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ABSTRACT The degree of a perfect Gaussian integer sequence (PGIS) is defined as the number of distinct
nonzero Gaussian integers within one period of the sequence. This paper focuses on constructing PGISs
with degrees equal to or larger than four and period of N = qp, where q and p are distinct primes. The study
begins with the partitioning of a ring ZN into four subsets, after which degree-4 PGISs can be constructed
from either the time or frequency domain. In these two approaches, nonlinear constraint equations are derived
to govern the coefficients for the associative sequences to be perfect. By transforming nonlinear constraint
equations into a system of linear equations, the construction of degree-4 PGISs becomes straightforward.
To construct PGISs with degrees larger than four, further partitioning of ZN should be carried out; here, two
cases, the even period N = 2p and the odd period N = qp, are treated separately. We can adopt the Legendre
sequences of the prime period p to construct PGISs of period 2p with degrees larger than four. For the case
of period qp, we introduce the Jacobi symbols to partition ZN into seven subsets and construct PGISs with
more diverse degrees.

INDEX TERMS Gaussian integers, Jacobi symbol, Legendre sequence, PACF, PGIS.

I. INTRODUCTION
Sequences with an ideal periodic autocorrelation function
(PACF) [1]–[9] are widely used in modern communication
systems for such applications as channel estimation [1]–[4],
synchronization [3], [5], peak-to-average power ratio (PAPR)
reduction [6], [7], modulation [8] and CDMA systems [9].
A sequence is regarded as perfect if it has an ideal PACF.
In practical systems, binary or quadri-phase sequences are
preferred due to their simple implementation [10]–[16]. How-
ever, perfect binary sequences of length N > 4 and perfect
quadri-phase sequences of length N > 16 have yet to be
found [5].

A Gaussian integer sequence (GIS) is a sequence with ele-
ments that are complex numbers a+bi, where i =

√
−1, and

a, b are integers. As the implementation of GISs is simpler
than that of other perfect sequences (PSs) with real or com-
plex coefficients, the construction of perfect Gaussian inte-
ger sequences (PGISs) has become an important research
topic [17]–[27]. A general form of even-period PGIS pre-
sented in [17]; here, the PGIS is constructed by linearly

combining a set of base sequences. Yang et al. [18] con-
structed PGISs of an odd prime period p by using cyclo-
tomic classes with respect to the multiplicative group
of GF(p). Ma et al. [19] later presented PGISs with a period
of p(p + 2) based on Whiteman’s generalized cyclotomy of
order two over Zp(p+2), where p and (p+ 2) are twin primes.
Chang et al. [20] initialized the degree concept of a sequence
and constructed two, three and four degrees PGISs of com-
posite period N = mp. Lee et al. [21], [22] focused on
constructing degree-2 PGISs of various periods using two-
tuple-balanced sequences and cyclic difference sets. Apply-
ing Zero-padding, convolution and the Legendre symbols
to generate PGISs with diverse degrees were developed by
Pei and Chang [23]. A systematic method for construct-
ing sparse PGISs in which most of the elements are zero
appeared in [24]. Lee and Hong [25] and Lee and Chen [26]
constructed the families of PGISs with high energy effi-
ciency; and they used a short PGIS together with the polyno-
mial or trace computation over an extension field to construct
a family of the long PGISs [25], [26]. Recently, new PGISs
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TABLE 1. Summary of Some Known PGISs.

of period pk with degrees equal to or less than k + 1 was
proposed [27].

This paper focuses on constructing PGISs with degrees
equal to or larger than four and period of N = qp, where
q and p are distinct primes. The available degrees and distinct
sequence patterns of a set of PGISs determine the carrier-
to-interference ratio of a PGIS-CDMA scheme, when this
set of PGISs are applied for channelization in a CDMA
system [9]. In this paper, sequence pattern refers to the distri-
bution of nonzero elements within one period of the sequence;
in this case, more sequence patterns and different degrees
contribute to the larger size of a sequence family which
has the advantage or demonstrates more potential to appli-
cations. However, the construction of PGISs with degrees
larger than three is especially challenging because such con-
struction requires derivation of integer solutions from nonlin-
ear constraint equations and matching of criteria to achieve
perfect associative sequences where the number of nonlin-
ear constraint equations is one less than the degree of the
sequence [27], [28].

To solve nonlinear constraint equations, we provide
three methods to decompose and transform three nonlinear
equations with eight variables into a system of four linear
equations with four variables. This approach renders the
construction of degree-4 PGISs simpler and more straight-
forward. In addition, the construction of PGISs in this paper
is based on the partitioning of a ring ZN . Thus, the pro-
posed methods are significantly different from other studies
of composite period PGISs addressed in [17], [19], and [20].
Examining above mentioned different PGISs, there are var-
ious methods that can be applied for constructing PGIS,
where the variation of these approaches might depend on
mathematical structure or tools, techniques or algorithms.
TABLE 1 summarizes the PGISs obtained in this paper and
other previously presented in the literature in terms of length,
degree, and construction method.

This work is the first in the literature to introduce Jacobi
symbols to process the partitioning of ZN , where N = qp
is odd. We present the construction of PGISs from both the
time and frequency domains, and the results demonstrate that
two different approaches derive the same perfect sequences.
These two approaches are designed to satisfy the time domain
ideal periodic autocorrelation function (PACF) requirement
and the frequency domain flat magnitude spectrum criterion,
respectively.

The rest of the paper is organized as follows. The defi-
nition and set partition of ZN are addressed in Section II.
Sections III and IV present the construction of degree-4
PGISs from the time and frequency domains, respectively.
The study of period N = 2p PGISs with degrees larger
than four is presented in Section V. Section VI presents
the construction of PGISs of the odd period N = qp
with more diverse degrees, and conclusions are drawn
in Section VII.

II. PRELIMINARIES
Let N = pq, where p and q are distinct prime numbers.
In addition, s = {s[n]}N−1n=0 denotes a sequence of period N ,
where s[n] is the nth component of s. Let Rs = {Rs[τ ]}

N−1
τ=0

be the PACF of s expressed as,

Rs[τ ] =
N−1∑
n=0

s[n]s∗[(n− τ )N ], (1)

where the superscript ∗ denotes the complex conjugate oper-
ation, and (·)N is the modulo N operation. Define s−1 =
{s[(−n)N ]}

N−1
n=0 . As can be easily shown, Rs = s ⊗ s∗

−1,
where ⊗ denotes the circular convolution operation. Let S =
{S[n]}N−1n=0 denote the discrete Fourier transform (DFT) of s.
The DFT of Rs is then given by S ◦ S∗ = {|S[n]|2}N−1n=0 ,
where ◦ and |·| denote the component-wise product operation
and the Euclidean norm, respectively.
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The sequence s is said to be perfect if and only if it has
an ideal PACF, i.e., Rs = E · δN , where E =

∑N−1
n=0 |s[n]|

2

is the energy of sequence s, and δN is a delta sequence of
period N . The DFT pair-relationship between Rs = E · δN
and S ◦ S∗ indicates that a sequence s is perfect if and only
if the spectrum magnitude of s is flat, i.e., |S [n]| =

√
E,

0 ≤ n ≤ N − 1.
Let ZN denote the ring {0, 1, . . . ,N − 1} with integer

multiplication modulo N and integer addition modulo N .
Here we define Z×N = ZN\{0}. Three subsets of Z×N are
defined as follows:

Sp = {np|n = 1, 2, . . . , q− 1},

Sq = {kq|k = 1, 2, . . . , p− 1},

and

S1 = {n|gcd(n,N ) = 1, n ∈ Z×N }.

We have Z×N = Sp
⋃
∗ Sq

⋃
∗ S1, where

⋃
∗ denotes disjoint

union. We define three sets as follows:

Sa = {(m− k)(mod N )|(m, k) ∈ Sp × Sq}, (2)

Sb = {(m+ k)(mod N )|(m, k) ∈ Sp × Sq}, (3)

Sc = {(k − m)(mod N )|(m, k) ∈ Sp × Sq}. (4)

Lemma 1: Sa = Sb = Sc = S1.
Proof: Given that the cardinalities of Sp and Sq are

|Sp| = (q − 1) and |Sq| = (p − 1), respectively, this implies
that the cardinality of S1 is given by |S1| = (pq − 1) − (p −
1) − (q − 1) = (p − 1)(q − 1). Based on the definitions of
Sa, Sb, and Sc presented in (2) ∼ (4), respectively, where the
number of elements in set {(m, k) ∈ Sp×Sq} is (p−1)(q−1),
we derive |Sa| = |Sb| = |Sc| = (p − 1)(q − 1) = |S1|.
In addition, because p and q are distinct primes, all (p −
1)(q − 1) elements of set Sa = {(m − k)(mod N )|(m, k) ∈
Sp × Sq} are distinct, and these elements do not belong to Sp
and Sq. This derives that Z×N = Sp

⋃
∗ Sq

⋃
∗ Sa, which is a

partition of Z×N . These suggest that Sa = S1 is true. Similarly,
Z×N = Sp

⋃
∗ Sq

⋃
∗ Sb = Sp

⋃
∗ Sq

⋃
∗ Sc.

Next, we define three base sequences si = {si[n]}N−1n=0 ,

i = 1, q, p, of periodic N using S1, Sq and Sp, respectively,
as follows:

si[n] =

{
1, n ∈ Si,
0, otherwise.

(5)

Theorem 1: s1 = sp ⊗ sq.
Proof: Based on the result of Lemma 1, where S1 =

Sb = {(m+k)(mod N )|(m, k) ∈ Sp×Sq}, we can demonstrate
that s1 = sp ⊗ sq is true.

III. TIME DOMAIN CONSTRUCTION OF DEGREE-4 PGIS
Sequence s = {s[n]}N−1n=0 of periodic N is defined as

s[n] =


a3, n = 0,
a0, n ∈ S1,
a1, n ∈ Sq,
a2, n ∈ Sp.

(6)

Theorem 2: The N elements of PACF Rs = {Rs[τ ]}
N−1
τ=0

of sequence s, defined in (6), have at most 4 distinct values,
Rk , k = 0, 1, 2, 3, which are given by

Rs[τ ] =


R3, τ = 0,
R0, τ ∈ S1,
R1, τ ∈ Sq,
R2, τ ∈ Sp,

(7)

where

R3 = |a3|2 + (p− 1)(q− 1)|a0|2 + (p− 1)|a1|2

+(q− 1)|a2|2,

R0 = (p− 2)(q− 2)|a0|2 + (q− 2)(a0a∗2 + a2a
∗

0)

+(p− 2)(a0a∗1 + a1a
∗

0)+ (a2a∗1 + a1a
∗

2)

+(a0a∗3 + a3a
∗

0),

R1 = (p− 2)(q− 1)|a0|2 + (p− 2)|a1|2

+(q− 1)(a0a∗2 + a2a
∗

0)+ (a3a∗1 + a1a
∗

3),

R2 = (p− 1)(q− 2)|a0|2 + (q− 2)|a2|2

+(p− 1)(a0a∗1 + a1a
∗

0)+ (a3a∗2 + a2a
∗

3).

(8)

Proof: The PACF of s is given by (1), where

Rs[τ ] =
N−1∑
n=0

s[n]s∗[(n− τ )N ]

= s[0]s∗[(−τ )N ]+
∑
n∈S1

s[n]s∗[(n− τ )N ]

+

∑
n∈Sq

s[n]s∗[(n− τ )N ]+
∑
n∈Sp

s[n]s∗[(n− τ )N ]

= a3s∗[(−τ )N ]+ a0
∑
n∈S1

s∗[(n− τ )N ]

+ a1
∑
n∈Sq

s∗[(n− τ )N ]+ a2
∑
n∈Sp

s∗[(n− τ )N ]. (9)

For a fixed τ , the value of Rs[τ ] is calculated over the
entire domain of parameter n through (9), where the bottom
equation of (9) consists of four parts, and the numbers of n
belonging to these four parts are 1, (p−1)(q−1), (p−1), and
(q − 1), respectively. The details of derivation are presented
below.

1) When τ = 0, we derive Rs[0] = |a3|2 + (p − 1)(q −
1)|a0|2 + (p− 1)|a1|2 + (q− 1)|a2|2 = R3.
2) When τ ∈ S1, first, a3s∗[(−τ )N ] = a3a∗0, which results

from n = 0. Then, for the second part of (9), both τ and
n belong to the same set S1. For a fixed τ ∈ S1, among the
(p−1)(q−1) numbers of n in

∑
n∈S1

s∗[(n−τ )N ], there is exactly

one n(= τ ) that makes s∗[(n − τ )N ] = s∗[0]. By Lemma 1,
the number of items of (n − τ )N ∈ Sq is (p − 2), that of
(n−τ )N ∈ Sp is (q−2), and the number of the other (n−τ )N ∈
S1 is (p − 2)(q − 2). Thus, we have a0

∑
n∈S1

s∗[(n − τ )N ] =

a0a∗3 + (p− 2)(q− 2)|a0|2 + (q− 2)a0a∗2 + (p− 2)a0a∗1.
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Third, for the third part of (9), the number of n in∑
n∈Sq

s∗[(n − τ )N ] is (p − 1). Given τ = mq + kp ∈ S1, there

exists a single n = mq ∈ Sq that makes (n−τ )N = (−kp)N ∈
Sp, and the remaining (p−2) nmake (n−τ )N ∈ S1. This infers
that a1

∑
n∈Sq

s∗[(n− τ )N ] = (p− 2)a1a∗0 + a1a
∗

2.

Fourth, the number of n in
∑
n∈Sp

s∗[(n− τ )N ] is (q− 1). For

τ = mq + kp, there exists a single n = kp ∈ Sp that makes
(n−τ )N = (−mq)N ∈ Sq, the number the remaining items of
(n−τ )N ∈ S1 is (q−2). This means that a2

∑
n∈Sp

s∗[(n−τ )N ] =

(q− 2)a2a∗0 + a2a
∗

1.
The summation of the results of these four parts results

in R0 = (p − 2)(q − 2)|a0|2 + (q − 2)(a0a∗2 +
a2a∗0) + (p − 2)(a0a∗1 + a1a∗0) + (a2a∗1 + a1a∗2) +
(a0a∗3 + a3a

∗

0).
3) When τ ∈ Sq, first, a3s∗[(−τ )N ] = a3a∗1. Then,

to evaluate
∑
n∈Sq

s∗[(n − τ )N ], we assume τ = mq ∈ Sq.

Among p − 1 numbers of n belonging to Sq, there is exactly
one n among n = kq, k = 1, . . . , (p − 1), which contributes
s∗[(n − τ )N ] = s∗[0], and the remaining (p − 2) n result
in (n − τ )N ∈ Sq. This means that a1

∑
n∈Sq

s∗[(n − τ )N ] =

a1a∗3 + (p− 2)|a1|2.
Next, in the part of

∑
n∈Sp

s∗[(n− τ )N ], given that n and τ do

not overlap, we derive (n − τ )N ∈ S1 by Lemma 1. We have
a2
∑
n∈Sp

s∗[(n− τ )N ] = (q− 1)a2a∗0.

Finally, to the part of
∑
n∈S1

s∗[(n− τ )N ], given that τ = mq,

there are (q−1) numbers of n = mq+kp, k = 1, . . . , (q−1),
in
∑
n∈S1

s∗[(n− τ )N ], which makes (n− τ )N = kp ∈ Sp. Thus,

the number of (n − τ )N ∈ S1 is (p − 1)(q − 1) − (q − 1) =
(p− 2)(q− 1). This implies that a0

∑
n∈S1

s∗[(n− τ )N ] = (p−

2)(q− 1)|a0|2 + (q− 1)a0a∗2.
We conclude from the above four results that R1 = (p −

2)(q−1)|a0|2+ (p−2)|a1|2+ (q−1)(a0a∗2+a2a
∗

0)+ (a3a
∗

1+

a1a∗3) is true.
4) When τ ∈ Sp, to show that R2 = (p− 1)(q− 2)|a0|2 +

(q− 2)|a2|2 + (p− 1)(a0a∗1 + a1a
∗

0)+ (a3a∗2 + a2a
∗

3) is true
is similar to that of deriving R1. The detailed derivation of R2
is no longer included here for brevity.
Corollary 1: Sequence s = {s[n]}N−1n=0 , defined in (6), is a

degree-4 PGIS of period N if and only if it matches the
following criteria,

R0 = R1 = R2 = 0. (10)
Proof: Based on the definition of a PGIS,Rs = E ·δN ⇔

R0 = R1 = R2 = 0.
Let an = xn + yni, n = 0, 1, 2, 3, where xn and yn are

integers. When these four an = xn + yni coefficients are
inserted to (8), we derive a system of three nonlinear equa-
tions to govern the coefficients of sequence s = {s[n]}N−1n=0 to
be a degree-4 PGIS. These constraint equations are expressed

below

(p− 2)(q− 2)(x20 + y
2
0)+ 2(q− 2)(x0x2 + y0y2)

+ 2(p− 2)(x0x1 + y0y1)
+ 2(x1x2 + y1y2 + x0x3 + y0y3) = 0,

(p− 2)(q− 1)(x20 + y
2
0)+ (p− 2)(x21 + y

2
1)

+ 2(q− 1)(x0x2 + y0y2)+ 2(x1x3 + y1y3) = 0,
(q− 2)(x22 + y

2
2)+ (p− 1)(q− 2)(x20 + y

2
0)

+ 2(p− 1)(x0x1 + y0y1)+ 2(x2x3 + y2y3) = 0.

(11)

There are eight unknown parameters and the number of
equations is only three in (11); this system of three nonlinear
equations might exist numerous integer solutions. To derive
the solutions, first, the bottom equation of (11) can be
replaced by subtracting from the top equation of (11), after
which it becomes

(x0 − x2)((q− 2)(x0 − x2)+ 2(x1 − x3))

+ (y0 − y2)((q− 2)(y0 − y2)+ 2(y1 − y3)) = 0. (12)

Second, the nonlinear equation (12) can be decomposed into
two parts, which results in a linear system of two equations.
We provide three different decompositionmethods, which are
respectively presented belowx2 + y2 = x0 + y0,

(2− q)x2 + (q− 2)y2 − 2x3 + 2y3
= (q− 2)(y0 − x0)− 2x1 + 2y1.

(13){
−x2 + (q− 2)y2 + 2y3 = −x0 + (q− 2)y0 + 2y1,
(q− 2)x2 + y2 + 2x3 = (q− 2)x0 + y0 + 2x1.

(14){
(2− q)x2 − 2x3 = (2− q)x0 − 2x1,
(2− q)y2 − 2y3 = (2− q)y0 − 2y1.

(15)

Third, we can combine the first two equations of (11) with
the above three sets of linear equations to form three differ-
ent linear systems of four equations with x2, y2, x3 and y3
as the variables, respectively. These three systems can be
respectively expressed using the matrix notation Aix = bi,
i = 1, 2, 3. In these equations, Ai is the coefficient matrix of
size 4×4 and bi is a data column vector, in which the elements
of two terms consist of integers and constants belonging to
set {x0, y0, x1, y1}. In addition, the elements of column vector
x = [x2 y2 x3 y3]T are considered as the variables. We have

A1

=


2(q− 2)x0 + 2x1 2(q− 2)y0 + 2y1 2x0 2y0

2(q− 1)x0 2(q− 1)y0 2x1 2y1
1 1 0 0

2− q q− 2 −2 2

,
(16)

A2

=


2(q− 2)x0 + 2x1 2(q− 2)y0 + 2y1 2x0 2y0

2(q− 1)x0 2(q− 1)y0 2x1 2y1
−1 q− 2 0 2
q− 2 1 2 0

,
(17)
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A3

=


2(q− 2)x0 + 2x1 2(q− 2)y0 + 2y1 2x0 2y0

2(q− 1)x0 2(q− 1)y0 2x1 2y1
2− q 0 −2 0
0 2− q 0 −2

,
b1

= [41 42 x0 + y0 (q− 2)(y0 − x0)+ 2(y1 − x1)]T ,

b2

= [41 42 (q− 2)y0 + 2y1 − x0 (q− 2)x0 + y0 + 2x1]T ,

b3

= [41 42 (2− q)x0 − 2x1 (2− q)y0 − 2y1]T , (18)

where 41 = (2 − p)(q − 2)(x20 + y20) − 2(p − 2)(x0x1 +
y0y1) and 42 = (2 − p)(q − 1)(x20 + y20) − 2(p − 2)
(x21 + y

2
1).

Given that the elements of three coefficient matrices Ai
are integers, the elements of matrix inverse A−1i can still be
integers or at most rational numbers. By choosing constants
x0, y0, x1, and y1 such that all |Ai| 6= 0, we can always
adjust these four constants and derive the integer solutions
of four variables (x2, y2, x3, y3) from equations xi = A−1i bi,
i = 1, 2, 3. These eight parameters xn, yn, n = 0, 1, 2, 3, meet
the system of three nonlinear equations (11).
Example 1: In the case of p = 3, q = 7, given that

a0 = −6 + 6i, a1 = 12 + 6i, we derive a2 = 12 − 12i and
a3 = 3+ 87i from A1x = b1 of (16), where a degree-4 PGIS
of period N = 21 is given by

(a3, a0, a0, a2, a0, a0, a2, a1, a0, a2, a0,

a0, a2, a0, a1, a2, a0, a0, a2, a0, a0).

In the case of p = 3, q = 5, given that a0 = 10 − 10i, a1 =
−20−10i, we derive a2 = −2+20i and a3 = 13−49i from
A2x = b2 of (17), where a degree-4 PGIS of period N = 15
is given by

(a3, a0, a0, a2, a0, a1, a2, a0, a0, a2, a1, a0, a2, a0, a0).

In the case of p = 2, q = 5, given that a0 = −25+ 25i, a1 =
50+25i, we derive a2 = 5−21i, a3 = 5+94i fromA3x = b3
of (18), where a degree-4 PGIS of period N = 10 is given
by

(a3, a0, a2, a0, a2, a1, a2, a0, a2, a0).

IV. FREQUENCY DOMAIN CONSTRUCTION OF
DEGREE-4 PGIS
Let sequence s be constructed by linearly combining three
base sequences defined in (5) and δN , that is

s = a3δN + a0s1 + a1sq + a2sp, (19)

where ak , k = 0, 1, 2, 3, are four distinct nonzero
Gaussian integers. We can easily show that the DFTs of

δN , sq, and sp, denoted as Sδ,Xq, and Xp, are respectively
given by

Sδ = [1 1 · · · 1︸ ︷︷ ︸
N

],

Xq = [(p− 1) − 1 · · · − 1︸ ︷︷ ︸
p

(p− 1) − 1 · · · − 1︸ ︷︷ ︸
p

· · · (p− 1) − 1 · · · − 1︸ ︷︷ ︸
p

],

Xp = [(q− 1) − 1 · · · − 1︸ ︷︷ ︸
q

(q− 1) − 1 · · · − 1︸ ︷︷ ︸
q

· · · (q− 1) − 1 · · · − 1︸ ︷︷ ︸
q

].

By Theorem 1, the DFT of s1, denoted as X1, is given by

X1 = Xp ◦ Xq.

Theorem 3: Sequence s = a3δN + a0s1 + a1sq + a2sp,
defined in (19), is a degree-4 PGIS if and only if it fulfills the
following constraint equations

|a0(p− 1)(q− 1)+ a2(q− 1)+ a1(p− 1)+ a3|

= |a0 − a2 − a1 + a3| = |(q− 1)(a2 − a0)+ a3 − a1|

= |(p− 1)(a1 − a0)+ a3 − a2|. (20)
Proof: Based on the patterns of Sδ,Xq, Xp and X1,

the DFT of s, denoted as S = a3Sδ+a0X1+a1Xq+a2Xp, is a
four-valued vector, and the values of its elements belong to set
{a0(p−1)(q−1)+a2(q−1)+a1(p−1)+a3, a0−a2−a1+
a3, (q−1)(a2−a0)+a3−a1, (p−1)(a1−a0)+a3−a2}. The
flat magnitude spectrum requirement for a sequence s to be a
PGIS, which is the absolute value of all elements of S should
be the same, indicates that the constraint equations should be
fulfilled.

Let an = xn + yni, n = 0, 1, 2, 3, where xn and yn are
integers. By substituting these four an into (20), we derive a
system of three nonlinear equations, shown in equation (21),
as shown at the top of the next page, for constructing a
degree-4 PGIS. We can easily show that two systems of three
nonlinear equations, represented by (21) and (11), respec-
tively, are equivalent.

The construction of a PGIS from either the time or fre-
quency domain approach is based on the same partitioning
of ring ZN = {0}

⋃
Z×N (= S1

⋃
∗ Sp

⋃
∗ Sq); thus, it makes

sense that these two different approaches should construct the
same perfect sequence. To construct PGISwith degrees larger
than four, subsets S1, Sp, and Sq should be further partitioned
into smaller subsets. To address this topic, the case ofN = 2p
and odd N = qp are addressed separately in the Sections V
and VI, respectively. This decision is based on the idea that
there exists primitive root (mod 2p) but no primitive root
(mod qp) for odd prime q [29].

V. HIGHER DEGREE PGIS CONSTRUCTION OF
PERIOD N=2P
When N = 2p, where p is an odd prime, Z×2p can
be partitioned into S1

⋃
∗ S2

⋃
∗ Sp, where Sp = {p},

64794 VOLUME 6, 2018



H.-H. Chang et al.: Construction of Period qp PGISs With Degrees Equal to or Larger Than Four



(p− 2)(q− 2)(x20 + y
2
0)+ 2(q− 2)(x0x2 + y0y2)+ 2(p− 2)(x0x1 + y0y1)

+ 2(x1x2 + y1y2 + x0x3 + y0y3) = 0,

(p− 2)(x20 + y
2
0 + x

2
1 + y

2
1)+ 2(x0x2 + y0y2 + x1x3 + y1y3)

+ 2(2− p)(x1x0 + y1y0)− 2(x0x3 + y0y3 + x1x2 + y1y2) = 0,

(q− 2)(x20 + y
2
0 + x

2
2 + y

2
2)+ 2(x3x2 + y3y2 + x1x0 + y1y0)

+ 2(2− q)(x2x0 + y2y0)− 2(x0x3 + y0y3 + x1x2 + y1y2) = 0.

(21)

S1 = {2k − 1|k = 1, 2, . . . , p, k 6= p+1
2 } and S2 =

{2k|k = 1, 2, . . . , p − 1}. As there exist primitive root α
(mod 2p) of order φ(2p) = 2p(1 − 1

2 )(1 −
1
p ) = (p − 1)

where αφ(2p) ≡ 1(mod 2p), in which φ(2p) is Euler function;
here, the subset S1 is a cyclic group with cardinality given by
|S1| = (p − 1). In addition, because (p − 1) is even, there

exists a subgroup S11 = {α2n}
(p−3)
2

n=0 of S1 with cardinality

|S11| =
(p−1)
2 , S1 = S11

⋃
∗ S12(= {α2n+1}

(p−3)
2

n=0 ). The
partition of S2 = S21

⋃
∗ S22 can be formed according to

S21 = {n + p|n ∈ S11} and S22 = {n + p|n ∈ S12},
respectively.
Theorem 4 [29]: If p is an odd prime, then there are

1
2 (p−1) quadratic residues and an equal number of quadratic
nonresidues (mod p).
Lemma 2: For odd prime p, p is a quadratic residue

(mod 2p).
Proof: The proof is omitted for brevity.

Lemma 3: For an odd prime p, k is a quadratic residue
(mod 2p) ⇔ k + p is quadratic residue (mod 2p); k is
a quadratic nonresidue (mod 2p) ⇔ k + p is a quadratic
nonresidue (mod 2p).

Proof: The proof is omitted for brevity.
Lemma 4: All (p−1)

2 elements of cyclic group S11 =

{α2n}
(p−3)
2

n=0 are quadratic residues (mod 2p), and all ele-

ments of S12 = {α2n+1}
(p−3)
2

n=0 are quadratic nonresidues
(mod 2p).

Proof: Given that cyclic group S11 = {α2n}
(p−3)
2

n=0 consists
of elements that are either ‘‘1′′(= α0) or primitive root with
an even exponent α2n, to each x = α2n ∈ S11, there
exists a = (α2n)2 ∈ S11 by closure property, where α
is a primitive root. This implies that the congruence x2 ≡
a(mod 2p) has a solution, indicating that all (p−1)

2 elements
of cyclic group S11 are quadratic residues (mod 2p). For

a = α2n+1 ∈ S12, given that S12 = {α2n+1}
(p−3)
2

n=0 consists
of elements that are primitive root α with odd exponents,
there is no solution to congruence x2 ≡ a(mod 2p) and
proves that all elements of S12 are quadratic nonresidues
(mod 2p).
Lemma 5: There are p quadratic residues and (p − 1)

quadratic nonresidues (mod 2p).
Proof: The proof is omitted for brevity.

We define three base sequences ci = {ci[n]}N−1n=0 , i =
1, 2, 3, of period N = 2p as follows:

c1[n] =


1, n ∈ S11,
−1, n ∈ S12,
0, otherwise.

(22)

c2[n] =


1, n ∈ S21,
−1, n ∈ S22,
0, otherwise.

(23)

c3[n] =

{
1, n ∈ Sp,
0, otherwise.

(24)

The cyclotomic classes of order 2 with respect to GF(p)
is defined as D(2)

m =

{
βm+2n|0 ≤ n < p−1

2

}
, 0 ≤ m < 2

where β is a primitive root (mod p). We also define two base
sequences {sD0[n]} and {sD1[n]}, with the associative DFTs
denoted by {SD0[n]} and {SD1[n]}, of period p based on D(2)

0
and D(2)

1 , respectively.
When p ≡ 3(mod 4), the DFTs of {sD0[n]} and {sD1[n]}

are respectively given by [20]

SD0[n] =


p− 1
2

, n = 0,

−
(
1+ i
√
p
)
/2, n ∈ D(2)

0 ,

−
(
1− i
√
p
)
/2, n ∈ D(2)

1 .

(25)

SD1[n] =


p− 1
2

, n = 0,

−
(
1− i
√
p
)
/2, n ∈ D(2)

0 ,

−
(
1+ i
√
p
)
/2, n ∈ D(2)

1 .

(26)

When p ≡ 1(mod 4), the DFTs of {sD0[n]} and {sD1[n]}
are given by [20]

SD0[n] =


p− 1
2

, n = 0,

−
(
1−
√
p
)
/2, n ∈ D(2)

0 ,

−
(
1+
√
p
)
/2, n ∈ D(2)

1 .

(27)

SD1[n] =


p− 1
2

, n = 0,

−
(
1+
√
p
)
/2, n ∈ D(2)

0 ,

−
(
1−
√
p
)
/2, n ∈ D(2)

1 .

(28)

With c2[n] defined in (23), we can express c2 = c21− c22.
In this expression, c21 = {c21[n]}

2p−1
n=0 , where c21[n] = 1
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when n ∈ S21, and c21[n] = 0 otherwise; and c22 =
{c22[n]}

2p−1
n=0 , where c22[n] = 1 when n ∈ S22, and c22[n] = 0

otherwise. Given that S2 consists of even numbers of Z+2p,
it is easy to show that c21 and c22 are the up-sampled of
sequences {sD1[n]} and {sD0[n]} by a factor of two, respec-
tively. Let C21 = {C21[n]}

2p−1
n=0 and C22 = {C22[n]}

2p−1
n=0

denote the DFTs of c21 and c22, respectively. Thus, we have
{C21[n]}

p−1
n=0 = {SD1[n]}

p−1
n=0 and {C22[n]}

p−1
n=0 = {SD0[n]}

p−1
n=0,

and C21[n+ p] = C21[n] and C22[n+ p] = C22[n] are true.
The results of (25) ∼ (28) can be used to derive the

DFTs of c2, denoted by C2 = {C2[n]}
2p−1
n=0 , where the first

p elements of {C2[n]}
p−1
n=0 are expressed below.

When p ≡ 3(mod 4),

C2[n] =


0, n = 0,

i
√
p, n ∈ D(2)

0 ,

−i
√
p, n ∈ D(2)

1 .

(29)

When p ≡ 1(mod 4),

C2[n] =


0, n = 0,

−
√
p, n ∈ D(2)

0 ,

+
√
p, n ∈ D(2)

1 .

(30)

The other p elements of {C2[n]}
2p−1
p can be obtained from

C2[n+ p] = C2[n].
By the definition of c1[n] shown in (22), we can express

c1 = c11 − c12, where nonzero entries of c11 and c12
are defined with respect to elements of set S11 and S12,
respectively.
Lemma 6: c11 = c21 ⊗ c3, c12 = c22 ⊗ c3.
Proof: From Lemma 3, when k is a quadratic residue

(mod 2p), then k + p is also a quadratic residue (mod 2p).
Since nonzero entries of c11 are defined with respect to
elements of set S11, where S11 consists of quadratic residue
(mod 2p), this derives c11 = c21 ⊗ c3 when S21 also con-
sists of quadratic residues (mod 2p). Based on the result of
c11 = c21 ⊗ c3, c12 should be equal to c22 ⊗ c3.

It is easy to show that the DFT of c3 is given by

C3 = [1 − 1 1 − 1 · · · 1 − 1].

By Lemma 6, we have

C1 = C2 ◦ C3,

Note that the value of {c2[n]} is assigned as ‘‘1′′ when n ∈ S21,
where S21 consists of quadratic residues (mod 2p), and the
value of {c2[n]} is ‘‘− 1′′ when n ∈ S22 where S22 consists of
quadratic nonresidues (mod 2p). This implies that sequence
c2, defined in (23), can be obtained from upsampling a Leg-
endre Sequence of period p by a factor of two, where the
Legendre symbol

(
n
p

)
is defined as in [23] and [30]

(
n
p

)
=


1, n is quadratic residue (mod p),
−1, n is quadratic nonresidue (mod p),
0, n ≡ 0(mod p).

(31)

The DFT of the Legendre Sequence is Gauss sum
{G[k]}p−1k=0 [23], which is defined as

G[k] =
p−1∑
n=0

(
n
p

)
e−i2πnk/p

=


(
k
p

)
√
p, p ≡ 1(mod 4),

−

(
k
p

)
i
√
p, p ≡ 3(mod 4).

(32)

The results shown in (32) are the same as those shown in (29)
and (30). Aside from C1[0] = C1[p] = C2[0] = C2[p] =
G[0] = 0, the remaining elements of Ci are magnitude flat.
Applying theseCi for PGIS construction can help avoid solv-
ing complex constrain equations to obtain the coefficients of
sequences, where two equivalent systems of three nonlinear
equations are shown in (11) and (21), respectively. In the case
of prime period p, Pei constructed a sequence {f [n]} defined
as [23]

f [n] =

a, n = 0,(
n
p

)
√
pc+ bi, n 6= 0.

(33)

The DFT of {f [n]} is a degree-3 PGIS, given that integers
b and c as well as Gaussian integer a meet the requirement
stated by |a|2 = b2+pc2.Here, we can adopt Pei’s algorithm
to construct the PGIS of period 2p, described in Theorem 5.
Theorem 5: Let d and r be two Gaussian integers, and g

and h be simple integers. Given that |d |2 = |r|2 = h2 + pg2,
the DFT of sequence

s = dδ2p + ηc11 − η∗c12 + η∗c21 − ηc22 + rc3

is a PGIS of period N = 2p, where η = g
√
p− hi.

Proof: Given that {|s[n]|} is magnitude flat, the DFT of
s is a perfect sequence. For s to be PGIS, all coefficients of
the DFT of s should be Gaussian integers. For both d · δ2p
and rc3 two terms, the coefficients of their DFTs belong to
{d, r,−r}.

Next, we should prove that both the coefficients of DFTs
of ηc11 − η∗c12 and η∗c21 − ηc22 are Gaussian integers. Let
{X2[n]}

2p−1
n=0 be the DFT of η∗c21 − ηc22.

When p ≡ 3(mod 4), based on the results shown
in (25) ∼ (28), the parts of {X2[n]}

p−1
n=0 are given by

X2[n] =


(p− 1)hi, n = 0,

−(h+ pg)i, n ∈ D(2)
0 ,

(pg− h)i, n ∈ D(2)
1 .

(34)

When p ≡ 1(mod 4), it becomes

X2[n] =


(p− 1)hi, n = 0,

pg− hi, n ∈ D(2)
0 ,

−pg− hi, n ∈ D(2)
1 .

(35)

The elements of X2[n] in both (34) and (35) are Gaussian
integers. In addition, we have X2[p + n] = X2[n], which
implies that the coefficients of the DFT of η∗c21 − ηc22
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are Gaussian integers. Due to the fact that C1 = C2 ◦ C3,
the derivation process to prove that the coefficients of the
DFT of ηc11 − η∗c12 are Gaussian integers is similar. Thus,
the explanation is omitted here for brevity.
Corollary 2: When p ≡ 1(mod 4), the DFT of s = dδ2p+

ηc11 − η∗c12 + η∗c21 − ηc22 + rc3 is given by

S[n] =


d + r, n ∈ {0}

⋃
∗ S2,

d − r + 2(pg− hi), n ∈ S11,
d − r − 2(pg+ hi), n ∈ S12,
d − r + 2(p− 1)hi, n ∈ Sp.

(36)

Sequence S = {S[n]} of (36) is a degree-4 PGIS.
Proof: Taking DFT upon s derives the results.

Corollary 3: When p ≡ 1(mod 4), the DFT of s = dδ2p+
ηc11 − η∗c12 − ηc21 + η∗c22 + rc3 is given by

S[n] =



d + r, n = 0,
d − r − 2hi, n ∈ S1,
d + r − 2pg, n ∈ S21,
d + r + 2pg, n ∈ S22,
d − r + 2(p− 1)hi, n ∈ Sp.

(37)

Sequence S = {S[n]} of (37) is a degree-5 PGIS.
Proof: Taking DFT upon s derives the results.

Example 2: When d = 2+5i, r = 5−2i, and g
√
p+hi =

2
√
5+ 3i, two PGISs of period N = 10 associated with (36)

and (37), are respectively given by

(7+ 3i, 17+ i, 7+ 3i,−23+ i, 7+ 3i,

− 3+ 31i, 7+ 3i,−23+ i, 7+ 3i, 17+ i), (38)

(7+ 3i,−3+ i, 27+ 3i,−3+ i,−13+ 3i,

− 3+ 31i,−13+ 3i,−3+ i, 27+ 3i,−3+ i). (39)
The degrees of PGISs in (38) and (39) are four and five,
respectively.
Corollary 4: When p ≡ 3(mod 4), the DFT of s = dδ2p+

ηc11 − η∗c12 + η∗c21 − ηc22 + rc3 is given by

S[n] =



d + r, n = 0,
d − r − 2hi, n ∈ S1,
d + r − 2pgi, n ∈ S21,
d + r + 2pgi, n ∈ S22,
d − r + 2(p− 1)hi, n ∈ Sp.

(40)

Sequence S = {S[n]} of (40) is a degree-5 PGIS.
Proof: Taking DFT upon s derives the results.

Corollary 5: When p ≡ 3(mod 4), the DFT of s = dδ2p+
ηc11 − η∗c12 − ηc21 + η∗c22 + rc3 is given by

S[n] =


d + r, n ∈ {0}

⋃
∗ S2,

d − r + 2(pg− h)i, n ∈ S11,
d − r − 2(pg+ h)i, n ∈ S12,
d − r + 2(p− 1)hi, n ∈ Sp.

(41)

Sequence S = {S[n]} of (41) is a degree-4 PGIS.
Proof: Taking DFT upon s derives the results.

We make conclusion that the DFT of s = dδ2p + ηc11 −
η∗c12 + η∗c21 − ηc22 + rc3 constructs a degree-5 PGIS
of period N = 2p only when p ≡ 1(mod 4), which is
represented in (37). When p ≡ 3(mod 4), we apply s =
dδ2p + ηc11 − η∗c12 + η∗c21 − ηc22 + rc3, and taking the
DFT operation upon s can obtain a degree-5 PGIS of period
N = 2p, which is given in (40).

VI. HIGHER DEGREE PGIS CONSTRUCTION
OF PERIOD N = QP
In the case of N = qp, where both p and q are odd primes,
because there is no primitive root, S1 = {n|gcd(n,N ) =
1, n ∈ Z×N } is a multiplicative group but not a cyclic
one. Moreover, there exists more than one subgroup of S1
with cardinality (q−1)(p−1)

2 , e.g., S1a = {1, 2, 4, 8}, S1b =
{1, 4, 7, 13} and S1c = {1, 4, 11, 14} are subgroups of S1 =
{1, 2, 4, 7, 8, 11, 13, 14} with respect to Z+15. Among the
three different partitioning of S1 based on S1a, S1b and S1a,
respectively, only the partition S1 = S1a

⋃
∗ S12, where S12 =

{7, 11, 13, 14}, can construct base sequences, defined in (22),
(44) and (45), which possesses the desired magnitude flat
property over nonzero elements of their DFTs. The reason
is that the elements of set S1a are either quadratic residues
(mod 15) or the value of associative Jacobi symbol is ‘‘1’’,
analyzed in the sequel. This relies on introducing Jacobi
symbol as a tool to find the proper partitioning of S1 and
to construct PGISs with higher degrees. The Jacobi symbol,
defined as follows, generalizes the Legendre symbol with
respect to quadratic congruence of odd composite modulo.

Definition 1 [29]: Letm =
∏r

n=1 pn where the pn are odd

primes. Let
(
a
pn

)
be Legendre symbol for each n such that

1 ≤ n ≤ r, where gcd(a,m) = 1. Then
( a
m

)
=
∏r

n=1

(
a
pn

)
is called a Jacobi symbol.
Theorem 6: There are (p−1)(q−1)

4 +
(p−1)
2 +

(q−1)
2 quadratic

residues (mod qp).
Proof: 1) The congruence x2 ≡ k(mod qp) is equivalent

to the system of simultaneous congruences{
x2 ≡ k(mod q),
x2 ≡ k(mod p).

(42)

By the Chinese Remainder Theorem [29], the system of
simultaneous linear congruences{

x ≡ a1(mod q),
x ≡ a2(mod p).

(43)

has a unique solution (mod qp) for each set of parameters a1
and a2, that is, x = px1a1 + qx2a2 where px1 ≡ 1(mod q)
and qx2 ≡ 1(mod p).
2) There exist (q−1)

2 and (p−1)
2 quadratic residues (mod q)

and (mod p), respectively. Let Sqr and Spr be the respective
sets of these two quadratic residues. The number of linear
combination x = px1a1 + qx2a2 for each set of parameters
a1 and a2 over {(a1, a2)|(a1, a2) ∈ Sqr × Spr } is

(q−1)
2 ·

(p−1)
2 .
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These are the parts of quadratic residues (mod qp) that belong
to S1.

3) The number of linear combination x = px1a1 +
qx2a2 over {(a1, a2)|(a1, a2) ∈ Sqr × {0}} is

(q−1)
2 . These

are the parts of quadratic residues (mod qp) that belong
to Sq.

4) Finally, the number of linear combination x = px1a1 +
qx2a2 over {(a1, a2)|(a1, a2) ∈ {0} × Spr } is

(p−1)
2 . These are

the parts of quadratic residues (mod qp) that belong to Sp.
Above all, there are (p−1)(q−1)

4 +
(p−1)
2 +

(q−1)
2 quadratic

residues (mod qp).
Lemma 7: There are (q−1)(p−1)

2 Jacobi symbols
(
a
qp

)
= 1

and equal number of such Jacobi symbols
(
a
qp

)
= −1.

Proof: The proof is omitted for brevity.
S1 can be partitioned into the disjoint union of S11 =
{a|
(
a
qp

)
= 1, a ∈ S1} and S12 = {a|

(
a
qp

)
= −1, a ∈ S1}

two subsets. Sq can be partitioned into Sq = Sq1
⋃
∗ Sq2,

where Sq1 and Sq2 consist of quadratic residues and quadratic
nonresidues (mod qp), respectively, belonging to Sq. Simi-
larly, Sp = Sp1

⋃
∗ Sp2, where Sp1 and Sp2 consist of quadratic

residues and quadratic nonresidues (mod qp), respectively,
belonging to Sp. With these partitions of S1, Sq and Sp,
the base sequence c1, which is defines in (23), is still applied.
However, the period of this base sequence becomes N = qp.
Here, c2 and c3 are redefined as

c2[n] =


1, n ∈ Sq1,
−1, n ∈ Sq2,
0, otherwise.

(44)

c3[n] =


1, n ∈ Sp1,
−1, n ∈ Sp2,
0, otherwise.

(45)

Similar to the N = 2p case, the base sequence c2, can be
obtained from upsampling a Legendre Sequence [23], [30]
of prime period p by a factor of q, when the period of
base sequence c2 becomes N = qp. To the base sequence
c3, defined in (45), it can be obtained from upsampling a
Legendre Sequence of period q by a factor of p.
Lemma 8: c11 = c21⊗ c31+ c22⊗ c32, c12 = c21⊗ c32+

c22 ⊗ c31, and c1 = c11 − c12.
Proof: 1) To prove c11 = c21⊗c31+c22⊗c32, the num-

ber of nonzero elements of sequence c11 is
(p−1)(q−1)

2 , where
the associative entries of these elements are assigned with
respect to the elements of set S1, in which the value of Jacobi
symbols is

(
n
qp

)
= 1. When both elements of Sp1 and Sq1 are

quadratic residues (mod qp), the (p−1)(q−1)
4 nonzero elements

of c21 ⊗ c31 contribute half parts of (p−1)(q−1)
2 nonzero ele-

ments of sequence c11 where the associative Jacobi symbols
are with

(
n
qp

)
=

(
n
q

) (
n
p

)
= 1 · 1 = 1. Meanwhile, when

both Sp2 and Sq2 consist of quadratic nonresidues (mod qp),
the (p−1)(q−1)

4 nonzero elements of c22 ⊗ c32 contribute the
parts of other half nonzero elements of sequence c11 where

the associative Jacobi symbols are with
(
n
qp

)
=

(
n
q

) (
n
p

)
=

(−1) · (−1) = 1.
2) On the other hand, the entries of nonzero elements of

c12 are assigned based on the elements of set S1 where the
associative value of Jacobi symbols is

(
n
qp

)
= −1. This

means that the (p−1)(q−1)
4 nonzero elements of c21⊗ c32 con-

tribute half parts of (p−1)(q−1)
2 nonzero elements of sequence

c12 where the associative Jacobi symbols are with
(
n
qp

)
=(

n
q

) (
n
p

)
= (−1)·1 = −1. The remaining half of the nonzero

elements of c12 can be obtained from c22⊗c31 using a similar
procedure as that described above.

3) Finally, by the definition of c1[n] shown in (22), we can
express c1 = c11 − c12.

Let {F[k]}q−1k=0 be the DFT of Legendre Sequence of
period q, which is also the Gauss sum defined as

F[k] =


(
k
q

)
√
q, q ≡ 1(mod 4),

−

(
k
q

)
i
√
q, q ≡ 3(mod 4).

(46)

The DFTs of ci, denoted by Ci = {Ci[n]}
qp−1
n=0 , i = 2, 3,

where {C2[n]}
p−1
n=0 = {G[n]}

p−1
n=0 and C2[kp + n] = C2[n],

k = 1, . . . , q−1, {C3[n]}
p−1
n=0 = {F[n]}

q−1
n=0 and C3[kp+n] =

C3[n], k = 1, . . . , p− 1, are expressed as:

C2 = [G[0] G[1] · · ·G[p− 1]︸ ︷︷ ︸
1st pattern

· · ·G[0] G[1] · · ·G[p− 1]︸ ︷︷ ︸
qth pattern

],

C3 = [F[0] F[1] · · ·F[q− 1]︸ ︷︷ ︸
1st pattern

· · ·F[0] F[1] · · ·F[q− 1]︸ ︷︷ ︸
pth pattern

].

We can use C2 and C3 to derive C1 described in Lemma 9.
Lemma 9: c1 = c2 ⊗ c3, and the associative DFT is

C1 = C2 ◦ C3.
Proof: Lemma 9 can be proven by the results of

Lemma 8.
Aside from C2[n] = G[0] = 0, n = kp, k = 0,

1, . . . , (q − 1), C3[n] = F[0] = 0, n = lq, l =
0, 1, . . . , (p−1), and C1[n] = 0, n ∈ {kp|k = 0, 1, . . . , (q−
1)} ∪ {lq|l = 0, 1, . . . , (p − 1)}, the nonzero elements of
three Ci have the magnitude flat property, which is expressed
as |C2[n]| = |G[n]| =

√
p, |C3[n]| = |F[n]| =

√
q and

|C1[n]| = |G[n]F[n]| =
√
qp. We can adopt these desired

properties to construct the PGIS of period N = qp according
to Theorem 7, the algorithm of which is similar to that of the
N = 2p case addressed in Section V.
Theorem 7: Let a be Gaussian integer, and b, k, d, f , g,

and h be simple integers. Given that |a|2 = b2 + (qp)k2 =
d2 + pf 2 = g2 + qh2, the DFT of sequence

s = aδN + ηc11 − η∗c12 + υc21 − υ∗c22 + ξc31 − ξ∗c32

is a PGIS of period N = qp, where η = bi + k
√
qp, υ =

di+ f
√
p, and ξ = gi+ h

√
q.

Proof: Based on Lemma 8 and 9, the proof of Theorem 7
is similar to that of Theorem 5, where the coefficients of the
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DFTs of a · δN , ηc11−η∗c12, υc21−υ∗c22, and ξc31− ξ∗c32
four vectors are all Gaussian integers. The detailed explana-
tions are omitted here for brevity.
Example 3: Let a = 6 + i, bi + k

√
qp = 4i +

√
21,

di + f
√
p = 3i + 2

√
7, and gi + h

√
q = 5i + 2

√
3, which

|a|2 = b2 + (qp)k2 = d2 + pf 2 = g2 + qh2 = 37 is held,
a degree-9 PGIS of period 21 is given by

s = (a0, a1, a2, a3, a1, a4, a3, a5, a2, a6, a7, a2,

a3, a7, a8, a6, a1, a4, a6, a7, a4), (47)

where a0 = 6 + 77i, a1 = 27 − 23i, a2 = −15 − 11i,
a3 = 6 + 14i, a4 = 27 + 17i, a5 = 6 − 16i, a6 = 6 − 14i,
a7 = −15+ 5i, and a8 = 6− 4i.

VII. CONCLUSIONS
This paper addresses the construction of PGISs of period
N = qp, where q and p are distinct primes. Based on the par-
titioning of a ring ZN into four subsets, four base sequences
can be defined to construct degree-4 PGISs from either the
time or frequency domain. Both approaches are challenged by
the solution of two equivalent systems of three nonlinear con-
straint equations with eight variables. To address this prob-
lem, we present three methods that can be used to decompose
the three nonlinear constraint equations and form three sys-
tems of four linear equations with four variables. Here each
individual system derives a unique set of integer solutions.
The proposed scheme is significant because it simplifies the
construction of degree-4 PGISs. To construct PGISs with
degrees larger than four, the study of period N = 2p PGISs
can be considered by up-sampling the Legendre sequences of
period p by a factor of two, followed by adjusting associative
coefficients tomeet the flat-spectrum property.WhenN = qp
is odd, we introduce Jacobi symbols as a tool to partition
ring ZN further into seven subsets and apply an algorithm
similar to that in the N = 2p case to construct PGISs with
more diverse degrees. Finally, the properties and many theo-
rems related to the construction of PGISs and partitioning of
ring ZN are derived in this paper.

NOTATION AND SYMBOLS
Z×N {1, 2, . . . ,N − 1}
ZN = {0} ∪ Z×N
s = {s[n]}N−1n=0 PGIS
S DFT of s
Rs PACF of s
ci = {ci[n]}

N−1
n=0 base sequence

Ci DFT of ci
ak + bk i a Gaussian integer, i =

√
−1

Si a subset of Z×N
Ai coefficient matrix
G[k] Gauss sum defined in (32)
F[k] Gauss sum defined in (46)(
n
p

)
Legendre or Jacobi symbol⋃

∗ disjoint union
⊗ circular convolution
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