the
INS position and give the optimal human position estimation.
The performances of the federated EKF and federated EFIR
filter are similar.

E. COMPARISON OF LOCALIZATION ERRORS – TEST 2
In this subsection, we do the test again with the Test 2 of
parameters (listed in Table 4). The reference path and the
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FIGURE 8. The reference path and the trajectories estimated by the INS,
UWB, federated EKF, and federated EFIR filter (Test 1).

FIGURE 9. The east position errors estimated by the UWB, federated EKF,
and federated EFIR filter (Test 1).

FIGURE 10. The north position errors estimated by the UWB, federated
EKF, and federated EFIR filter (Test 1).

trajectories estimated by the INS, UWB, federated EKF, and
federated EFIR filter are shown in Fig. 11. The east and north
position errors estimated by the UWB, the federated EKF,
and the federated EFIR filter are shown in Figs. 12 and 13.
The cumulative error distribution function (CDF) is shown
in Fig. 14. The position error used in Fig. 14 can be computed

FIGURE 11. The reference path and the trajectories estimated by the INS,
UWB, federated EKF, and federated EFIR filter (Test 2).

FIGURE 12. The east position errors estimated by the UWB, federated
EKF, and federated EFIR filter (Test 2).

FIGURE 13. The north position errors estimated by the UWB, federated
EKF, and federated EFIR filter (Test 2).

by the following.

Position error =
∣∣∣PE,q − PrE,q∣∣∣+ ∣∣∣PN ,q − PrN ,q∣∣∣. (5)

where
(
PE,q,PN ,q

)
are the positions estimated by the filters

in east direction and north direction,
(
PE,q,PN ,q

)
are the

reference positions in east direction and north direction.
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FIGURE 14. The CDF estimated by the UWB, federated EKF, and federated
EFIR (Test 2).

TABLE 6. RMSE of the position in east and north directions produced by
the UWB, the federated EKF, and the federated EFIR (Test 2).

The RMSE of the position in east and north directions
produced by the UWB, the federated EKF, and the federated
EFIR filter are listed in Table 6. From the figures and the
table, one can find that the federated EKF is diverged. Com-
pared with the federated EKF, the federated EFIR filter shows
its robustness. In test 2, the federated EFIRfilter is effective to
reduce the INS position and give the optimal human position
estimation.

IV. CONCLUSION
In this work, a federated EFIR filter and its application to the
INS/UWB integrated human positioning have been proposed.
The federated EFIR filter employs the sub-filter to fusion
the UWB- and INS-measured distances between the RNs
and the target human. Then, the main filter of the federated
EFIR filter works with the outputs of the sub-EFIR filter
and outputs the estimation of the INS position error. The
optimal navigation solution will be calculated by the INS
position and the output of the federated EFIRfilter.Moreover,
a real test has been done to verify the performance of the
proposed federated EFIR filter. The test results show that
the performance of the proposed method is better than the
traditional federated EKF in position accuracy. Meanwhile,
the federal EFIR filter shows its better robustness than the
traditional federated EKF. In the future work, themissing data
for the data fusion filter will be considered.
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