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ABSTRACT Watermark imperceptibility is a significant requirement for keeping watermarked images
looking perceptually similar to the original ones. Effective watermark imperceptibility requires the creation
of a perceptual model that simulates the human visual system to efficiently hide the watermark in places
where the human eye cannot observe it. Current perceptual-based watermarking models use complex
computations that are difficult to implement in embedded systems or in real-time applications. In this paper,
a low-complexity, integer-based lifting wavelet transform was utilized to create a perceptual mapping model
that mainly relies on a new texture mapping model called accumulative lifting difference (ALD). The ALD
is combined with a simplified edge detection and luminance masking models to obtain a comprehensive
perceptual mapping model that has high-noise tolerance and it is based on low-complexity calculations. The
proposed model was 7% faster than the fastest pixel-based compared model with an enhanced average peak
signal-to-noise ratio (PSNR) gain of 2.78 dB. In comparison to the largest noise tolerance compared sub-band
model, the proposed just noticeable distortion model had a PSNR gain of 1.8 dB and an execution speed that
was 90% faster. The perceptual model is utilized in a proposed image watermarking algorithm to determine
the maximum watermark embedding intensity that is not visible to the human eye. The experimental
results show that the proposed algorithm produced high-quality watermarked images and was robust against
different geometric and non-geometric attacks. In addition to its usage in watermarking, the new perceptual
model can be used in various image processing and real-time applications.

INDEX TERMS Accumulative lifting differences, image watermarking, lifting wavelet transform, percep-
tual mapping, texture masking.

I. INTRODUCTION
Copyright protection and authentication of digital images and
videos are important current challenges due to the widespread
use of digital media throughout the world. Digital water-
marking is used to protect intellectual property by embed-
ding a piece of data, such as proprietary information, inside
digital media by means of algorithms. A robust copyright
protection watermarking algorithm should be able to resist
different signal processing operations and attacks that may
destroy or remove the watermark. Also, an invisible water-
marking system is preferred so that the perceptual quality
of the watermarked image is still similar to the original
image. However, robustness and invisibility are contrary fea-
tures of a watermark, because, although more robustness
can be obtained with higher intensity watermark embed-
ding, image degradation will be increased. For this reason,

perceptual factors should be studied prior to watermark
insertion [1], [2].

The watermark, which is not preferred to be noticed
by human eyes, is considered to be an additive noise in
image processing perspective. However, the human visual
system (HVS) perceives noise differently, depending on the
structure of image or the structure of different portions within
the same image. Figure 1 shows two identical logos embed-
ded in the sky and on the surface of the mountain in which
different visual effects are observed. This is because the
mountain’s surface has more texture than the sky and hence,
the watermark is seen to have less of an impact.

Researchers had analysed such cases and concluded that
the HVS can perceive visual alerts that pass a certain
threshold called the just noticeable distortion (JND) thresh-
old [3]. Accordingly, design of a JND estimation model while
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FIGURE 1. Different perceptual evaluation of the same embedded data.

creating a watermarking system will enhance the watermark
invisibility because it finds the places where the watermark
can be embedded without being perceived by the human
eye. Then, a greater embedding intensity can be achieved
under high JND threshold areas, which acquires more robust-
ness while maintaining invisibility. As such, in this paper,
a new perceptual mapping model is introduced and imple-
mented to determine the JND threshold before embedding the
watermark.

The new model is based on a simplified, LWT-based
texture mapping model referred to as Accumulative Lifting
Differences (ALD) and is supported by a simplified edge
detection technique and luminance masking. The model is
employed to determine the maximum embedding intensity
within the approximation band of the LWT decomposition
where the LWT has been reused for transform domain-based
watermark embedding. The embedding method provides the
ability to retrieve the watermark using non-informed detec-
tors in which neither the original image nor the original
watermark are required for watermark retrieval. The calcula-
tions that are involved in the implementation of the proposed
algorithm are relies on low-complexity and integer calcula-
tions. In the next section (section two), recent related works
are reviewed. Section three introduces LWT and its features
that can be used in the creation of perceptual maps and in
watermark embedding. The new method of perceptual map-
ping and watermark embedding and extracting processes are
explained in section four. Experimental results are presented
in section five, including a comparison of the proposed model
with recent studies and embedding in coloured images. The
paper is concluded in section six.

II. RELATED WORK
Before embedding watermarks, researchers utilize or orig-
inate their own JND models to simulate the HVS for the
purpose of estimating the maximum distortion that is not
visible to the human eye when embedding the watermark.
These JND models reflect the amount of texture, luminance
masking, contrast, or other HVS characteristics that impact
the appearance of watermarked images.

An early JND model, based on discrete cosine trans-
form (DCT), was presented by Watson [4]. In this model,

three factors are involved in the simulation of HVS behaviour,
including frequency sensitivity, luminance masking, and con-
trast masking. The factors are combined to create what is
called a Watson distance (Dwat) that reflects the amount
of perceptual tolerance relative to noise. Although several
watermarking algorithms use Watson’s model as a percep-
tual mapping model such as Li et al. [5], it is not ideal for
watermarking as it does not reasonably provide a maximum-
strength transparent watermark and it is not optimum in term
of robustness [1], [6]. A DCT-based perceptual watermarking
model was presented by Tao and Dickinson [7] where DCT
blocks were classified according to three factors: luminance
masking, edge masking, and texture masking. DCT was also
utilized in the model presented by Niu et al. [6] in which
the spatial contrast sensitivity function (CSF), luminance
adaptation, and contrast masking were combined to produce
a JND estimator. The function of the model is to deter-
mine the maximum watermark insertion bounds according
to the host image. Fazlali et al. [8] proposed a watermarking
method where two-level Contourlet Transform (CT) on the
original image is applied.The first level approximate image
is partitioned into blocks and then by concatenating some
portions of the second level sub bands blocks are formed. The
severity of the embedding is determined by two factors: the
edge concentration and entropy of approximation band block,
and the embedding is performed on the detail band.

Although acceptable performance is achieved by the
DCT in creating perceptual mapping-based watermarking
models, the watermarked images suffer from the issue of
block-artifacts in many cases. The utilization of the discrete
wavelet transform (DWT) in watermarking results in high
performance due to the temporal-spatial characteristics of
DWT, which are similar to HVS behaviour [2]. Furthermore,
if the coefficient is modified in a DWT band, only the corre-
sponding region where the coefficient exists is affected [9].
A DWT-based blind watermarking algorithm was presented
by Barni et al. [9]. The authors estimated HVS characteristics
by analysing the imperceptibility of four DWT decomposi-
tions. Three considerations were taken into account while
evaluating behaviour of the human eye: the lower sensitivity
of the eyes to noise in high-resolution bands and in bands
having a 45◦ orientation, the lower sensitivity of the eyes to
bright and dark intensities, and the lower sensitivity of the
eyes to textured areas, but, within these areas, the HVS is
sensitive to change near the edges. Another wavelet-based
study was presented by Akhbari and Ghaemmaghami [10] in
which entropy masking was utilized to enhance impercepti-
bility. As entropy is defined as ‘‘the measure of information
in a signal,’’ higher entropy indicates more complexity in the
image and less sensitivity of HVS. However, the extracting
process was performed using a non-blindmethod inwhich the
existence of the original image was necessary to recover the
watermark. In addition, the logarithmic calculations that were
used to determine entropy masking are complex operations
that increase the computational complexity. The traditional
DWT, which mainly relies on the Fourier transform, contains
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exponential and imaginary numerical calculations, which
increase the complexity of the processing task.

Hybrid transform domain watermarking is an alternative
to the use of perceptual mapping for obtaining robust and
invisible watermarks, in which the transform domain coef-
ficients that having the required robustness and invisibil-
ity within each transformation are selected for embedding.
Hybrid transform domain watermarking was used in different
studies, including models proposed by Roy and Pal [11] that
used Redundant Discrete Wavelet Transform (RDWT) with
DCT, Poonam and Arora [12] where DWT was combined
with SVD, and Hamidi et al. [13] in which a hybrid of DFT,
DCT, and Arnold transform was used. However, in these
hybrid attempts, computational overhead was high because
of the use of multiple transform domain computations [11].
Therefore, there is a need for a simple and high-performing
perceptual-based watermarking system that can be utilized in
limited resource systems and in real-time applications. All the
models presented in this paper can be performed by relying
solely on simple adder and shift registers, so it can be easily
implemented on FPGA-based devices to enhance the perfor-
mance of current designs of JND systems or watermarking
systems [14]–[16], or it can be used with GPU-based image
processing systems [17]–[19].

III. LIFTING WAVELET TRANSFORM
LWT, first introduced by Sweldens [20] is considered to
be the second generation of wavelets. The main difference
that distinguishes LWT from classic wavelet construction
is that Fourier transform is not used in the signal trans-
form calculations. Compared to the conventional structure,
LWT has better computational efficiency in terms of using a
lower number of mathematical operations, which results in
a smaller implementation area, less power consumption, and
lower design complexity. Due to its ‘‘in place calculation’’
where the produced coefficients replaces the old image pixels
without extra memory utilization, and its integer-to-integer
transformation abilities, LWT can be easily implemented by
hardware [21]. The LWT implementation consists of three
main steps: spilt, predict, and update. A brief explanation of
each is presented below.

A. SPLIT
Assume that Y is a dataset that is to be explored to obtain
a more compact presentation of the data. In the split step,
the data is split into two subsets (akin to cutting an image
into two parts with scissors) that are called wavelet subsets.
However, the split must be made in such a way that the
original Y can be restored from the two subsets. To find a
way to split the data, consider Y as an image. It would not be
efficient to split Y into two equal parts from themiddle, as this
would make it difficult to discern the contents of the right side
of the image from its left side. Hence, it is preferred to split the
image into even and odd samples such that a relationship still
exists between the two split samples, which makes it possible

to predict the value of one sample based on the associated
split sample [22].

B. PREDICT
A pixel value in an odd position (Xo) is predicted by the
values of its two neighbours at even positions (Xe). The
difference between the predicted value of a pixel in an odd
position and its actual value is stored in the location of odd
samples. The signal after the prediction step in odd locations
corresponds to the detail band, Dn (Equation 1).

Dn = Xo − PREDICT(Xe) (1)

In the gradient areas where pixels intensities changes lin-
early, the coefficients’ predicted values are close to the real
values. As a result, the values of the Dn coefficients are
near zero. However, in textured areas with high variations
in pixels intensities, the detail band coefficients have higher
values; i.e., higher coefficient values in the detail band Dn
coefficients of a certain area indicates higher divergence in
the pattern within that area. This feature is exploited in the
creation of the proposed texture masking model.

C. UPDATE
Calculation of the average signal of two samples produces a
decomposed signal with half energy [22]. Samples in even
positions are considered as the average of their adjacent odd
samples. However, due to the non-linearity of the image
pixels, even-positioned samples need to be updated with the
differences computed in the predict step. The generated signal
is the approximation band, Sn, which has the same features
of the real image but with half the actual size, (Equation 2).
The approximation band Sn was used to extract the edges and
calculate the luminance masking in the perceptual mapping
model.

Sn = Xe + UPDATE(Dn) (2)

The inverse of the lifting scheme is performed by reversing
the order of operations and exchanging the sign of the predict
and update steps [21].

IV. METHODOLOGY
Figure 2 depicts the flowchart of the proposed watermark-
ing algorithm as two phases: perceptual map creating and
watermark embedding, where the new proposed equations
and methodologies are highlighted in the diagram blocks of
the flow chart. The perceptual mapping phase is presented in
the first part of this section, which involves the application of
LWT to the original image to obtain approximation band (S1),
two middle frequency bands (D1, S2) and detail band (D2).
Since S1 band has the original characteristics of the image,
it was utilized to create each luminance mask and edge mask.
The D2 band was employed to create the new texture mask
according to the proposed ALD method. The combination of
texture, edge and luminance masks produces the final percep-
tual mask that decides the watermark embedding strength for
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FIGURE 2. Flow diagram of the proposed perceptual based watermarking
model.

each 5× 5 block according to HVS sensitivity. In the water-
marking phase, which is discussed in following subsections,
the binary watermark was converted to scaled vector with
values {−1,1} and embedded within approximation band by
multiplying its value by the relative embedding strength that
was calculated using the perceptual map. The value is either
added to or subtracted from the modified centre coefficient,
where the values of the centre coefficients in each block
were previously modified to be equal to the average of the
surrounding neighbours. Finally, the inverse of LWT (ILWT)
was applied on the embedded S1 with the rest of decomposed
bands to produce the watermarked image.

Watermark extraction was achieved by comparing the cen-
tre coefficient of each internal block with the average of
its surroundings. A larger centre coefficient value indicated
that the original watermark value was equal to one; other-
wise, it was equal to zero. A detailed description of each
phase of the proposed method is presented in the following
subsections.

A. PERCEPTUAL MAPPING MODEL
The perceptual limitation of the HVS causes the noise below
the JND threshold to be imperceptible to the human eye.
In the proposed model, the human eye is considered to be less
sensitive to noise in the following places [7], [9], [23], [24]:

1 - In very dark and very bright intensities.
2 - Highly textured areas except for edges.
Accordingly, three models, including luminance masking,

texturemasking, and edge detection, were used and combined
in the new model to simulate the behaviour of the human eye
in finding the JND threshold.

1) LUMINANCE MASKING
The HVS is less sensitive to changes in very dark and very
bright areas [9], [25]. In the presented model, similar JND
weights were assigned to dark areas and white areas [26]. The
mathematical equation of luminance adaptation is given by
Equation (3):

LM(i,j) =

{
b(S(i,j)− 128)/16c if S(i,j > 127)
b128− (S(i,j)/16)c Otherwise

(3)

where LM is the luminance mask and S (i, j) is the intensity
of the approximation band coefficient at the location (i, j).

2) TEXTURE MASKING
Using the statistical approach, the texture concentration in
a certain region can be found by calculating the differences
of the intensities in that region [27]. Thus, a larger variance
in intensity distribution indicates the existence of greater
texture. As mentioned in the previous section, the value of
the detail band is larger when the difference between the pre-
dicted (linear) change and the real change is greater. In other
words, the detail band coefficients in a certain region can
be considered to be a measure of the non-linearity in that
region. Finding the divergence of this non-linearity produces
an estimation value for the texture amount in that area.

The detail band was divided into 5 × 5 blocks, where the
adjacent values in each row were subtracted from each other
and the absolute values of these differences were accumu-
lated (Figure 3), hence, the proposed model is referred to as
Accumulative Lifting Difference (ALD). In ALD, each block
owned a value that is correspondent the amount of its own
texture. The ALD is given in Equation (4):

ALD (I, J) =
I+2∑
i=I−2

j+2∑
j=j−1

|D2(i, j− 1)− D2(i, j)| (4)

FIGURE 3. ALD Computation.
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where I, J are centre coefficients of each 5 × 5 block in the
detail band (D2) and i, j indicate the index of the coefficient
in the block.

HVS is sensitive to alterations if the texture is within the
area of the edges [9]. The following subsection introduces
a simplified edge detection technique for the extraction of
edges from the proposed texture mask.

3) EDGE EXTRACTION
The human eye can detect significant changes in the
brightness of an image contents at its edges; additionally,
the observer may have prior information about how the edge
looks. Hence, changes in edge regions are more detectable
than other regions [28], [29]. Accordingly, edges need to be
extracted from textured areas to create a reliable perceptual
map.

Conventional edge detection techniques, such as the
Canny edge detection algorithm, involve relatively complex
operations such as applying noise removal and smooth-
ing operations [30]. Even simpler edge detectors, such
as Sobel or Prewitt methods require a convolution pro-
cess that involves a task of scanning all the pixels of the
image. In the edge detection method proposed in this work,
the extended Sobel edge detection kernel published by Kekre
and Gharge [31] is applied once to each 5 × 5 block of
approximation band instead of moving the kernel over the
entire image. By eliminating the convolution step, the number
of operations required for applying the four-edge kernels to
the same band size is reduced from 61,504 (for a 256 × 256
approximation band) in the traditional convolution method to
2,704 kernel applications. This optimization reduces the com-
plexity of the algorithm and drastically accelerates execution
time, with accepted edge detection results.

The extended Sobel kernels used for the vertical
and horizontal edges (as described in [31]) are shown
in Figures 4(a) and 4(b). For the diagonal edges, new kernels
are designed by rotating the original vertical and horizontal
operators by 45o, as shown in Figures 4(c) and 4(d).
The absolute value obtained from the application of each

kernel is calculated and the largest value among all the kernels
application results is considered as the edge value of that
block. Since the LWT has a spatio-frequency localization
property [9], the edge values that were extracted from the
approximation band blocks are positioned in their alternative
ALD texture blocks of detail band; hence, they can be sub-
tracted from the texture mask.

4) POOLING
In the pooling stage, the Final Mask (FM) equation is con-
structed by subtracting the edge detection mask from the
texture mask (ALD) and adding the luminance mask. This
can be mathematically described as follows:

FM = αTM− βEM+ γLM (5)

where α, β and γ are the weighting factors that are used to
decide the intensity of each mask.

FIGURE 4. Extended Sobel operators.

B. WATERMARKING ALGORITHM
A transform domain-based watermarking algorithm is pre-
sented in this section. Blind watermarking algorithms are
preferred due to better memory utilization, since it is not nec-
essary to preserve extra memory for original images or orig-
inal watermarks. Additionally, it is impractical to distribute
the original image on watermark detectors in many cases.
As such, the proposed embedding process should be designed
in a way that allows blind extracting to be performed. The
watermarking scheme is divided into watermark embedding
and watermark extracting processes, as discussed below.

1) WATERMARK EMBEDDING ALGORITHM
The approximation band was used for watermark embedding
for its high robustness. And because of the spatio-frequency
feature of the LWT, the perceptual mask in a certain block
has the same perceptual value of the alternative block in
the approximation band, which is used to control the water-
mark embedding strength in the approximation band that is
sensitive to change. The embedding process is performed
according to the following steps:

a: The binary watermark of size m × m is converted to a
one-dimensional vector (wm) after converting each 0 to
−1 (wm{−1,1}). Next, wm is divided into two smaller vec-
tors (wm1 and wm2) in which each part contains a certain
number of replications equal to c1 and c2, respectively, where
c1 + c2 ≤ embedding capacity. This step adds security to
the watermarking algorithm by distributing the watermark
all over the bands with variable number of watermark repli-
cas. Also, watermark replication adds extra robustness, since
some replicas can compensate for others in case damage is
incurred from an attack. The final size of the spread water-
mark should be:

Watermark Vector Size=size(wm1)×c1+size(wm2)×c2

(6)

b: LWT decomposition is applied on the original image,
and the approximation band produced from the LWT
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decomposition is divided into 5× 5 blocks, equivalent to the
mask blocks of the perceptual map.

c: Each 5 × 5 block is further divided into nested 3 × 3
blocks, as shown in Figure 5.

FIGURE 5. Approximation band sub-blocks.

d: The centre coefficient of each 3×3 block is modified to
be the average of its eight surrounding coefficients. However,
in those blocks where there is a large divergence between
maximum and minimum values (difference > threshold,
which was experimentally selected to be 64), the value of
the centre pixel is taken as the average of its two neighbours
having the smaller difference. This exception is made to
ensure that changing the centre coefficient to the average
of its surrounding coefficients does not affect the visual
quality of the image in that block. Also, after finding the
average, if the new centre coefficient has a large difference
(experimentally greater than 30) relative to the original center
coefficient then the block cannot be modified because the
modificationmay affect the visual quality of the image. In this
case, the centre coefficient in that block will be returned to
its original value. The probability of recurrence for returning
the center coefficient to its original value is low because ‘‘the
brightness level at a point in an image is highly dependent on
the brightness levels of neighbouring points unless the image
is simply random noise’’ [32]. Accordingly, the watermark is
100% retrieved in all tested images except for Mandrill image
because it contains highly textured areas in some regions that
have a center coefficient that cannot be changed.

e: In each 5 × 5 block, the embedding value, Em, was
calculated as follows:

Em(i, j) = FM(i, j)× Es (7)

where FM is the final mask value of the perceptual mask
in block i, j (Equation 5) and Es is the embedding strength
variable that controls the overall embedding intensity, Es is
experimentally set to be 0.25 in the proposed method.

f: The Em in each 3 × 3 block is multiplied by one
watermark value and is then added or subtracted from the
modified centre coefficient of that block, so that when the
watermark value is equal to −1 (which was originally 0),
the value is subtracted from the centre coefficient and when
the watermark value is equal to 1, the Em value is added to
the centre pixel.

g: ILWT is applied to obtain the watermarked image.

2) WATERMARK EXTRACTING ALGORITHM
The non-informedwatermark detector extracts the watermark
according to the following steps:

a: A single LWT decomposition is applied to the water-
marked image.

b: In each 3×3 block in the approximation band, the max-
imum difference between the largest and smallest elements is
calculated.

c: If the difference is less than the threshold, the average
of the eight coefficients in the 3 × 3 block that surround the
center coefficient is calculated and if the difference is greater
than the threshold, then the average of the neighbors with the
smaller difference is calculated.

d: The average value obtained in step c is subtracted from
the center coefficients. The result is a set of positive and
negative values.

e: The results related to each watermark bit replicas within
blocks that it was originally embedded are added together.

f: If the value obtained from step ewas greater than or equal
to 0, then the watermark pixel is equal to 1. Otherwise, it is
equal to 0.

g: The watermark vector is restored to a two-dimensional
binary image.

V. EXPERIMENTAL RESULTS
In the first part of this section, the results of the perceptual
model are presented and compared, followed by the results
of the watermarking algorithm in terms of invisibility and
robustness. The final subsection describes the application of
the proposed perceptual mapping and watermarking methods
on a colored image.

Two objective metrics were used to evaluate the noise
tolerance and visual quality of the tested images: peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM).
PSNR is a quantitative metric that determines the quality of
the image by comparing the intensity of each pixel in themod-
ified image with its correspondent pixel in the original image.
PSNR is calculated from the mean squared error (MSE),
which represents the cumulative squared error between two
images. The equations for PSNR and MSE are as follows:

PSNR = 20 log1 0
255
√
MSE

(8)

and

MSE =
1

m ∗ n
+

m∑
i=1

n∑
j=1

‖x(i,j)− y(i,j)‖2 (9)

where m, n are the image dimensions and x and y are the
original and noisy image, respectively; i, j represent the image
pixel index.

A disadvantage of PSNR is that it doesn’t consider the
different evaluation of the human eye to the same amount of
noise in different images structures. SSIM metric provides
a better assessment since it takes into consideration three
components: luminance, contrast, and structural information,
which has better simulation for the human eye observations
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and not solely relies on the differences in pixels’ intensi-
ties [33], [34]. SSIM assigns a specific equation to the three
components that are then combined into single equation,
as shown in (10) [35]:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(10)

where x is the host image; y is the target image; and µ x, µy,
and σx, σy are themean intensities and the standard deviations
for the images x and y, respectively. C1 and C2 are constants.

A. PERCEPTUAL MODEL RESULTS
Figure 6 shows an example of the perceptual masks for three
different image according to equation (5), after setting the
weighting factors α, β and γ to 0.25, 0.125 and 1, respec-
tively. The brighter areas refer to a higher JND threshold and
greater tolerance for noise shaping.

FIGURE 6. Perceptual masks for different images.

The performance of the proposed perceptual model was
compared with four different previous models: the fast and
low-complexity pixel-based perceptual model [36], a model
that based on brain theory (free energy principle) for esti-
mating HVS sensitivity [3], and two other models that con-
sider the pattern orientation method. The first of these used
pixel-based domain [37] and the other used DCT sub-band
domain [38]. Fifteen standard images (thumbnail images
shown in Figure 7, labelled as I1-I15 left to right and top
to bottom) are used to compare the models. The Matlab and
USC-SIPI image database [39] were used as the resource for
the tested images. The codes of the compared models were
retrieved from Code Ocean [40].

The comparison was initiated based on two factors: noise
shaping, tomeasure the amount of noise that could be injected

FIGURE 7. Thumbnails of the 15 test images.

within the image, and execution speed that reflects the design
complexity.

1) NOISE SHAPING COMPARISON
Generally, a superior JND model should have better per-
ceptual quality for the same amount of additive noise as
compared to other models; i.e., it should allow the injection
of more noise without being perceived by the human eye [38].
The amount of noise is measured by MSE, while the percep-
tual quality that simulates human eye perception is measured
by SSIM. To compare the proposed model with existing
models, noise was injected into the test images according to
equation (11) [24], [41]:

In(i, j) = I(i, j)+ n× r× FM(i, j) (11)

where I is the original image with coordinates i and j, In is
the image after noise injection, n is a random noise of values
{1, −1}, and r is the regulator factor to control noise energy.
The noise was added with an intensity that corresponded to

FM that was produced from the perceptual model. The value
of r in Equation (11) was altered to set the SSIM value to
0.9738 [24] for all the images in the compared models. For
the same SSIM value, the better model is the one with more
noise shaping that is measured by MSE.

The results of the MSE comparisons between the original
model and compared models are shown in Figure 8, which
shows that the proposed model is able to tolerate more noise
in most of the tested images.

2) COMPUTATIONAL COMPLEXITY COMPARISON
In addition to the noise shaping algorithms, the computational
speeds of the existing models were compared with the pre-
sented model. All five models were executed with MATLAB
software on a laptop with CoreI7 CPU 2.2 GHz and 8GB
RAM under the same conditions. The execution time for all
images for the five models was calculated and is listed in
Table 1.

From these results, it is concluded that the proposed JND
mapping model is 7% faster than the fastest model which
pixel-based model [36] with an enhanced average PSNR gain
of 2.78 dB (when calculating the PSNR from theMSE results
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FIGURE 8. Mean Square Error Comparison.

TABLE 1. Execution time for different models.

shown in Figure 8) that reflected a greater noise shaping
ability. In comparison with the largest noise tolerance model,
the sub-band model [38], the proposed model had an exe-
cution speed that is 90% faster and a PSNR gain that is 1.8
dB higher. As a result, the presented model has better noise
shaping ability and higher execution speed, which make it
a promising candidate to be used for watermarking process.
The proposed model can be enhanced by proposing a more
intensive edge detection technique for the edges that are not
detected in the proposed one, this will allow adding more
embedding strength without affecting the perceptual quality
near the internal and undetected edges.

B. IMAGE WATERMARKING RESULTS
In this section, the perceptual evaluation results for different
images are listed in addition to results of the robustness
assessment that was conducted while applying various geo-
metric and non-geometric attacks. A comparison of imper-
ceptibility and robustness of the proposed method with a
recent hybrid watermarking model is also presented.

1) IMPERCEPTIBILITY EVALUATION
Standard images shown in Figure 7 were used as the
host images to embed the watermark. Each image of size
512× 512, so that after one LWT decomposition, each
sub-band size will be of size 256 × 256. By dividing each
subband into blocks of size 5 × 5, a set of 51 × 51 blocks
will be created. According to the embedding algorithm, four
watermark bits could be embedded in each block; i.e., the
embedding capacity is 10,404 bits.

A binary watermark of size 32 × 32 (Figure 9), which
is a 1024-bit vector, was selected for embedding. Hence,
the watermark could be distributed according to the spread

FIGURE 9. Binary Watermark.

TABLE 2. PSNR and SSIM for tested watermarked images.

spectrum concept with a redundancy of up to 10 times. The
objective evaluation, represented by the PSNR and SSIM
for the watermarked images, is shown in Table 2 for the
watermarked images (which are shown in Figure 10).

From Table 2, lower PSNR values were obtained when
more noise was added to the image, which occurred in images
that had high noise resistance (as highly textured images).
This is due to the fact that the PSNR is a measure of quantity
that depends on the MSE, which can be large if the percep-
tual appearance is still accepted. So, although all obtained
PSNR values for the watermarked images were greater than
30 dB, the SSIM provides a better estimation for assessing the
quality of the images [24]. SSIM values for all tested images
were greater than 0.95, which indicates that the watermarked
images have high quality in the objective evaluation and that
the watermark is well hidden [42]–[44], in addition to the
subjective quality shown in Figure 10.

2) ROBUSTNESS EVALUATION
Different experiments were performed to investigate the func-
tionality of the watermark recovery process and to evalu-
ate the robustness of the watermarking algorithm against
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FIGURE 10. Watermarked images.

different geometric and non-geometric attacks. In the first
experiment, the watermark was extracted from the water-
marked image without attacks, followed by JPEG compres-
sion (QF = 50), JPEG compression (QF = 70), Salt and
Pepper with a density of 0.02, Gaussian noise (mean = 0
and variance = 0.02), sharpening, LPF, 3 × 3 median
filter, 3 × 3 average filter, rotation (0.2), scale (1/2), and
cropping of 12.5% from all sides of the image. These attacks
were applied to the watermarked image in sequence and then
the watermark was extracted and assessed. The similarity
between the original and extracted watermarks was com-
puted by the bit error rate (BER) and the normalized corre-
lation coefficient (NCC), according to Equations 12 and 13,
respectively.

BER =
1

m× n

m∑
i

n∑
j

[
Wij ⊕W′ij

]
× 100% (12)

NCC =

∑m
i
∑n

j
[
Wij ⊕W′ij

]√∑m
i
∑n

j (Wmij)2
√∑m

i
∑n

j (Wm′ij)
2

(13)

In both equations, Wm, Wm’ are the original recovered
watermark, each of size m× n.
Results are shown in Table 3, which demonstrate that

the watermarked image survived different attacks, based on
subjective and objective assessments. The highest robust-
ness produced by the proposed watermarking algorithm was
against high pass filtering (sharpening), as the embedding
was done in the approximation band. Also, the algorithm
had high robustness against additive noise because each
watermark bit was distributed as different copies and if the
noise affected a certain coefficient, it was covered by the
other replicas. Rotation had the worst effect on the extracted
watermark because the algorithm works by calculating block
average and rotation caused different coefficients to be
involved in that calculation. However, rotation of the entire
image without cropping the edges and re-rotating it back
(as in image viewer applications) did not affect extraction.
With cropping, the watermark was distributed throughout
the image so that a non-truncated part could be used to
retrieve the watermark from the cropped areas. In conclusion,
the proposed technique, which relies on LWT approximation
band embedding along with a perceptual mask, provided a
high perceptual quality images and robust watermarks, and
all the calculations were performed using low complexity
computations.

3) WATERMARKING RESULTS COMPARISON
The performance of the perceptual adaptive watermarking
model proposed in this work was compared with a recent
study presented by Kang et al. [45], which also aim to find
the optimal embedded strength by using hybrid transform
method. The comparison is done in terms of imperceptibility
and robustness, as discussed below.

a: COMPARISON OF IMPERCEPTIBILITY
Seven standard images (mandrill, lake, pepper, pirate, liv-

ing room, jet plane and Lena), each 512 × 512 in size,
were used to compare the proposed model and the model of
Kang et al. SSIM was used as the perceptual metric for the
comparison. As shown in Table 4, the proposed model has a
higher average SSIM as compared to the average SSIM of the
Kang et al. model.

b: COMPARISON OF ROBUSTNESS
Results of the robustness comparison are shown in Table 5,

In which several attacks were executed on different stan-
dard images. The BER average of the recovered watermarks
after each attack is shown in Figure 11. For most attacks,
the proposed model had a better BER, except in the 5 × 5
median filter. The reason for this was that the embedding
algorithm relied on the 5×5window and changing themiddle
value had an effect on all internal 3 × 3 blocks. However,
the images after 5 × 5 filtering were severely degraded and
the watermark has no use if the original image has lost its
value [1].

Based on the results, it can be concluded that the pro-
posed model is more robust and generated higher quality
watermarked images than the model proposed by Kang et al.
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TABLE 3. Recovered watermark with BER and NCC values after applying different attacks.
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TABLE 3. (Continued.) Recovered watermark with BER and NCC values after applying different attacks.
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TABLE 4. SSIM comparison of watermarked images.

FIGURE 11. BER average for the extracted watermark.

These results were obtained despite the large difference in
complexity between the two models, because the model
proposed by Kang et al. [11] utilized a hybrid form of the
DWT, DCT, and SVD to achieve its results that involves high
computational complexity. In contrast, the proposed model
utilized only the wavelet transform in which a simplified
integer LWT was used, which is simpler and faster than the
traditional DWT [20].

4) EMBEDDING IN COLORED IMAGES
The application of the proposed watermarking method to
RGB (red, green, and blue) colored images was straight-
forward. The colored images were converted into a YCbCr
(luminance, chroma: blue, chroma: red) representation, and
the brightness component, Y, was then watermarked in the
same way as a grayscale image. After embedding, the water-
marked image was converted back to RGB format and dis-
played. Figure 12 shows the original colored image (a), the
watermark (b), the perceptual map (c), and the watermarked
image (d). The obtained SSIM for the watermarked image is
0.971 and PSNR is 34.16.

For the extraction, the same process of watermarking
is repeated by converting the image into YCbCr and the

TABLE 5. BER comparison of retrieved watermark.

watermark is then extracted from the Y component. Extrac-
tion from the colored image had the same quality as
the grayscale images as the same extracting concepts was
applied. Figure (13a) shows the extracted watermark from the
unaltered watermarked image, the watermark was success-
fully retrieved with NCC = 1 and BER = 0. Figure (13b)
shows the watermarked image after cropping a large portion.
The watermark was mostly retrieved after the cropping as
shown in Figure (13c) with NCC = 0.94 and BER = 0.14.
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FIGURE 12. Watermark embedding in colored image. a: Original image
b:Watermark c:Perceptual map d: Watermarked image.

FIGURE 13. Watermark extraction from colored image a: Extracted
watermark (no attack), b: Cropped image c: Extracted watermark
from the cropped image.

VI. CONCLUSION
LWT, a low complexity, fast, and integer-based signal trans-
formation tool, was utilized for creating a low complexity
but highly accurate perceptual mapping model. The detail
band of LWT were exploited to create an efficient texture
estimation model referred to as ALD model. ALD was com-
bined with a simplified edge detection model and luminance
masking to generate an efficient perceptual mapping model
that has an execution speed up to 90% faster than recently
proposed transform domain model, with noise gain higher
by 1.8 dB. The proposed perceptual model was utilized in a
new, blind transform domain-based watermarking algorithm
to embed the watermark with maximum intensity without

degrading the perceptual quality of the watermarked images.
In addition to the high quality of the watermarked images,
the watermarking system shows high robustness by resisting
different geometric and non-geometric attacks. All the calcu-
lations that are involved creating the proposed perceptual and
watermarking models can be performed using simple adders
and shift registers. The low complexity perceptual model can
be used in different signal processing applications and real
time systems in addition to its usage in watermarking.
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