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ABSTRACT Ostrowski inequality provides the estimation of a function to its integral mean. It is useful in
error estimations of quadrature rules in numerical analysis. The objective of this paper is to define a more
general form of Riemann–Liouville k-fractional integrals with respect to an increasing function, which are
used to obtain fractional integral inequalities of Ostrowski type. A simple and straightforward approach is
followed to establish these inequalities. The applications of established results are also briefly discussed and
succeeded to get bounds of some fractional Hadamard inequalities.

INDEX TERMS Fractional inequalities, Hadamard inequality, Ostrowski inequality, Riemann-Liouville
fractional integrals, Generalized fractional integrals.

I. INTRODUCTION AND PRELIMINARY RESULTS
Ostrowski [18] inequality is very important and useful in the
subjects of mathematical analysis, numerical analysis and
other fields of mathematics and engineering. It was intro-
duced by Ostrowski in 1938. It is stated in the following
theorem.
Theorem 1: Suppose that g be a differentiable function

on Jo, the interior of an interval J in R. For a, b ∈ Jo, a < b,
let |g′(t)| ≤ M for all t ∈ [a, b]. Then for x ∈ [a, b] the
following inequality holds true∣∣∣∣g(x)− 1

b− a

∫ b

a
g(t)dt

∣∣∣∣ ≤
[
1
4
+

(x − a+b
2 )2

(b− a)2

]
(b− a)M .

(1)

As an application point of view it provides the estima-
tions of the Hadamard inequality. It also establishes the
error bounds, of relations in special means and of sev-
eral numerical quadrature rules of integration like rect-
angular, trapezoidal, Simpson and other in very general
form [1], [2]. Many authors have been working continuously
on inequality (1) and have produced very interesting results

(see, [2]–[5], [8], [10], [13] and references there in). We are
motivated to study this inequality for the Riemann-Liouville
k-fractional integrals in a general form with respect to an
increasing function. As a result we get several fractional
integral inequalities, such inequalities are useful in the the-
ory of fractional differential equations. Also we apply these
fractional inequalities to obtain bounds of the Hadamard
inequalities for Riemann-Liouville fractional integrals given
in [11], [12], [19], and [20].

The Hadamard inequality is a fascinating interpretation of
convex functions in the coordinate plane, and it is stated as
follows:
Theorem 2: If g is a convex function on an interval J of

real numbers, then the inequality

g
(
a+ b
2

)
≤

∫ b

a
g(t)dt ≤

g(a)+ g(b)
2

for a, b ∈ J , a < b holds.
The Ostrowski inequality is associated with the Hadamard

inequality in the sense that this provides its estimations. The
main goal of this paper is to develop fractional versions
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of the Ostrowski type inequalities and bounds of associ-
ated fractional Hadamard type inequalities. It is worthful to
give a brief description of already developed work in this
regard.

In [5] a different and straightforward proof of the
Ostrowski inequality is given by utilizing its conditions in a
sound way. By following this new and keen method in [4]
some Riemann-Liouville fractional inequalities of Ostrowski
type have been studied. These inequalities generalize the
Ostrowski inequality in fractional calculus point of view.Also
this method of studying Ostrowski inequality do not need
to define kernels and establish identities for the sake of its
proof. Fractional Ostrowski type inequalities are useful in
studying bounds of the fractional Hadamard type inequalities.
In [19] a fractional version of the Hadamard inequality using
Riemann-Liouville fractional integrals is proved which leads
to a number of its versions for convex and related functions in
fractional calculus. In the next theorem we state this version
of the fractional Hadamard inequality for Riemann-Liouville
fractional integrals defined in Definition 1.
Theorem 3: Suppose that g be a positive convex function

defined on the interval [a, b], 0 ≤ a < b, g ∈ L1[a, b].
Then the following inequalities hold for Riemann-Liouville
fractional integrals

g
(
a+ b
2

)
≤
0(α + 1)
2(b− a)α

(
Iαa+g(b)+ Iαb−g(a)

)
≤
g(a)+ g(b)

2

with α > 0.
In [12] it is generalized via Riemann-Liouville k-fractional

integrals. In the next theorem we state k-fractional version of
the Hadamard inequality for Riemann-Liouville k-fractional
integrals defined in Definition 2.
Theorem 4: Suppose that g be a positive convex function

defined on the interval [a, b], 0 ≤ a < b, g ∈ L1[a, b].
Then the following inequalities hold for Riemann-Liouville
k-fractional integrals

g
(
a+ b
2

)
≤
0k (α+k)

2(b− a)
α
k

(
Iα,ka+ g(b)+I

α,k
b− g(a)

)
≤
g(a)+ g(b)

2

with α, k > 0.
Another fractional version of the Hadamard inequality is

stated in next theorem [20].
Theorem 5: Suppose that g be a positive convex function

defined on the interval [a, b], 0 ≤ a < b, g ∈ L1[a, b].
Then the following inequalities hold for Riemann-Liouville
fractional integrals

g
(
a+ b
2

)
≤

2α−10(α + 1)
(b− a)α

(
Iα
( a+b2 )+

g(b)+Iα
( a+b2 )−

g(a)
)

≤
g(a)+ g(b)

2
with α > 0.
In [12] the following k-fractional version of the above

fractional Hadamard inequality is proved.
Theorem 6: Suppose that g be a positive convex function

defined on the interval [a, b], 0 ≤ a < b, g ∈ L1[a, b].

Then the following inequalities hold for Riemann-Liouville
k-fractional integrals

g
(
a+ b
2

)
≤

2
α
k −10k (α + k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

g(b)+ Iα,k
( a+b2 )−

g(a)
]

≤
g(a)+ g(b)

2
with α, k > 0.

For more general results in fractional calculus we sug-
gest the readers [6], [7], [9], [14], [15], [21] and their cited
references.

The results of this paper are used for some estimations of
these Hadamard type fractional integral inequalities stated in
above theorems. The method we have adopted also provide
the technique to prove such results independently.

In the following we give the definitions of Riemann-
Liouville fractional integrals, Riemann-Liouville k-fractional
integrals and general form of Riemann-Liouville fractional
integrals with respect to an increasing function.
Definition 1: Let g ∈ L[a, b]. Then the left-sided and

right-sided Riemann Liouville fractional integrals of order
α > 0 with a ≥ 0 are defined as:

Iαa+g(x) =
1

0(α)

∫ x

a
(x − t)α−1g(t)dt, x > a

and

Iαb−g(x) =
1

0(α)

∫ b

x
(t − x)α−1g(t)dt, x < b

where 0 (.) is the Gamma function.
A generalization of Riemann-Liouville fractional inte-

grals are the left-sided and right-side Riemann-Liouville
k-fractional integrals defined as follows [17].
Definition 2: Let g ∈ L1[a, b]. Then the k-fractional

integrals of order α, k > 0 with a ≥ 0 are defined as:

Iα,ka+ g(x) =
1

k0k (α)

∫ x

a
(x − t)

α
k −1g(t)dt, x > a (2)

and

Iα,kb− g(x) =
1

k0k (α)

∫ b

x
(t − x)

α
k −1g(t)dt, x < b, (3)

where 0k (.) is the k-Gamma function.
A generalization of the Riemann-Liouville fractional inte-

grals with respect to an increasing function is given as
follows [16].
Definition 3: Let f1 : [a, b] → R be an integrable

function. Also let f2 be an increasing and positive function
on (a, b], having a continuous derivative f ′2 on (a, b). The
left-sided and right-sided fractional integrals of a function f1
with respect to another function f2 on [a, b] of order α > 0
are defined as:

Iαf2,a+ f1(x) =
1

0(α)

∫ x

a
(f2(x)− f2(t))α−1f ′2(t)f1(t)dt, x>a

and

Iαf2,b− f1(x) =
1

0(α)

∫ b

x
(f2(t)− f2(x))α−1f ′2(t)f1(t)dt, x<b.
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We organize the paper as follows:
In Section II we define a more general form of Riemann-

Liouville k-fractional integrals with respect to an increasing
function and use them to obtain Ostrowski-type inequali-
ties. Utilizing a simple inequality via an increasing function
and assumptions of Ostrowski inequality several fractional
integral inequalities are obtained. These results provide the
Ostrowski type inequalities for Riemann-Liouville fractional
integrals which are published in [4]. In Section III fractional
versions of inequalities of Section II are presented. As an
application point of view in Section IV some of the results are
applied to find estimations of the Hadamard type fractional
inequalities for Riemann-Liouville fractional and k-fractional
integrals.

II. K -FRACTIONAL INTEGRAL INEQUALITIES
IN A GENERAL FORM
We define a more general form of Riemann-Liouville
k-fractional integrals with respect to an increasing function
as follows:
Definition 4: Let f1 : [a, b] → R be an integrable

function. Also let f2 be an increasing and positive function
on (a, b], having a continuous derivative f ′2 on (a, b). The
left-sided and right-sided fractional integrals of a function f1
with respect to another function f2 on [a, b] of order α, k > 0
are defined as

Iα,kf2,a+
f1(x) =

1
k0k (α)

×

∫ x

a
(f2(x)− f2(t))

α
k −1f ′2(t)f1(t)dt, x > a

and

Iα,kf2,b−
f1(x) =

1
k0k (α)

×

∫ b

x
(f2(t)− f2(x))

α
k −1f ′2(t)f1(t)dt, x < b,

where 0k (.) is the k-Gamma function.
Remark 1: In the above Definition 4.
(i) If we take k = 1, then we get the Definition 3 of

Riemann-Liouville fractional integrals with respect to an
increasing function.

(ii) If we take f2(x) = x, then we get the Definition 2 of
Riemann-Liouville k-fractional integrals.

(iii) If we take f2(x) = x and k = 1, then we get the
Definition 1 of Riemann-Liouville fractional integrals.

Next we give Ostrowski-type inequality due to Riemann-
Liouville k-fractional integrals with respect to an increasing
function.
Theorem 7: Let f1 : J −→ R where J is an interval

in R, be a function differentiable in Jo, the interior of J and
a, b ∈ Jo, a < b. Also let f2 : [a, b] −→ R be a differ-
entiable and strictly increasing function with f ′2 ∈ L[a, b]
and |f ′1(t)| ≤ M for all t ∈ [a, b]. Then for α, β ≥ 0
and k > 0, the following inequality for general form of

Riemann-Liouville k-fractional integrals holds∣∣∣f1(x)((f2(b)− f2(x)) βk + (f2(x)− f2(a))
α
k )

− (0k (β + k)Iβ,kf2,b−
f1(x)+ 0k (α + k)Iα,kf2,a+

f1(x))
∣∣∣

≤ M
(
x
(
(f2(x)− f2(a))

α
k − (f2(b)− f2(x))

β
k

)
+0k (β + k)Iβ,kf2,b−

I (x)− 0k (α + k)Iα,kf2,a+
I (x))

)
, (4)

where I is the identity function.
Proof: Let x ∈ [a, b] and t ∈ [a, x]. Since the function f2

is strictly increasing therefore for α ≥ 0 and k > 0,
the following inequality holds true

(f2(x)− f2(t))
α
k ≤ (f2(x)− f2(a))

α
k . (5)

From (5) and the boundedness condition on f ′1 , the following
inequalities are the simple consequences∫ x

a
(M − f ′1(t))(f2(x)− f2(t))

α
k dt

≤ (f2(x)− f2(a))
α
k

∫ x

a
(M − f ′1(t))dt (6)∫ x

a
(M + f ′1(t))(f2(x)− f2(t))

α
k dt

≤ (f2(x)− f2(a))
α
k

∫ x

a
(M + f ′1(t))dt. (7)

From (6) and (7) after integrating and simple calculation
and by using Definition 4, we get the following resulting
inequalities

(f2(x)− f2(a))
α
k f1(x)− 0k (α + k)Iα,kf2,a+

f1(x)

≤ M
(
x(f2(x)− f2(a))

α
k − 0k (α + k)Iα,kf2,a+

I (x)
)

(8)

and

0k (α + k)Iα,kf2,a+
f1(x)− ( f2(x)− f2(a))

α
k f1(x)

≤ M
(
x( f2(x)− f2(a))

α
k − 0k (α + k)Iα,kf2,a+

I (x)
)
. (9)

Therefore from (8) and (9) we have the following modulus
inequality∣∣∣(f2(x)− f2(a)) αk f1(x)− 0k (α + k)Iα,kf2,a+

f1(x)
∣∣∣

≤ M
(
x(f2(x)− f2(a))

α
k − 0k (α + k)Iα,kf2,a+

I (x)
)
. (10)

Now on the other hand let x ∈ [a, b], t ∈ [x, b] and β ≥ 0
and k > 0. Then the following inequality holds true

(f2(t)− f2(x))
β
k ≤ (f2(b)− f2(x))

β
k . (11)

From (11) and the boundedness of f ′1 , the following inequal-
ities are their simple consequences∫ b

x
(M − f ′1(t))(f2(t)− f2(x))

β
k dt

≤ (f2(b)− f2(x))
β
k

∫ x

a
(M − f ′1(t))dt (12)
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∫ b

x
(M + f ′1(t))(f2(t)− f2(x))

β
k dt

≤ (f2(b)− f2(x))
β
k

∫ x

a
(M + f ′1(t))dt. (13)

Following the same way as we have adopted for (5), (6)
and (7) one can get from (11), (12) and (13) the following
modulus inequality∣∣∣(f2(b)− f2(x)) βk f1(x)− 0k (β + k)Iβ,kf2,b−

f1(x)
∣∣∣

≤ M
(
0k (β + k)Iβ,kf2,b−

I (x)− x(f2(b)− f2(x))
β
k

)
. (14)

Modulus inequalities (10) and (14) constitute the inequal-
ity (4).
Corollary 1: Under the same assumptions of Theorem 7

for α = β in (4) the following fractional integral inequality
holds true∣∣∣f1(x)((f2(b)− f2(x)) αk + (f2(x)− f2(a))

α
k )

−0k (α + k)(Iα,kf2,b−
f1(x)+ Iα,kf2,a+

f1(x))
∣∣∣

≤ M
(
x
(
(f2(x)− f2(a))

α
k − (f2(b)− f2(x))

α
k

)
+0k (α + k)

(
Iα,kf2,b−

I (x)− Iα,kf2,a+
I (x)

))
. (15)

Corollary 2: If we take f2(x) = x in (4), then
we get the following fractional integral inequality for
Riemann-Liouville k-fractional integrals∣∣∣f1(x) ((b− x) βk + (x − a)

α
k

)
−

(
0k (β + k)Iβ,kb− f1(x)

+0k (α + k)Iα,ka+ f1(x)
)∣∣∣

≤ M
(

β

β + k
(b− x)

β
k +1 +

α

α + k
(x − a)

α
k +1

)
.

Remark 2: (i) If we take f2(x) = x and k = 1 in (4), then
we get fractional integral inequality for Riemann-Liouville
fractional integrals [4, Th. 1.2].
(ii) If we take α = β = k = 1 and f2(x) = x in (4), then we
get Ostrowski inequality (1).
In the following we give a more general form of frac-
tional Ostrowski type inequality due to Riemann-Liouville
k-fractional integrals with respect to an increasing function.
Theorem 8: Let f1 : J −→ R where J is an interval

in R, be a mapping differentiable in Jo, the interior of J and
a, b ∈ Jo, a < b. Also let f2 : [a, b] −→ R be differ-
entiable and strictly increasing function with f ′2 ∈ L[a, b].
If m < f ′1(t) ≤ M for all t ∈ [a, b], then for α, β ≥ 0
and k > 0, the following inequalities for general form of
Riemann-Liouville k-fractional integrals hold

((f2(x)+ f2(a))
α
k − (f2(b)− f2(x))

β
k )f1(x)

− (0k (α + k)Iα,kf2,a+
f1(x)+ 0k (β + k)Iβ,kf2,b−

f1(x))

≤ M
(
x(f2(x)− f2(a))

α
k − 0k (α + k)Iα,kf2,a+

I (x)
)

−m
(
0k (β + k)Iβ,kf2,b−

I (x)− x(f2(b)− f2(x))
β
k

)
(16)

and

(0k (α + k)Iα,kf2,a+
f1(x)+ 0k (β + k)Iβ,kf2,b−

f1(x))

− ((f2(b)− f2(x))
β
k + (f2(x)− f2(a))

α
k )f1(x)

≤ M
(
0k (β + k)Iβ,kf2,b−

I (x)− x(f2(b)− f2(x))
β
k

)
−m

(
x(f2(x)− f2(a))

α
k − 0k (α + k)Iα,kf2,a+

I (x)
)
, (17)

where I is an identity function.
Proof: Proof is followed from the proof of Theorem 7 so

we left it for the reader.
Remark 3: (i) If we take f2(x) = x and k = 1 in (16)

and (17), then we get the fractional integral inequalities for
Riemann-Liouville fractional integrals [4, Th. 1.3].
(ii) If we take m = −M in Theorem 8, then with some
rearrangements we get Theorem 7.

Another related fractional integral inequality of Ostrowski
type is established in the next result.
Theorem 9: Let f1 : J −→ R where J is an interval

in R, be a mapping differentiable in Jo, the interior of J and
a, b ∈ Jo, a < b. Also let f2 : [a, b] −→ R be differentiable
and strictly increasing function with f ′2 ∈ L[a, b]. If |f

′

1(t)| ≤
M for all t ∈ [a, b], then for α, β ≥ 0 and k > 0,
the following inequality for Riemann-Liouville k-fractional
integrals in general form holds∣∣∣((f2(b)− f2(x)) βk f1(b)+ (f2(x)− f2(a)

α
k f1(a))

− (0k (β + k)Iβ,kf2,x+
f1(b)+ 0k (α + k)Iα,kf2,x−

f1(a))
∣∣∣

≤ M
(
b(f2(b)− f2(x))

β
k − a(f2(x)− f2(a))

α
k

+0k (α + k)Iα,kf2,x−
a− 0k (β + k)Iβ,kf2,x+

b
)
. (18)

Proof: Let x ∈ [a, b] and t ∈ [a, x]. Since the function f2
is strictly increasing therefore for α ≥ 0 and k > 0,
the following inequality holds true

(f2(t)− f2(a))
α
k ≤ (f2(x)− f2(a))

α
k . (19)

From (19) and given condition on f ′1 , the following inequali-
ties are trivial to exist∫ x

a
(M − f ′1(t))(f2(t)− f2(a))

α
k dt

≤ (f2(x)− f2(a))
α
k

∫ x

a
(M − f ′1(t))dt (20)∫ x

a
(M + f ′1(t))(f2(t)− f2(a))

α
k dt

≤ (f2(x)− f2(a))
α
k

∫ x

a
(M + f ′1(t))dt. (21)

From (20) and (21) after integrating and simple calculation
and by using Definition 4, we get

0k (α + k)Iα,kf2,x−
f1(a)− (f2(x)− f2(a))

α
k f1(a)

≤ M
(
0k (α + k)Iα,kf2,x−

a− a(f2(x)− f2(a))
α
k

)
(22)
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and

(f2(x)− f2(a))
α
k f1(a)− 0k (α + k)Iα,kf2,x−

f1(a)

≤ M
(
0k (α + k)Iα,kf2,x−

a− a(f2(x)− f2(a))
α
k

)
. (23)

From (22) and (23) we have the following modulus inequality∣∣∣(f2(x)− f2(a)) αk f1(a)− 0k (α + k)Iα,kf2,x−
f1(a)

∣∣∣
≤ M

(
0k (α + k)Iα,kf2,x−

a− a(f2(x)− f2(a))
α
k

)
. (24)

Now on the other hand let x ∈ [a, b], t ∈ [x, b] and β ≥ 0
and k > 0, the following inequality holds true

(f2(b)− f2(t))
β
k ≤ (f2(b)− f2(x))

β
k . (25)

From (25) and given condition on f ′1 following inequalities
can be obtained∫ b

x
(M − f ′1(t))(f2(b)− f2(t))

β
k dt

≤ (f2(b)− f2(x))
β
k

∫ x

a
(M − f ′1(t))dt (26)

and∫ b

x
(M + f ′1(t))(f2(b)− f2(t))

β
k dt

≤ (f2(b)− f2(x))
β
k

∫ x

a
(M + f ′1(t))dt. (27)

Following the same way as we have adopted for (19), (20)
and (21) one can get from (25), (26) and (27) the following
inequality∣∣∣(f2(b)− f2(x)) βk f1(b)− 0k (β + k)Iβ,kf2,x+

f1(b)
∣∣∣

≤ M
(
b(f2(b)− f2(x))

β
k − 0k (β + k)Iβ,kf2,x+

b
)
. (28)

Modulus inequalities (24) and (28) constitute the inequal-
ity (18).
Corollary 3: Under the same assumptions of Theorem 9

for α = β in (18) we get the following fractional integral
inequality∣∣∣((f2(b)− f2(x)) αk f1(b)+ (f2(x)− f2(a))

α
k f1(a))

−0k (α + k)(Iα,kf2,x+
f1(b)+ Iα,kf2,x−

f1(a))
∣∣∣

≤ M
(
b(f2(b)− f2(x))

α
k − a(f2(x)− f2(a))

α
k

+0k (α + k)(Iα,kf2,x−
a− Iα,kf2,x+

b)
)
.

Corollary 4: If we take f2(x) = x in (18), then
we get the following fractional integral inequality for
Riemann-Liouville k-fractional integrals∣∣∣((b− x) βk f1(b)+ (x − a)

α
k f1(a)

)
−

(
0k (β + k)Iβ,kx+ f1(b)+ 0k (α + k)I

α,k
x− f1(a)

)∣∣∣
≤ M

(
β

β + k
(b− x)

β
k +1 +

α

α + k
(x − a)

α
k +1

)
.

Remark 4: (i) If we take f2(x) = x and k = 1, then
we get fractional integral inequality for Riemann-Liouville
fractional integral [4, Th. 1.4].

(ii) A more general form of Theorem 9 like Theorem 8
holds which we leave for the reader.

III. FRACTIONAL INTEGRAL INEQUALITIES
IN GENERAL FORM
In this section we present the particular results of previous
section. These results can also be proved independently fol-
lowing the method used in previous section. Theorem 7 takes
the particular form as follows:
Theorem 10: Suppose that the assumptions of the

Theorem 7 hold true. Then we have∣∣((f2(b)− f2(x))β + (f2(x)− f2(a))α
)
f1(x)

− (0(β + 1)Iβf2,b− f1(x)+ 0(α + 1)Iαf2,a+ f1(x))
∣∣∣

≤ M
(
x
(
(f2(x)− f2(a))α − (f2(b)− f2(x))β

)
+0(β + 1)Iβf2,b− id[x,b](x)− 0(α + 1)Iα,ga+ id[a,x](x)

)
;

x ∈ [a, b], (29)

where id[.,.] denotes identity function on [., .].
Theorem 8 is modified into the following form in

particular.
Theorem 11: Suppose that the assumptions of Theorem 8

hold true. Then we have

((f2(x)− f2(a))α + (f2(b)− f2(x))β )f1(x)

− (0(α + 1)Iαf2,a+ f1(x)+ 0(β + 1)Iβf2,b− f1(x))

≤ M
(
(f2(x)− f2(a))αx − 0(α + 1)Iαf2,a+ id[a,x](x)

)
−m

(
0(β + 1)Iβf2,b− id[x,b](x)− x(f2(b)− f2(x))

β
)
;

x ∈ [a, b]

and

(0(α + 1)Iαf2,a+ f1(x)+ 0(β + 1)Iβf2,b− f1(x))

− ((f2(x)− f2(a))α + (f2(b)− f2(x))β )f1(x)

≤ M
(
0(β + 1)Iβf2,b− id[x,b](x)− x(f2(b)− f2(x))

β
)

−m
(
(f2(x)− f2(a))αx − 0(α + 1)Iαf2,a+ id[a,x](x)

)
;

x ∈ [a, b],

where id[.,.] denotes identity function on [., .].
Theorem 9 in particular takes the following form.
Theorem 12: Suppose that the assumptions of Theorem 9

hold true. Then we have∣∣((f2(b)− f2(x))β + (f2(x)− f2(a))α)f1(x)

− (0(β + 1)Iβf2,x+ f1(b)+ 0(α + 1)Iαf2,x− f1(a))
∣∣∣

≤ M
(
(f2(b)− f2(x))βb− (f2(x)− f2(a))αa

+0(α + 1)Iαf2,x−a− 0(β + 1)Iβf2,x+b
)
; x ∈ [a, b].

(30)
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All these results of this section also provide the fractional
integral inequalities for Riemann-Liouville fractional inte-
grals when the function f2 behaves as an identity function.

IV. APPLICATIONS
In this section we give applications of the results proved in
Section II. First we apply Theorem 7 and get the following
result.
Theorem 13: Under the assumptions of Theorem 7,

we have∣∣∣f1(a)(f2(b)− f2(a)) βk + f1(b)(f2(b)− f2(a)) αk
−

(
0k (β + k)Iβ,kf2,b−

f1(a)+ 0k (α + k)Iα,kf2,a+
f1(b)

)∣∣∣
≤ M

(
(b− a)

(
(f2(b)− f2(a))

β
k + (f2(b)− f2(a))

α
k

)
+0k (β + k)Iβ,kf2,b−

a− 0k (α + k)Iαkf2,a+b
)
. (31)

Proof: By taking x = a and x = b in (16), then adding
resulting inequalities we get (31).
Corollary 5: Under the assumptions of Theorem 7 for α =

β in (31), we have∣∣∣(f1(a)+ f1(b))(f2(b)− f2(a)) αk
−0k (α + k)

(
Iα,kf2,b−

f1(a)+ Iα,kf2,a+
f1(b)

)∣∣∣
≤ M

(
2(b− a)(f2(b)− f2(a))

α
k

+0k (α + k)(Iβ,kf2,b−
a− Iαkf2,a+b)

)
. (32)

In the following an estimation of the Hadamard inequality
for Riemann-Liouville k-fractional integrals [11, Th. 2.1] is
established.
Corollary 6: Under the assumptions of Theorem 7 for

f2(x) = x in (32) an estimation of the Hadamard inequality
for Riemann-Liouville k-fractional integrals is obtained as
follows∣∣∣∣ f1(a)+ f1(b)2

−
0k (α + k)

2(b− a)
α
k

(
Iα,kb− f1(a)+ Iα,ka+ f1(b)

)∣∣∣∣
≤
Mα(b− a)
α + k

.

In the following an estimation of the Hadamard inequality for
Riemann-Liouville fractional integral [19, Th. 2] is estab-
lished.
Corollary 7: Under the assumptions of Theorem 7 for

f2(x) = x and k = 1 in (32) an estimation of the
Hadamard inequality for Riemann-Liouville fractional inte-
gral is obtained as follows∣∣∣∣ f1(a)+ f1(b)2

−
0(α + 1)
2(b− a)α

(
Iαb− f1(a)+ Iαa+ f1(b)

)∣∣∣∣
≤
Mα(b− a)
α + 1

.

Next we apply Theorem 9 to study some more k-fractional
and fractional integral inequalities and the estimations of
fractional Hadamard integral inequalities.

Theorem 14: Under the assumptions of Theorem 9,
we have∣∣∣∣∣f1(b)

(
f2(b)− g

(
a+ b
2

)) β
k

+ f1(a)
(
g
(
a+ b
2

)
−f2(a)

) α
k

−

(
0k (β + k)Iβ,k

f2, a+b2
+ f1(b)+ 0k (α + k)Iα,k

f2, a+b2
− f1(a)

)∣∣∣∣
≤ M

(
b
(
f2(b)− g

(
a+ b
2

)) β
k

− a
(
g
(
a+ b
2

)
− f2(a)

) α
k

+0k (α + k)Iα,k
f2, a+b2

−a− 0k (β + k)I
β,k

f2, a+b2
+b
)
. (33)

Proof: By taking x = a+b
2 in (30) resulting inequal-

ity (33) can be obtained.
Corollary 8: Under the assumptions of Theorem 9 for α =

β in (33), we have∣∣∣∣∣f1(b)
(
f2(b)−g

(
a+ b
2

)) α
k

+f1(a)
(
g
(
a+ b
2

)
−f2(a)

) α
k

−0k (α + k)
(
Iα,k
f2, a+b2

+ f1(b)+ Iα,k
f2, a+b2

− f1(a)
)∣∣∣∣

≤ M

(
b
(
f2(b)− g

(
a+ b
2

)) α
k

− a
(
g
(
a+ b
2

)
− f2(a)

) α
k

+0k (α + k)Iα,k
f2, a+b2

−a− 0k (α + k)Iα,k
f2, a+b2

+b
)
. (34)

In the following an estimation of the Hadamard inequality
for Riemann-Liouville k-fractional integrals [12, Th. 2.1] is
established.
Corollary 9: Under the assumptions of Theorem 9 for

f2(x) = x in (34) an estimation of the Hadamard inequality
for Riemann-Liouville k-fractional integrals is obtained as
follows∣∣∣∣∣ f1(a)+ f1(b)2

−
2
α
k −10k (α + k)

(b− a)
α
k

×

(
Iα,ka+b

2
− f1(b)+ Iα,ka+b

2
+ f1(a)

) ∣∣∣∣∣ ≤ Mα(b− a)
2(α + k)

.

In the following an estimation of the Hadamard inequality for
Riemann-Liouville fractional integrals [20, Th. 4] is estab-
lished.
Corollary 10: Under the assumptions of Theorem 9 for

f2(x) = x and k = 1 in (34) an estimation of the
Hadamard inequality for Riemann-Liouville fractional inte-
gral is obtained as follows∣∣∣∣ f1(a)+ f1(b)2

−
2α−10(α + 1)

(b− a)α

(
Iαa+b

2
− f1(b)+ Iαa+b

2
+ f1(a)

)∣∣∣∣
≤
Mα(b− a)
2(α + 1)

.

Note that all the applications of this section also hold for
Section III. Remarks of this section are also applicable for
the Section III.
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CONCLUDING REMARKS
This paper provides a new and elegant technique to prove
fractional integral inequalities of Ostrowski type. Here
Riemann-Liouville k-fractional integrals in a general form
are utilized. Applying Theorem 7 and Theorem 9 some
interesting results have been obtained which are connected
to already published work. Several similar results can be
obtained as an application of Theorem 7, Theorem 8 and
Theorem 9. Some of these results are actually very useful
to establish the error bounds of the Hadamard inequalities
in fractional calculus. Adopting the method developed in this
paper several fractional integrals can be used to establish new
fractional integral inequalities.
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