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ABSTRACT Wepropose an improved proportionate affine projection algorithm (PAPA), which is realized by
integrating a hybrid-norm constraint into the affine projection algorithm (APA) to estimate the cluster sparse
signals that are happened in satellite and network echo channels. The proposed algorithm optimizes the
hybrid l2,0-norm of the filter coefficients, and the PAPA is a special case of the proposed method. Moreover,
an enhanced PAPA is modified for the cluster sparse channel estimations. Various simulation experiments
are performed to verify that the proposed algorithms are superior to the APA, PAPA, and related sparse
algorithms with different input signals and various parameters.

INDEX TERMS Cluster sparse signal, l2,0-norm, proportionate affine projection algorithm, sparse system
identification.

I. INTRODUCTION
Adaptive filtering has been widely studied and used for
various engineering applications, such as system iden-
tification, channel estimation, active noise control and
echo cancellation [1], [2]. The normalized least mean
square (NLMS) algorithm has been extensively exploited
owing to its low complexity and easy implementation [3]–[5].
However, the NLMS suffers from slow convergence for col-
ored inputs [6]. Therefore, the data reusing method has been
presented to create the affine projection algorithm (APA) to
provide faster convergence when the inputs are colored [6].
Furthermore, natural signals may have sparse structure, and
in this case, most of the signal model coefficients are zero
or near-zero while only a few coefficients are active. Thus,
sparse system identification has attracted substantial attention
in the area of adaptive filtering [7]–[11].

In recent years, proportionate-type adaptive filtering
has been widely developed and used for different sparse

signal estimations, including channel estimations and echo
cancellations [7]–[9]. The first proportionate adaptive filter-
ing is the proportionate NLMS (PNLMS), which updates
each filter coefficient by proportionately assigning a different
adaption step size to each estimated filter coefficient [8].
The PNLMS converges rapidly in the initial stage and
provides good tracking ability in comparison with the
NLMS [8], [9]. However, the PNLMS might achieve a worse
estimation mean square error (MSE) when it converges.
Several improved PNLMSs have been reported and ana-
lyzed based on various weighting rules, such as µ-law
and ε-law rules, which stimulate iterations for complete
convergence [12]–[15]. Moreover, partition block (PB) [16]
and block sparse (BS) [17] PNLMSs have been proposed to
identify the active and inactive regions in the echo chan-
nel response. PB-PNLMS uses different algorithms to track
the channels with two partitioned blocks, while BS-PNLMS
identifies the block channel impulse response (CIR) using
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the block scheme of the l2-norm and utilizes the sparse-
ness of the l1-norm penalty [16], [17]. In fact, the presented
PB-IPNLMS uses two different adaptive algorithms to imple-
ment the time-domain partitioned blocks.

FIGURE 1. Two different cluster sparse systems: (a) single-cluster system;
(b) double-cluster system.

Similar to the NLMS, the PNLMS algorithm suffers from
slow convergence when the inputs are colored. The pro-
portionate APA (PAPA) and the improved PAPA (IPAPA)
have been presented to exploit the sparseness of the echo
channel [18]. Furthermore, the memory-improved PAPA
method, which is realized by making use of the memory of
proportionate taps [19], [20], has been reported to accelerate
the convergence rate and to reduce the computational burden.
Several improved PAPA methods have been reported and
analyzed [19]–[23]. In fact, the PAPA can be obtained from
the basis pursuit and convex optimization [24], [25], which
renders the PAPA more powerful for practical applications
with respect to the modern hardware platform. The network
echo path and the satellite channels are usually characterized
by a bulk delay caused by the network encoding, loading
and jitter buffer delays [25], [26]. Thus, the echoes of sparse
systems are divided into two types, as shown in Figure 1.
Figure 1(a) is a typical cluster sparse network channel with
an active region in the channel ranging from 8 ms to 12 ms,
and the other channel taps are close to zero and are denoted as
inactive regions. Thus, the CIR of the network echo is usually
a single-cluster sparse system, as presented in Figure 1(a).
Satellite communication develops so fast that it has attracted
increased attention for satellite networks. The CIR from
the echoes of satellite-linked communication systems always
contains active regions with long flat delays and dispersive
active regions [17], [27], [28]. In fact, single-side modulated
satellite communication links usually include large far-end
echo that has a short delay and a small near-end echo that has
a longer delay. Thus, the satellite echo path can be regarded
as the two-cluster sparse channel shown in Figure 1(b).

To accurately estimate these sparse channels, the PAPA
algorithm can be improved to further exploit the cluster sparse
characteristics. In this paper, we propose a cluster sparse (CS)
PAPA (CS-PAPA) and CS improved PAPA (CS-IPAPA) to
make use of the cluster characteristics of the channels. The
proposed CS-PAPA algorithm is realized by incorporating

an l2,0-norm into the cost function of the PAPA algorithm,
where the l2-norm divides the clusters and the l0-norm aims
to exploit the sparsity of the channels. The simulation results
indicate that the proposed CS-PAPA and CS-IPAPA achieve
faster convergence for handling cluster sparse signals under
different inputs. Additionally, the basic APA and PAPA are
special cases of the proposed cluster sparse PAPAs.

II. REVIEW OF THE PAPA AND IPAPA
In the classic adaptive filtering algorithm, the far-end sig-
nal is assumed to be x(m) = [x(m), x(m − 1), x(m − 2),
· · · , x(m − K + 1)]T , where m is the time index. The
impulse response (IR) of the unknown system is w(m) =
[w0(m),w1(m), · · · ,wK−1(m)]T , where the length of the
coefficient vector isK . Then, the desired signal d(m) contain-
ing the output of the echo channel and the near-end signal is
given by [5]

d(m) = xT (m)w(m)+ u(m), (1)

where u(m) is the additive noise, which is assumed to
be independent from the far-end signal x(m), and xT (m)
is the transpose operation of x(m). The estimated IR
vector is denoted to be ŵ(m − 1) =

[
ŵ0(m− 1),

ŵ1(m− 1), · · · , ŵK−1(m− 1)
]T . Therefore, the output of the

filter is

y(m) = xT (m)ŵ(m− 1). (2)

Then, the estimation error is obtained

e(m) = d(m)− y(m). (3)

A. PAPA
Inspired by the PNLMS algorithm, PAPA introduces a data
reusing scheme and proportionate scheme to reuse the input
signals to improve the convergence speed and to exploit the
sparsity. The input data matrix of the PAPA is defined as [18]

X(m) = [x(m), x(m− 1), · · · , x(m− P+ 1)], (4)

where P is the projection order of the PAPA. The output vec-
tor y(m), the expected signal vector d(m) and the estimation
error vector e(m) of the PAPA are given by

y(m) = XT (m)ŵ(m− 1), (5)

d(m) = [d(m), d(m− 1), · · · , d(m− P+ 1)]T , (6)

e(m) = d(m)− y(m) (7)

The updated equation of the PAPA is described as [18]

ŵ(m) = ŵ(m− 1)+ µG(m)X(m)e(m)

×

(
XT (m)G(m)X(m)+ δPAPAIP

)−1
(8)

where µ is the overall step size, δPAPA is a regularization
parameter, G(m) is the gain allocation matrix, which is a
diagonal matrix, and IP is a P × P identity matrix. The
proportionate matrix G(m) is given by [7], [18]

G(m) = diag {g0(m), g1(m), . . . , gK−1(m)} , (9)
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where the elements of G(m) are defined as

gk (m) =
ϕk (m)

K−1∑
i=0

ϕi(m)

, 0 ≤ k ≤ K − 1, (10)

where

ϕk = max
{
amax

{
b,
∣∣ŵ0

∣∣ , ∣∣ŵk ∣∣ , · · · , ∣∣ŵK−1∣∣} , ∣∣ŵk ∣∣} ,
(11)

where the time index is ignored. Parameter b > 0 is an
initialization parameter that is used to prevent ŵ(m− 1) from
stalling at the initialization stage when ŵ(m − 1) = 0K×1,
while parameter a > 0 prevents ŵk (m− 1) from stalling
when they are smaller than the largest coefficient [8]. Usually,
parameter a ranges from 1

K to 5
K .

B. IPAPA
The IPAPA, which introduces the l1-norm to reassign the
gains to each coefficient, is similar to the IPNLMS [12]. The
updating equation of the IPAPA is the same as that of the
PAPA and is presented in (8) [9], [29].

ϕk (m) = (1− α)

∥∥ŵ(m)∥∥1
K

+ (1+ α)
∣∣ŵk (m)∣∣ (12)

where−1 ≤ α < 1 and 0 ≤ k ≤ K − 1. Using Equation (12)
to replace Equation (11), we obtain

gk (m) =
1− α
2L
+ (1+ α)

∣∣ŵk (m)∣∣
2
K−1∑
i=0

∣∣ŵi(m)∣∣+ ε . (13)

Similar to the IPNLMS algorithm, the IPAPA turns into APA
when α = −1. When α is close to 1, the IPAPA becomes
the PAPA.

III. PROPOSED CS-PAPA AND CS-IPAPA ALGORITHMS
In this section, we propose the CS-PAPA and CS-IPAPA to
exploit the cluster sparse characteristics in the satellite and
network echo channels illustrated in Figure 1.

A. THE PROPOSED CS-PAPA ALGORITHM
The proposed CS-PAPA is obtained by minimizing the cost
function obtained by adding a mixed l2,0-norm to the cost
function of the PAPA to fully exploit the cluster sparse char-
acteristics. The CS-PAPA solves the following problem

min
∥∥ŵ(m)∥∥2,0 s.t d(m)− XT (m)ŵ(m) = 0 (14)

where the l2,0-norm is defined as

∥∥ŵ(m)∥∥2,0 =
∥∥∥∥∥∥∥∥∥


∥∥ŵ[1]

∥∥
2∥∥ŵ[2]
∥∥
2

...∥∥ŵ[N ]
∥∥
2


∥∥∥∥∥∥∥∥∥
0

, (15)

and N is the number of clusters, which is N = K/B, where B
is the number of channel coefficients per cluster. Since the

solution of the l0-norm is an NP-hard problem, it can be
approximated by [30]∥∥ŵ(m)∥∥0 ≈ K−1∑

k=0

(1− e−β|ŵk |), (16)

where β > 0. From (15) and (16), we obtain∥∥ŵ(m)∥∥2,0 ≈ N∑
i=1

(1− e−β‖ŵ[i]‖2 ). (17)

The PAPA is gotten from the basis pursuit (BP) by
solving [24], [31]

min
∥∥w̃(n)∥∥1 s.t. d(m) = XT (m)w̃(n) (18)

where w̃(n) denotes the correction component, which is
given by

w̃(m) = G̃(m)X(m)(XT (m)G̃(m)X(m))−1d(m). (19)

If we consider G̃(m) ≈ G(m − 1), a good approximation
of (19) is written as

w̃(n) = G(m− 1)X(m)
(
XT (m)G(m− 1)X(m)

)−1
d(m).

(20)

Then, a projectionmatrix R(m) is constructed for w̃(n) to span
in its nullspace, which is given by

R(m) = IK −G(m− 1)X(m)

×

(
XT (m)G(m− 1)X(m)

)−1
XT (m). (21)

From the BS perspective, the updating equation of the
CS-PAPA is

ŵ(m) = R(m)ŵ(m− 1)+ w̃(m− 1), (22)

which can be rewritten as

ŵ(m) = ŵ(m− 1)+G(m− 1)X(m)

×

(
XT (m)G(m− 1)X(m)

)−1
e(m). (23)

The convergence factor µ is introduced into (23) to control
the increment of the weigh vector during iteration. Moreover,
a regularization parameter δCS is used in the denominator to
avoid dividing by zero. Finally, the updating equation of the
CS-PAPA is

ŵ(m) = ŵ(m− 1)+ µG(m− 1)X(m)

×

(
XT (m)G(m− 1)X(m)+ δCSI

)−1
e(m), (24)

where the diagonal matrix G (m) is given by

G (m− 1) = diag {g1 (m− 1) 1B, g2 (m− 1) 1B,

· · · , gN (m− 1) 1B} , (25)

where 1B is a row vector with B elements, and all of its
elements are ones. Moreover, gs(m− 1) is defined as

gs(m− 1) =
ϕs(m− 1)
N∑
i=1
ϕi(m− 1)

, 1 ≤ s ≤ N , (26)
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Algorithm 1 CS-PAPA Algorithm
Input:K , P, B, µ, β, ρ, σ , in
Output: ŵ out

Initialization :
1: ŵ = zeros(K , 1);
Loop Process :

2: for m=1, 2,... do
3: e(m) = d(m)− y(m);
4: for i=1, 2,..., N do
5: qi(ŵ) = 1− e−β‖ŵ[i]‖2 ;
6: end for
7: for s=1, 2,..., N do

8:
ϕs(m− 1) =
max

{
ρmax

{
σ,q1(ŵ), · · · ,qN (ŵ)

}
,qs(ŵ)

} ;
9: end for
10: for j=1, 2,..., N do
11: gj(m− 1) = ϕj(m−1)

N∑
i=1
ϕi(m−1)

;

12: end for

13: G (m− 1) = diag
{g1 (m− 1) 1B, · · · , gN (m− 1) 1B}

;

14:

ŵ(m) = ŵ(m− 1)+

µG(m− 1)X(m)
(
XT (m)G(m− 1)X(m)+ δCSI

)−1
e(m)

;

15: end for
16: return ŵ

where

ϕs(m− 1) = max
{
ρmax

{
σ,q1(ŵ),q2(ŵ),

· · · ,qN (ŵ)
}
,qs(ŵ)

}
, (27)

and

qi(ŵ) = 1− e−β‖ŵ[i]‖2 , (28)

where the time index is ignored in (27). The proposed
CS-PAPA is summarized as Algorithm 1.

B. THE PROPOSED CS-IPAPA ALGORITHM
The CS-IPAPA is proposed by incorporating the l2,0-norm
into the cost function of the IPAPA. The updating equation
of the CS-IPAPA is the same as that of CS-PAPA, and the
difference is the gain assign matrix, which is

gs(m) =
1− α
2L
+ (1+ α)

1− e−β‖ŵ[s]‖2

2
N∑
i=1

(1− e−β‖ŵ[i]‖2 )+ ε

. (29)

In contrast to the PAPA and IPAPA, the proposed CS-PAPA
andCS-IPAPA utilize only the priori information to define the
cluster known for network echo and satellite communication
channels. Furthermore, it is worth noting that the APA and
PAPA are special cases of the proposed scheme.

FIGURE 2. Parameter β effects on the CS-PAPA and CS-IPAPA with colored
input.

IV. SIMULATION RESULTS
To verify the performance of the CS-PAPA and CS-IPAPA,
various experiments are conducted to assess their track-
ing behaviors, which are compared with the APA, PAPA,
BS-PAPA and BS-IPAPA in the context of system identifica-
tion. In all the experiments, the length of the adaptive filter is
K = 1024, and all the mentioned algorithms are investigated
in the presence of white Gaussian noise (WGN), colored
noise and speech signals. The colored noise is obtained from
WGN through a first-order system with a pole of 0.8, and
the sampling frequency of the colored noise and speech
signals is 8 kHz. Noise is added to the background of the
unknown system at a signal-to-noise ratio (SNR) of 30 dB.
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FIGURE 3. Parameter β effects on the CS-PAPA and CS-IPAPA with WGN
input.

We use normalized misalignment (NM) to measure the per-
formance, and the NM is defined as 10 lg(

∥∥w− ŵ
∥∥2
2 / ‖w‖

2
2).

The two cluster-sparse IR systems shown in Figure 1(a) and
Figure 1(b) are considered. The first IR in Figure 1(a) has
32 nonzero taps and a single cluster with active coefficients
distributed in [267], [298]. The second IR in Figure 1(b)
has two clusters with active taps distributed at [267], [298]
and [779], [810], which contain 64 nonzero taps. In all the
experiments, the step sizes of the discussed algorithms are
set to µ = 0.01 when the input signal is WGN or colored
noise, and the step size is set to µ = 0.02 for speech inputs.
ε = 0.01 and a = 5/K are used in the related algo-
rithms. The regularization parameters are δAPA = 0.01 and

FIGURE 4. Parameter β effects on the CS-PAPA and CS-IPAPA with speech
input.

TABLE 1. Simulation parameters.

δIPAPA =
1−α
2 δPAPA =

1−α
2L δAPA [32]. Other simulation

parameters are shown in Table 1. In all the experiments,
the first 30,000 iterations represent the performance of the
single-cluster system, and the second 30,000 iterations indi-
cate the performance of the double-cluster system.
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FIGURE 5. Parameter B effects on the CS-PAPA and CS-IPAPA with WGN
input.

A. PERFORMANCE OF THE CS-PAPA AND
CS-IPAPA WITH DIFFERENT β

The effect of β on the performance of the CS-PAPA and
CS-IPAPA is investigated with different inputs, namely,
WGN, colored noise and speech signals. Herein, the clus-
ter size is B = 4, and α is set to 0.5 for CS-IPAPA.
The results with β values of 2, 5, 10 and 20 are presented
in Figures 2, 3 and 4 for different inputs.

The experimental results presented in Figure 3(a) indicate
that the NM of the CS-PAPA is reduced with the increase
of β for both single-cluster and double-cluster systems when
the input is a WGN signal. The CS-IPAPA algorithm shown
in Figure 3(b) achieves the smallest NM for single-cluster
systems when β is equal to 20, while the NM deteriorates
when β is greater than 20. For the colored noise input signal

FIGURE 6. Parameter B effects on the CS-PAPA and CS-IPAPA with colored
input.

given in Figure 2, the CS-PAPA has the best NM for both
the single- and double-cluster systems for β = 20. However,
the CS-IPAPA has the lowest mean square error when β is
equal to 10. If the inputs is a speech signal, the CS-PAPA and
CS-IPAPA achieve the best performance with respect to the
NM when β is small, as shown in Figure 4.

B. PERFORMANCE OF CS-PAPA AND
CS-IPAPA WITH DIFFERENT B
The investigation of β showed that β has important effects on
the NM of the CS-PAPA and CS-IPAPA algorithms. Another
important parameter is B, which is used to determine the
block size used in the proposed CS algorithms. Thus, four
different block sizes with B=4, 16, 32, 64 are selected to
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FIGURE 7. Parameter B effects on the CS-PAPA and CS-IPAPA with speech
input.

evaluate the performance of the CS-PAPA and CS-IPAPA.
In these experiments, β is set to 20 when the input signal
is WGN or colored noise, and β is set to 2 when the input
signal is a speech signal. The simulation results are given in
Figures 5, 6 and 7.When the input signal isWGN and colored
noise, the convergence and the NM of the CS-PAPA and
CS-IPAPA deteriorate with increasing B for both the single-
and double-cluster systems, as shown in Figures 5 and 6.
When B = 4, the CS-PAPA and CS-IPAPA achieve the
best performance. When the speech signal is the inputs,
the CS-PAPA achieves the fastest convergence and lowest
NM for B = 16, as shown in Figure 7(a). Figure 7(b)
shows that the CS-IPAPA has smallest NM for B = 4. Thus,
β and B should be carefully selected and optimized to achieve

superior performance with respect to the convergence and
NM for both the CS-PAPA and CS-IPAPA. However, the pro-
posed CS-PAPA and CS-IPAPA outperform the APA, PAPA
and BS-IPAPA [23] for estimating single- and double-cluster
channels.

V. CONCLUSIONS
In this paper, the CS-PAPA and CS-IPAPA have been pro-
posed for cluster-sparse satellite and network echo channel
estimation applications. The devised algorithms are imple-
mented by using the mixed l2,0-norm in the PAPA and IPAPA
to make use of the prior cluster sparse information. Differ-
ent β, B and inputs are taken into account to investigate
the performance of the CS-PAPA and CS-IPAPA for esti-
mating single- and double-cluster systems. The simulation
results confirm that the proposed CS-PAPA and CS-IPAPA
are superior to the APA, PAPA and the BS-IPAPA in various
experiments.
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