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ABSTRACT Because of the vast availability of data, there has been an additional focus on the health
industry and an increasing number of studies that aim to leverage the data to improve healthcare have been
conducted. The health data are growing increasingly large, more complex, and its sources have increased
tremendously to include computerized physician order entry, electronic medical records, clinical notes,
medical images, cyber-physical systems, medical Internet of Things, genomic data, and clinical decision
support systems. New types of data from sources like social network services and genomic data are used to
build personalized healthcare systems, hence health data are obtained in various forms, from varied sources,
contexts, technologies, and their nature can impede a proper analysis. Any analytical researchmust overcome
these obstacles to mine data and produce meaningful insights to save lives. In this paper, we investigate the
key challenges, data sources, techniques, technologies, as well as future directions in the field of big data
analytics in healthcare. We provide a do-it-yourself review that delivers a holistic, simplified, and easily
understandable view of various technologies that are used to develop an integrated health analytic application.

INDEX TERMS Big data, cyber-physical systems, health analytics, machine learning, social networks
analysis.

I. INTRODUCTION
Key attributes of volume, velocity, and variety [1], [5] make
big data a favorite among the latest innovations. It is estimated
that the sheer volume of health data is expected to skyrocket
to approximately 25,000 Pb by 2020 [2]. Healthcare is a
data-intensive field; hence the data cannot be handled by
traditional electronic medical records (EMR)-based software.
Moreover, health data has become very ubiquitous because of
improvements to recording systems in healthcare, the partici-
pation of patients in their treatment using social networks [3],
as well as the introduction of cyber-physical systems (CPS) in
health care [4], [6], [7]. Hence, the field of big data and com-
putational intelligence promises a bright prospect in building
state-of-the-art health systems.

As sources of big data are ubiquitous in nature it is hard to
predict how the future might look like because sources of data
will continue to increase exponentially. Hence, existing hos-
pital informatics systems will not be adequate for performing
data analysis. Currently, big data which is being used in the
healthcare sector come in prevalent forms and swiftly emerge
from divergent platforms. As there is an urgency to take
prompt action in case of a medical emergency, the analytics

systemmust be able to aggregate all data and provide insights
to the physician in real-time.

A. MOTIVATION FOR THIS SURVEY
Heretofore, health data sources were limited to classical
testing equipment and techniques such as Electrocardiogram
(ECG) mammography, Magnetic Resonance Imaging (MRI),
ultrasound, CT scanners, and many other testing equipment.
The physician must perform all the analytical tasks manually,
and while legacy software systems were used to perform
tasks such as patient logging, billing, transfer, admission, and
assets management, diagnostic tasks were usually performed
by abductive reasoning. However, with the advent of ubiq-
uitous cyber-physical systems in the industry, the physician
now needs to handle a huge amount of data manually. Hence
now, more than ever, computational intelligence will have to
play an active role. It is now very arduous to fully leverage
and effectively aggregate all health data in a unified man-
ner owing to its varied nature and description. Furthermore,
the interpretation of health data and the process of deriving
inferences from it require additional analytic solutions for
a specific dataset. For example, to retrieve meaning from

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

65661

https://orcid.org/0000-0002-3911-5935
https://orcid.org/0000-0001-8373-1893


G. Harerimana et al.: Health Big Data Analytics: A Technology Survey

EMR entries, such as doctors’ notes, another solution that can
analyze the SNOMED-CT database (which is a nomenclature
database) is required. As these two databases are different, a
fit-all analytic solution that can handle these datasets (which
diverge in terms of data types, speeds, naming standards)
cannot be determined.

Without the assistance of an integrated healthcare solution,
physicians might use the traditional EMR or they might use
it to a varying degree depending on how conversant the
user is [8], [10]. To consolidate data from EMR, additional
data sources that are in use today need special analytics
that should be integrated with EMR analytics. For example,
to retrieve a meaningful insight from the patient’s social
network or that of patients with similar cases, we must

integrate Social Networks Analysis (SNA) with EMR-based
analytics and other cyber-physical systems.

In recent years, several studies [138], [139] have attempted
to integrate some of the sources of health data to develop
integrated solutions. Specialized health solutions such as
COHESY [11], CARE (Collaborative Assessment Recom-
mendation Engine) [140], which relies only on medical
record data, and AEGLE [12], have attempted to integrate
health analytics at a certain degree; however, they have not
been able to cater to each aspect of healthcare data.

This survey serves as a guide to accommodate all or most
of the critical data sources and produce an integrated ana-
lytic solution that can save lives and prevent unnecessary
spending on health care. Fig.1 shows a blueprint of how

FIGURE 1. Conceptual overview of health big data analytics technologies. Spark is used as an example of a big data platform.
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integrated healthcare analytics would appear. Health data
comes from both structured data sources such as EMR [9]
and insurance providers’ databases as well as unstructured
forms such as doctors’ notes, prescriptions, IoT devices (such
as wearables), medical sensors, electronic monitors, mobile
applications, social media, and research registries.

While straightforward algorithms such as decision
trees or k-means can solve forthright tasks such as deciding
if a given patient should be hospitalized or not, certain tasks
like those involving the application of MRI scans for differ-
entiating a cancerous tumor from a benign one can require
sophisticated algorithms such as Convolutional Neural Net-
works (CNNs). Hence, the choice of a technique for a given
health instance requires a thorough analysis. In this review,
we provide options to choose from, depending on the health
predicament.

To scale up, the health analytic solution must rely on a big
data platform or any other parallel computing hardware. The
choice of the platform depends on the data. While some static
data such as EMR records can be handled effectively by batch
computing platforms such as Hadoop MapReduce, some
other real-time data that are critical for the patient’s survival
such as real-time ECG readings or social network analysis
will require stream computing platforms such as Apache
Spark or Apache Flink. The platformmust also accommodate
support libraries such as machine learning libraries and graph
libraries for relationship analysis.

B. ORGANIZATION OF THE PAPER
This paper is organized as follows: In section II we discuss
the related healthcare analytics surveys. We analyze their
key aspects and we cover their limitations as well as the
added value of the current study. In section III we discuss key
challenges that a healthcare analytics solution must address.
In section IVwe discuss key sources of healthcare data. In this
section, we investigate sources that are usually not considered
while building health informatics like social networks data
and mIoT data sources. In section V we thoroughly cover
the data mining techniques that are used in health analytics.
We first provide a brief overview of some algorithms by
recalling their general uses and then looking into how they
can be tailored for health analytics. We provide an overall
summary of disparate analytic techniques as well as selected
use cases in health analytics.

In section VI we deeply analyze diverse Big data platforms
that can be used as foundations upon which an inclusive
analytic solution can be built. As in section V we choose
some of the most popular platforms and discuss how they are
generally used and their specific uses in health analytics then
finally we provide an elaborate summary of trendy platforms.

II. RELATED WORK
The field of health analytics and big data has recently gained
a big deal of attention. Table 1 summarizes the key related
reviews. On each review, we describe its contribution and the
topic covered.

At the end of the table, we provide a hasty comparison of
our work with these others that are covered. Among all the
papers in Table 1 none that instills a do-it-yourself motive
by covering all the key problems from the data sources to
insightful visualizations.

III. HEALTH BIG DATA ANALYTICS CHALLENGES
The goals of designing an integrated health analytics span
a whole patient’s ecosystem. The system should not only
be able to help to the provision of a successful and timely
care by recommending a practical diagnosis which worked
well against similar cases but also is able to predict possible
medical aggravations that might occur. This includes using
the Complex Events Processing (CEP) for the determination
of a disease progression which can help to stop it at earlier
stages of development. Kuo et al. [16] consider the big data
challenges per stages of big data pipeline, considering four
distinct stages here each stage has its own challenges to over-
come. The following challenges at each stage are considered:

A. DATA AGGREGATION
Health big data comes from various sources and sometimes
these sources might be large repositories of data which have
to be brought into a common platform for a unified anal-
ysis. The aggregation challenge is related to high volume
and variety of data that needs to be brought together from
divergent data warehouses and real-time data. The solution
can be the use of high-speed file transfer technologies. From
Fig.1 we can observe that the warehouses that host human
genomes are completely different from another that hosts the
SNOMED-CT nomenclature data. Some studies have been
performed to deal with this aggregation hustle. One example
is the use of EasyGenomics (BGI) a technology that is used
by the Beijing Genomic Institute to transfer large genomic
data. Another solution that is presented to deal with data
aggregation challenge is data compression. Cox et al. [17]
proposed a solution that is based on the Burrows-Wheeler
Transform (BWT) to compress many DNA sequences. The
BWT is a string compression algorithm that compresses the
data by grouping similar characters in a series of strings.

B. DATA MAINTAINANCE/STORAGE
Data storage is a key challenge for health big data. The data is
ever growing at an exponential rate hence cannot be managed
with traditional database management systems. To solve this
problemNon-SQL database systems likeMongoDB, Cassan-
dra andHadoopDistributed File System (HDFS)are proposed
but cloud computing [18], [137] is argued to be a powerful
solution as it can reduce the initial EMR costs.

C. DATA INTEGRATION AND INTEROPERABILITY
The health big data are hugely heterogeneous. They come
from many sources with divergent forms and structure hence
making interoperability a big challenge. Even the EMRwhich
is the most structured of all data source can present a chal-
lenge, especially when more than one EMRs are involved.
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TABLE 1. Related papers compared with the current paper.

In Fig.2, Kuo et al. [19] consider interoperability hustles into
3 types; Functional interoperability, metadata interoperabil-
ity, and data instance interoperability.

Functional interoperability is sensed when two EMRs
exchange data while having different naming stan-
dards or interpretation. Metadata interoperability can be
observed in a relational database whereby a column name
which is the metadata of column content has a different
naming. As an example, ‘‘GENDER’’ and ‘‘SEX’’ can be
used in two EMRs and have the same logical meaning hence
it can result in metadata interoperability challenge. Data
instance interoperability is when acronyms and other codes
do not have the same meaning. For example, a gender might
be ‘‘M’’ and ‘‘F’’ in one EMR and ‘‘1’’ and ‘‘0’’ in another
EMR.

HL7 (Health level7) is a set of standards that are used to
help different EMR to communicate smoothly. It is com-
posed of a set of rules that developers of Hospital Infor-
mation Systems (HIS) must follow to achieve standardiza-
tion. With HL7 also medical equipment can share infor-
mation. However, for a long time, the HL7 adoption has
been so lagging and some studies like in [21] and [22]
have found this standard to be flawed. Various studies have
considered reusing available standards to better deal with
interoperability. Lopez and Blobel [20] proposed a semantic
interoperability model which consists of trying to implement
an existing HL7 standard as a UML profile then apply-
ing the profile to system models. Crichton et al. [23] and
Mudaly et al. [24] have considered interoperability problems
in the context of low-income countries.
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FIGURE 2. Health big data interoperability (source [19]).

D. DATA ANALYSIS
Depending on the complexity of a health problem the tradi-
tional SQL based querying time increases exponentially as
the number of records increases. The hardware and software
needed to analyze data need to be so robust and expensive to
get a meaning from the huge dataset. In terms of hardware
Supercomputers and cloud computing are the most widely
used. The aim of analyzing health data is to apply a predictive
model to predict probable occurrences and complications.
MapReduce programming model and its Hadoop implemen-
tation provide robust analytical tools to do the analysis.

IV. HEALTH BIG DATA SOURCES
Health big data sources are so innumerable and diverse. The
sources depend on the level of technology that a health entity
uses. Cyber-Physical systems, medical Internet of Things
(mIoT), social networks, Electronic Medical Records, and
genomic data are the big contributors to health data and are
covered in this study.

A. ELECTRONIC MEDICAL RECORDS (EMR)
The primary source for any health analytic solution is the
EMR also known as EHR. This is a hospital-based sys-
tem that combines all the entries that are logged by health
practitioners. To obtain an effective health analytic solution,
it is paramount that the other sources of data be able to
synchronizewith the EMR. The EMR is a collection of entries
that include doctor notes, diagnosis history, pharmacy data,
and the insurance company’s data. This aggregation of actors
makes its design so complex that its adoption is sometimes
hindered.

The challenges faced in designing a proper EMR start at the
stage of data entry by the physicians. The traditional method
for data entry which is straightforward for practitioners is

using an easy to use Word document and a spreadsheet.
however, this method exhibit difficulties in providing a mean-
ingful insight through an appropriate analytic algorithm. The
analytic solution should be able to process unstructured data
while the EMR contains mainly structured data hence it is
necessary to transform these unstructured entries.

Yang [38] proposed an XML-based scheme that consists of
facilitating both the physicians as well as analytical solution
designers. The solution consists of using an XML schema to
process entries that were recorded in the usual word processor
or spreadsheet fashion and transform it into XML data to be
processed as structured data inside the EMR.

Another challenge with the EMR is the interoperability.
A patient is treated at different hospitals, which may leave his
health data scattered across various EMRs. Interoperability
problems between hospitals still pose a big barrier for systems
integration. This hindrance is a big obstacle to healthcare as
with the absence of prior treatments and the tests, patients
undergo different and repeated treatments for the same ill-
ness. There are two big questions to consider. The first is
the access infrastructure, which is mostly standalone for each
hospital and the second is the complexity of the integration
of health systems in the context of a country or any other
geographical entity.

To solve the access challenge, Wan and Sankaranarayanan
[39] proposed a cloud-based EMR that can help all stakehold-
ers to access the EMR by making use of three cloud comput-
ing components: Software as a service (SaaS), platform as
a service (PaaS), and infrastructure as a service (IaaS). The
system allows mobile access for all stakeholders. Addition-
ally, another big challenge to consider is confidentiality as not
many hospitals permit their records to be accessed by others.

To solve the compatibility problems, various studies have
been conducted and one of the most trusted technologies
is Blockchain [169]. The Blockchain technology solves the
challenge of personalization and ubiquitous access to records
which are the two traits that are required in the healthcare
industry. Blockchain ensures data integrity by allowing an
immutable way to update records and prevents the tampering
with them once they have been logged. Each entry is saved in
a block and the content of each block is hashed to constitute
the content of the next record.

As depicted in Fig.3, to solve the mistrust between health
providers, Azaria et al. [40] proposed MedRec a solution
that decentralizes the EMR access using Ethereum smart
contracts. The smart contract will not only help the patient but
can also help other stakeholders. A use case would be to help
insurance companies to verify if certain medical treatments
like surgeries have occurred before paying for the services.

B. MEDICAL INTERNET OF THINGS(mIoT) AND
CYBER-PHYSICAL SYSTEMS (CPA) DATA
With the pervasiveness of wireless sensors, the health indus-
try has revolutionized a lot.With the advances in wireless sen-
sor networks, mobile health and patient remotemonitors from
home, a huge amount of data is now generated in real time.
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FIGURE 3. Steps for a health provider adding patient records on an
Ethereum blockchain (source [40]) .

For a long time, EMR was believed to be the sole provider of
patient-related information. However, with the introduction
of real-time health systems (RTHS), the EMR is just a part of
the overall health IT ecosystem. Dimitrov [25] has proposed
a conceptual structure of an RTHS system that includes mIoT
devices. Patient-basedwearables, such as bio-shirts, and body
implants (smart capsules) feed data into the EMR, which
contains clinical data of the patient. A health analytic solution
can then help a physician to treat an emergency or obtain an
insight regarding an impending one. Various wearables that
perform certain tasks like fall detection, position detection,
glucose level monitoring, location tracking, have been devel-
oped. To integrate various sensors with different standards,
customizedmiddlewaremust be developed. Lu and Chen [27]
proposed a middleware design for Tele-homecare applica-
tions. It consists of two layers, a device management layer as
well as the data management layer. This Middleware which
is an interface between vital signs sensors and tele-homecare
applications receives vital signs data from the sensors and
channels them up to the tele-homecare applications. Various
other studies such as those in [26], [28], and [29] have focused
on hardships to consider when designing a middleware for
various remote sensing devices in healthcare. Medical IoT
devices are used to monitor the physiological vital signs of
inpatients as well as outpatients with temporary or chronic
diseases. The main categories of vital signs these devices
measure are the respiratory rate (RR), body temperature (BT),
blood pressure (BP), oxygen saturation (SO2), blood glucose
(BG), heart rate (HR), and so on. Table 2 summarizes the IoT
sensors that are used in healthcare as well as their properties.

The advances in mIoT permit a remote diagnosis for
patients who cannot arrive at hospitals. They also help to
supervise the patients who are incapacitated and monitor
them from the comfort of their home beds. This pervasiveness

TABLE 2. Summary of medical IoT devices.

also can permit self-treatments especially in the earlier devel-
opment of sicknesses. However, such easy availability would
require appropriate solutions that can integrate IoT data with
the EMR data once the patient is hospitalized and clinical
tests are conducted.

C. SOCIAL NETWORK DATA
Traditionally, it is assumed that the physicians and their
measuring equipment are the only sources of a patient’s data.
With the advent of behavioral informatics and their applica-
tions to personalized healthcare systems, it is now possible
for the patients to be collaborators in their treatments. For
example, consider a teen who visits his hospital for treatment
and the physician performs various measurements such as
ECG or MRI and feeds the readings into EMR to perform the
diagnosis. But suddenly he checks the teen’s Facebook page
and finds out that the subject posted a suicide message last
night. Treating the patient by omitting this critical informa-
tion would be inappropriate. Using his own intuition without
being able to incorporate the information with other readings
would also not be elaborate enough. Hence, there is a need for
the health analytic solution to accommodate the EMR data
with information on social networks to perform a complete
diagnosis.

In their study regarding human social influence,
Zheng et al. [120] found out that social contagion alters
behaviors such as the decision to go for treatment or adoption
and compliance with medical prescriptions. They also con-
cluded that social influence is apparently channeled through
interactions with friends rather than in a professional context.
This explains that a patient might not disclose fully his
situation to a physician rather he can opt to convey his feelings
to his close friends on social networks.
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Social Networks Analysis(SNA) [121]–[123] uses net-
works and graph techniques to mine social network content.
Social network data can be used as a social health support
tool in a community for purposes such as raising local health
awareness or crisis communication. Social media data can be
integrated into clinical decision support systems and be a con-
stituent of the diagnosis decision [124]. To obtain a unified
analytics solution, it is necessary for the SNA to be integrated
with other analytical tools. However, there can be possible
resistance within the health institutions as data from social
networks, such as self-reporting, are not sufficiently fine-
grained to be incorporatedwith other standards that are tested.
Thus, a hierarchically integrated EMR with a patient portal
that contains fine-grained or censored social media data that
allows a patient to collaborate with peers is necessary.

D. GENOMIC DATA
The human genome is a chain of all genes that make up
a human cell. The genes are made of DNA. The Human
Genome Project (HGP) performed a full sequencing of the
human genome to determine patterns that might be sources
of some diseases [125]. Though this process is expensive,
complex, and took more than 10 years to complete, a full
sequencing of the human genome is a novelty and can save
lives. A sequence of DNAproteins (ATCG) in the individual’s
genome can decide all the human traits like the color of eyes,
skin color, vulnerability to a certain disease etc. Hence, if we
apply analytical techniques such as machine learning to a
human genome, we can obtain significant information and
insights about the subject’s health condition. We can study
how certain drugs work and know specifically they work on
an individual. Genomic data is a backbone to the personalized
healthcare [127] whereby specific treatments for a patient can
be considered.

As it is for other sources of health data, an analytical solu-
tion must fully integrate the genomic data with data obtained
from other sources to provide an effective diagnosis. To do so,
the system must integrate molecular pathology with clinical
pathology. Even with these recent developments in genome
sequencing, designing and implementing a genome-enabled
electronic medical recording system is challenging [128].

The big challenge is taxonomy and vocabularies
necessary to transform genomic sequences into clinically
meaningful descriptions that can support existing diagnoses
that are deduced from EMR data. While clinical pathology
uses a standard naming system, such as the SNOMED-CT,
molecular pathology still falls short of a concrete standard-
ization. Several recent studies have attempted to address
this drawback. Hoffman et al. [127] proposed the clini-
cal Bioinformatics Ontology (CBO), which is a semantic
resource that can describe clinically meaningful genomics
concepts.

Green et al. [129] concluded that owing to the lack of
a standardized matching between phenotypes and genomic
data, concrete integration and utilization of genomes for
diagnosis will not be achieved until the year 2020. One of

the successful studies was the eMERGE (Electronic Medical
Records andGenomics) [130]. This study involved Phenome-
Wide Association Studies [131], which is a process of using
EMR and analyzing various phenotypes with reference to one
genetic variant.

V. DATA MINING TECHNICS
Machine learning techniques are vital for predicting disease
occurrences or their complications. Though all machine
learning algorithms and practices can be applied to health-
care problems, each illness and its complications are best
described by a single algorithm or a combination of some
of them. Hence, it is necessary to inspect the algorithms
closely and apply them where they are appropriate. The
following algorithms are widely used in health informatics.
we briefly described them as well as their specific use in
diseases diagnosis.

A. K NEAREST NEIGHBOR ALGORITHM
K-nearest neighbor (KNN) [166] is among the simplest and
most classical machine learning techniques used. Its use can
be described as ‘‘Tell me your close friends and I will tell you
who you are’’.

In building healthcare analytics, this algorithm is effective
in classifying a disease bymatching it with the already known
cases and the resulted complications.

In healthcare, to determine if intestinal cells are cancerous,
we need to classify intestinal cells in five possible classes
of tumor cells: adenocarcinoma, sarcoma, carcinoid tumor,
gastrointestinal tumor, and lymphoma. To classify cells under
test, we can use Principal Components Analysis, a statistical
feature that has more variance on data, and plots the known
cell classes.

In the example shown in Fig.4, we associate the undeter-
mined cell T with one of the classes of our training data.
After testing, and assuming the cells as per their principal

FIGURE 4. K Nearest neighbor algorithm.
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components P1 and P2, we would like to find several k cells
for which the sum of the distances to T is minimum (nearest
neighbors of T). After calculating the sum, we conclude that
the cells under inquiry are classified as Adenocarcinoma cell
types. The value of k must be selected appropriately to avoid
overfitting.

Shouman et al. [41] have proposed a method to use this
algorithm to diagnose a heart condition. During their study,
due to its complicity and its convergence, KNN has outper-
formed other classification techniques.

B. SUPPORT VECTOR MACHINES (SVM)
SVM [167] is an effective classifications algorithm that is
used to classify data. As depicted in Fig. 5, the SVM splits
data using a hyperplane, which is a plane that separates the
nearest points that are known as support vectors. Choosing
the hyperplane is a constrained optimization problem as we
must optimally choose the margin between classes that is
wide enough.

FIGURE 5. A two-dimensional SVM model.

A hyperplane is a plane that is chosen to divide the classes,
and sometimes, the data cannot be separated linearly. If such
problems arise we can combine the SVM with additional
kernel techniques like Radial Basis Functions. Though SVM
is an old machine learning technique, recent studies have
resulted in robust classification capabilities.

Brown et al. [47] introduced a method to classify genes
using gene expression data by applying SVM techniques.
Furthermore, Guyon et al. [48] have used SVM based on
Recursive Feature Elimination (RFE) and performed gene
selection for cancer classification. The aim of the experi-
ment was to determine if certain genes are active, silent, or
hyperactive.

Khedher et al. [49] have proposed a method for early diag-
nosis of Alzheimer’s disease using SVMs on segmented MRI
images. In this study, they used Principal Component Analy-
sis to perform feature selection using an ADNI (Alzheimer’s
Disease Neuroimaging Initiative) dataset and SVM to

determine if a certain patient is suffering from cognitive
problems of old age or is developing the Alzheimer’s disease.

C. NEURAL NETWORKS
Neural networks [168] are algorithms that perform exception-
ally well in grasping insights from unstructured data. Health
analytics require algorithms that can receive inputs from
disparate sources and extract a meaning. Medical unstruc-
tured data comprise doctors’ notes, radiology scans, MRI
images, microscopy, CT scans, ultrasound images, and so on.
Interpreting these data using neural networks is an excellent
technique.

Neural networks are a series of neuron-like layers of com-
putation that apply a chain of computing algorithms to the
input data computation cell to produce outputs. Fig.6 depicts
a basic structure of a neural network. A Convolutional Neural
Network(CNN) is comprised of many layers that are capable
of transforming inputs by applying convolutional filters to
produce a clear output.

FIGURE 6. Basic structure of a neural network.

Neural networks are currently used for medical imaging,
such as brain lesions analysis, fetal imaging, and cardiac
analysis. To understand neural networks in the context of
healthcare, consider its application in treating or predicting
if a given breast tumor is malignant or benign. In this use
case, inputs features can be various values of the most critical
biopsies for the breast cancer which can be obtained by
medical imaging. From the Breast Cancer Wisconsin Data
Set [42], the breast cancer biopsies that can be inputs of
neural networks are clump thickness, cell size, cell Shape,
Marg adhesion cell size, bare nuclei, bland chromatin, normal
nuclei, and mitosis. The practitioner can input values of these
biopsies and the neural network is able to conclude if the
tumors are benign or malignant.

Currently, another key application of neural networks is
the analysis of brain lesions. Kamnitsas et al. [43] were able
to use 3D CNNs to analyze MRI brain scans. The process
involved capturing each brain 3D voxel, obtained from a 3D
scan and applying it to a network of convolutional layers and
classification layers that produce a clear inference. Another
key area of the neural network application is matching med-
ical text reports with medical images, which is critical as we
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can interpret one using another. Kooi et al. [44] compared the
traditional CAD-based mammography system, which relies
on manual features, and a CNN-based mammogram.

Another interesting application of neural networks and
brain activity scans is the prediction of survivability using
MRI images. In Fig.7, van der Burgh et al. [45] combined
MRI images with clinical data obtained from Amyotrophic
Lateral Sclerosis (a disease that causes the death of neurons
that control voluntary muscles) patients. Using this data, they
were able to predict survivability by applying deep neural net-
works. The system was comprised of four neural networks: a
network made of Clinical data, Structural connectivity from
MRI, brain morphology MRI, and a combination of these
three.

FIGURE 7. Classifying survivability using neural networks. Combining
data from various source and predicting survivability as short, medium,
and long (Source [45]).

By combining these networks, the system was able to
predict the survivability of a patient as short, medium or long-
term. In this process, the number of input nodes depended to
several characteristics of each neural network. For example,
the input vectors for the clinical characteristic neural network
were the age at onset and time for diagnosis. The prediction
accuracy was improved by 84% compared to the results that
were obtained without using Neural Networks [46].

D. K-MEANS CLUSTERING TECHNIQUES
The K-means clustering technique is one of the most popular
unsupervised learning techniques [81]–[83]. It is a clustering
algorithm that is used in classifying points on a Euclidian
plane into categories. It is an iterative technique that takes
several n points and classifies them into k possible clusters
around k centroids.

There are so many concrete applications of the K-means in
healthcare. Gash and Eisen [84] used fuzzy k-means cluster-
ing and identified overlapping clusters of yeast genes. Fuzzy
k-means allows a given point to belong to every cluster;
however, with varying degree of membership. Ng et al. [85]
applied k-means algorithm to perform medical images
segmentation. Their method combined k-means with an
improved watershed algorithmwith k-means taking 2DMRIs
as inputs and producing clustered images. The clustered
images were then segmented using the watershed techniques.
Zheng et al. [86] applied hybrid k-means and SVMs for
breast cancer diagnosis. During the experiment, k-means was
used for identifying various hidden patterns of benign and
malignant tumors.

E. ENSEMBLE LEARNING
Medical problems are usually complex and one learning algo-
rithm might fail to yield an informative result. Hence, we can
combine the learning techniques into a more effective and
robust learning technique better than the constituent algo-
rithms. An ensemble [87], [88], [91] is a collection of various
learning algorithmworking together in parallel or in sequence
to produce better results. It is mainly used in classification
problems like sentiment classification [89]. Ensemble learn-
ing has shown to provide very efficient and favorable out-
come compared to individual learning systems as its usually
perceived as a process of consulting multiple experts before
deciding [90]. In this method which combines more than one
classifier, the outcome depends on a set of rules that are used
during combination.

The starting point of an ensemble process is feeding the
training data to a base algorithm then voting is used to make
an accurate decision from classification outcomes of each
classifier in the ensemble. The most popular ensemble learn-
ing techniques are; Bagging and Boosting [92]. during the
bagging process we take the training data and divide it into
bags (or subsets).We then apply an individual classifier on
each subset and finally, we apply voting to produce a final
prediction. Boosting is rather dependent on refining wrong
predictions. We divide the training set as we do for bagging,
we apply a learning algorithm to a subset, we test the classifier
and check the wrong predictions. We take these cases and
we combine them with a new subset and we apply another
classifier and so on until we finish all the subsets. Boosting
produces extremely refined decisions.

Ensemble learning has many applications in healthcare and
is the best fit for most of the health problems. Gu et al. [93]
used the FKNN ensemble learning method to classify mem-
brane proteins using a hybrid approach of predicted sec-
ondary structural features (PSSF) as well as approximate
entropy (ApEn) to predict the G-protein coupled receptors
in low homology. Savio et al. [94] use the combination of
Voxel-basedMorphometry and used Support Vector Machine
and neural networks to analyze structural MRI images for an
earlier detection of Alzheimer’s disease (AD) and myotonic
dystrophy of type 1 (MD1)
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F. MARKOV DECISION PROCESS (MDP)
Markov Decision Process (MDP) [170] is a powerful stochas-
tic control algorithm used in decision support. Even though
the physician is presented with appropriate algorithms for a
certain health case, there are some stochastic problems that
are dependent on critical operations that need a decision sup-
port system. Some decisions such as a transplant or even the
diagnosis itself will need mathematical models for accurate
decisions to be made. Sonnenberg and Beck [171] proposed
a methodology that can be used as a practical guide for using
theMDP for clinical diagnosis. At each stage of the treatment,
a patient’s health state is analyzed as a Markov state and
death or other complications are considered as terminal nodes
in this MDP. The events that influence a patient’s health are
modeled as transitions between nodes. For example, bleeding
(an event) can cause a patient’s transition from a coma (state)
to death (final state). By building a Markov state diagram,
critical decisions will be made and decisions which lead
to catastrophic results will be omitted. Hence, MDP can
be incorporated into a health analytic solution for decision-
making purposes. As a synthesis, Fig.8 provides a detailed
view of use cases of various data mining techniques in health-
care analytics.

VI. HEALTH BIG DATA PLATFORMS AND TOOLS
Building scalable health analytics is complex because data
varies in speed, size, urgency, availability etc. To scale and
accommodating the data, the analytic system must be inte-
grated into a parallel and distributed computing framework.
The most challenge with healthcare data is the diversity in
volume. Analytics must be performed proactively and reac-
tively; hence, the architecture must be sufficiently exten-
sible to support all the analytics. The big challenge faced
while selecting an appropriate platform to use for the ana-
lytic solution is to accommodate the urgency of action and
required insights. While some data such as ECG readings
and other mIoT data might be urgent and require in-memory
streaming and immediate analysis, some other data, such as
HER records, might require batch processing. Though these
platforms exhibit different architecture any parallel comput-
ing platforms share components to consider while design-
ing scalable big data analytics. Fig. 9 depicts a conceptual
architecture of a big data platform. The following big data
platforms are popular in health informatics:

A. HADOOP
Hadoop [58] is a parallel computing platform that stores and
processes very large computing clusters on its core architec-
ture and is empowered by three main components.

HDFS [59], which is the underlying file system distributed
on clusters, has storage devices arranged in various racks.
This file system is distributed, and each data block is dupli-
cated as copies across clusters. Another key component in
Hadoop is YARN [60], which is a resource management and
job scheduling tool. Its role is mainly to manage the extensive

storage resource and keep track of the computing workload
across clusters.

The other component of Hadoop is theMapReduce [61]. Its
role is to process the data stored on HDFS clusters and that
role is accomplished in two functions of Map and Reduce.
During a Map step, the master node will divide the job
into smaller tasks and distribute the resources based on the
task. After computations, the Reduce function aggregates
all results to produce a solution to the original problem.
Fig. 10 provides the detailed operational steps of the Hadoop
framework.

1) HADOOP FOR HEALTH BIG DATA ANALYTICS
Hadoop has the potential to be used in building a healthcare
analytics solution. However as discussed, it is a batch-only
big data platform; hence, it cannot leverage fully the poten-
tial of real-time emergencies like ECG reading, whereby a
patient may need an immediate attention as per the alarm.
Various researches have introduced medical products that are
built on Hadoop. Lijun et al. [66] have proposed Medoop,
a Hadoop-based medical platform. This system leverages the
attributes of scalability, high reliability and high throughput
of Hadoop. Sweeney et al. [67] developed Hadoop Image
Processing Interface (HIFI) which is used for Image-based
MapReduce activities. Studies in [68] and [69] have also
attempted to leverage the attributes of Hadoop and MapRe-
duce for healthcare.

2) PROBLEMS WITH HADOOP MAPREDUCE
Though Hadoop is widely used it has some flaws [62]. The
first flaw is that it is strictly a batch computing platform.
Hadoop is mainly designed to perform computing loads in
batches hence not appropriate for real-time streaming appli-
cations where immediate insights are required.

Another flawwith Hadoop is the Skew problem. This prob-
lem is observed during the Map and Reduce operation. After
a Map step, the Reduce function must be notified regard-
ing the availability of data before a Reduce operation. This
elapsed time is called a shuffle. When there is an imbalance
in computational loads between the two steps it can cause the
execution time of one of them to delay and causing the skew
problem [63]. However, various studies have tried to address
this problem [64], [65].

B. HIGH PERFORMANCE COMPUTING CLUSTER
High performance computing cluster (HPC) [160] is a high-
speed computing paradigm made by a group of servers
connected with a dedicated high-speed network. These indi-
vidual servers are in some cases powered by arrays of GPUs
(Graphical Processing Units). Each node in these clusters
must solve a computing task. The cluster management is
performed by a master node which also ensures proper paral-
lelization using specific tools like OpenMP. Healthcare ana-
lytics need a high-speed robust computing paradigm hence
HPD is highly regarded in building up health informatics.
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FIGURE 8. Popular Machine learning techniques and their use cases in health analytics.
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FIGURE 9. A conceptual architecture of a health big data platform .

FIGURE 10. The architecture of the Hadoop cluster and a simplified
MapReduce Operation.

Samant et al. [157] have used HPC for the analysis of
Deformable Image Registration(DIR). As DIR is a process
that requires fast near real-time online analysis, the use of
HPC computing offered significant performance acceleration
for all the algorithms that were implemented.

C. SPARK
Spark was introduced as an improvement of Hadoop. It is
a fast, general purpose, cluster computing platform for big
data with a high-level API in Java, Scala, R, and Python.
Spark can capture batch, streaming, and interactive jobs in
a solution that combines some or all of them [70]. Perhaps
the main capability of spark is the capability for the inte-
gration of a powerful machine learning library (MLlib) [56].

The platform extends the MapReduce programming model
with a data-sharing abstraction named ‘‘Resilient Distributed
Datasets,’’ RDD [71].

The importance of RDD provides one advantage. With
its immutability, a single data object might be accessed in
parallel and remain unaltered. Spark provides a faster parallel
computing method than MapReduce. An example is the exe-
cution of the gradient descent for the minimization of the cost
function in the logistic regression algorithm. To minimize
the cost function, the gradient descent must be executed in
a multitude of iterations, hence requiring more computing
power.

Because Spark uses in-memory computing, it per-
forms extremely faster. In the gradient descent execution,
MapReduce takes around 110 s for each iteration as the
data must be loaded from the disks. However, for the same
operation, Sparks uses only one second for one iteration as
it only needs to perform the first loading and the remaining
iterations must be completed without memory loads. The
big advantage that Spark demonstrates over MapReduce is
that while MapReduce requires Impala [141] for querying
operations and Mahout [146] for machine learning, for Spark
you can develop an application and access all engines using
a unified API. As an example, you would want to develop
an application which needs to process user queries (SQL
engine), predicts outcomes (Machine Learning) and maps
user relationships (GraphX library) by using a single engine
and in the main memory.

Spark is a heavily used platform for healthcare big data
analytics. It leverages its stream computing capabilities
to perform faster analysis without the need to use other
supportive frameworks. Wiewiórka et al. [72] proposed
SparkSeq [73], a cloud-based genomic data analysis with
nucleotide precision built on Spark. MacDonald [74] imple-
mented the COPA (Cancer Outlier Profile Analysis) a system
that analyze genes expression to detect repeated transloca-
tions for a given cancer type. Freeman et al. [75] built an
analytical tool called Thunderbuilt that uses Apache Spark
to analyze large-scale neural data obtained from a larval
zebrafish brain. Apache Spark was used in this study to
account for the high volume of data generated by neural
recordings.

D. FLINK
Most of the big data platforms were designed for batch
processing. However, data that needs real-time processing is
increasing tremendously. The number of applications such as
Twitter analytics, weblogs, and fraud detection has increased,
and they need a real-time processing analysis. Even so,
batch streaming is not dropped. Modern analytics applica-
tion must encompass both batch and real-time data. Apache
Flink [80] can process continuous data streams at the same
time acknowledging that there is also a need to process his-
torical batch data. From Fig.11, we can see that even if Flink
is built on a streaming processing engine, it has a Dataset API
that processes batch datasets. Flink also offers a rich library
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TABLE 3. Summary of big data platforms, their properties and ther use cases in healthcare analytics.
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FIGURE 11. Flink architecture (source [80]).

support including machine learning, Graph API, and table
API to process SQL like operations.

FLINK USE CASES IN HEALTHCARE
Apache Flink is an excellent platform of choice for event-
driven applications. Moreover, health analytics need to move
away from a traditional reactive approach to a more proactive
approach. Hence, a streaming platform is a choice for real-
time health monitoring aspects of a health analytic appli-
cation such as ECG monitoring, MRI readings, wearables
monitoring, and other cyber-physical systems.

E. STORM
Apache Storm [79] is an alternative for Hadoop MapReduce
when we need heavy real-time processing. Hence, when our
analytic solution is expected to process huge data at a rapid
rate, Apache Storm is the best performer for building such
solutions. The key advantages of Storm are that it can work
well for small and large-scale implementations and it is fault-
tolerant, scalable, and exhibits a higher reliability. Apache
storm is superficially like Hadoop and while jobs are run in
Hadoop, topologies are run in Storm. However, the key differ-
ence between jobs and topologies is that finally, aMapReduce
job will finish while a Storm topology continues to handle
incoming messages until the user terminates the process. The
most basic data structure is a tuple made of a pair of elements
and a given number of these tuples make a stream.

CRITERIA FOR CHOOSING A BIG DATA PLATFORM FOR A
GIVEN HEALTHCARE APPLICATION
The choice of a big data platform for your health solution
depends on many factors: Real-time needs, data size, speed,
scalability, throughput etc.. . . Some healthcare applications
like EMR records might not need real-time processing, hence
for such application, a non-streaming platform like Hadoop
MapReduce is enough. For others like ECG analysis will need
a real-time intervention hence streaming will be paramount

but scalability will not be a problem to consider for such
applications.

Some recommendation applications like diagnosis sugges-
tion support will require a platform which can scale and
accommodate the huge amount of data, in that case, a ver-
tical scaling platform like CUDA [76] or High-Performance
Computing (HPC) [77] will be of no use but horizontal scal-
ing systems like Spark will be extremely useful. However,
a health analytic solution encompasses many aspects of
health analytic requirements hence the need to choose a
platform that can be suitable for all these requirements.
Another aspect to consider is fault-tolerance. This is the
platform’s ability to continue operating even after failure.
To this aspect, all though not equally the horizontal scaling
platforms like Hadoop and Spark wins as they distribute
the work across many clusters whereas vertical scaling plat-
forms have one point of failure. For a thorough compari-
son, Singh and Reddy [78] have compared the platforms with
respect to their capabilities to perform a K-means machine
learning algorithm. In this study though many criteria to
consider for choosing an appropriate platform for a health-
care application are presented, few criteria are considered as
paramount in processing healthcare big data. In table 3 we
cover the most popular big data platforms and their use cases
in healthcare analytics.

VII. CONCLUSION
The development of a scalable healthcare analytic application
requires the amalgamation of various technologies whose
choice requires a thorough scrutiny as a successful diagnosis
and disease deterrence reckons on the incorporation of as
many data sources as possible. In this work, we have high-
lighted most of the technologies to choose from to do so. The
very first challenge is to choose from Big data platforms on
which the application must rely upon. The platform should
have all necessary libraries including the machine learning
libraries. Spark provides integrated models for effective data
ingestion, data processing as well as effective Machine learn-
ing libraries. Effective diagnosis requires medical images
to be closely analyzed hence deep learning algorithms are
better feet for identifying malignant spots on these images.
Convolutional Neural Networks(CNN) which applies opti-
mization algorithms like the Gradient Descent provides an
effective analysis of life-threatening spots on images that are
obtained from measurements like ECG, MRI, etc. As med-
ical application needs enormous precision where a slight
error can result in fatalities, utmost precision is required.
The most challenging task in developing a robust solution
is the aggregation of all data from divergent sources. As the
semantics and context of data vary in a healthcare setting,
the development of an inclusive middleware is the key to
ingestion of all data. For data mining, no single algorithm
provides a fit-all solution to health data. Hence an ensemble
learning which includes the use of many machine learning
algorithms can provide a better analysis. Social networks
data’s role into healthcare will continue to grow as more
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patient’s health problems can be revealed on his social circles
than to the physicians. This coupled with advances in Social
Network Analysis as well as sentiment analysis tools will
help practitioners to gain more insights than before. Genetics
role in healthcare will be more evident. With the advances
in human genomic researches, personalized healthcare can
now be a reality. However, matching the genome sequences
with medically related phenotypes is still an area which needs
further researches.

REFERENCES
[1] P. Russom, ‘‘Big data analytics,’’ TDWI Best Pract. Rep., Fourth Quart.,

vol. 19, no. 4, pp. 1–34, 2011.
[2] J. Sun and C. K. Reddy, ‘‘Big data analytics for healthcare,’’ in Proc. 19th

ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013, p. 1525.
[3] A. Kotov, ‘‘Social media analytics for healthcare,’’ Health-

care Data Anal., pp. 309–340, 2015. [Online]. Available:
http://www.crcnetbase.com/doi/abs/10.1201/b18588-11

[4] S. A. Haque, S.M. Aziz, andM. Rahman, ‘‘Review of cyber-physical sys-
tem in healthcare,’’ Int. J. Distrib. Sensor Netw., vol. 10, no. 4, p. 217415,
2014.

[5] Y. Demchenko, C. De Laat, and P. Membrey, ‘‘Defining architecture
components of the big data ecosystem,’’ in Proc. Int. Conf. Collaboration
Technol. Syst. (CTS), May 2014, pp. 104–112.

[6] R. Baheti and H. Gill, ‘‘Cyber-physical systems,’’ Impact Control
Technol., vol. 12, pp. 161–166, Mar. 2011.

[7] Y. Zhang, M. Qiu, C.-W. Tsai, M. M. Hassan, and A. Alamri, ‘‘Health-
CPS: Healthcare cyber-physical system assisted by cloud and big data,’’
IEEE Syst. J., vol. 11, no. 1, pp. 88–95, Mar. 2017.

[8] R. H. Miller and I. Sim, ‘‘Physicians’ use of electronic medical records:
Barriers and solutions,’’Health Affairs, vol. 23, no. 2, pp. 116–126, 2004.

[9] T. J. Hannan, ‘‘Electronic medical records,’’ in Health Informatics—An
Overview, E. Hovenga, M. Kidd, and B. Cesnik, Eds. Melbourne, VIC,
Australia: Churchill Livingstone, 1996, p. 133.

[10] D. A. Ludwick and J. Doucette, ‘‘Adopting electronic medical records in
primary care: Lessons learned from health information systems imple-
mentation experience in seven countries,’’ Int. J. Med. Inform., vol. 78,
no. 1, pp. 22–31, 2009.

[11] E. Vlahu-Gjorgievska and V. Trajkovik, ‘‘Towards collaborative health
care system model-COHESY,’’ in Proc. IEEE Int. Symp. World Wireless,
Mobile Multimedia Netw. (WoWMoM), Jun. 2011, pp. 1–6.

[12] D. Soudris et al., ‘‘AEGLE: A big bio-data analytics framework for
integrated health-care services,’’ in Proc. Int. Conf. Embedded Comput.
Syst., Archit., Modeling, Simulation (SAMOS), Jul. 2015, pp. 246–253.

[13] W. Raghupathi and V. Raghupathi, ‘‘Big data analytics in healthcare:
Promise and potential,’’ Health Inf. Sci. Syst., vol. 2, no. 1, p. 3, 2014.

[14] L. Wang and C. A. Alexander, ‘‘Big data in medical applications and
healthcare,’’ Amer. Med. J., vol. 6, no. 1, p. 1, 2015.

[15] R. Lin, Z. Ye, H. Wang, and B. Wu, ‘‘Chronic diseases and health moni-
toring big data: A survey,’’ IEEE Rev. Biomed. Eng., vol. 11, pp. 275–288,
2018.

[16] M.-H. Kuo, T. Sahama, A. W. Kushniruk, E. M. Borycki, and
D. K. Grunwell, ‘‘Health big data analytics: Current perspectives, chal-
lenges and potential solutions,’’ Int. J. Big Data Intell., vol. 1, nos. 1–2,
pp. 114–126, 2014.

[17] A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone, ‘‘Large-scale compres-
sion of genomic sequence databases with the Burrows–Wheeler trans-
form,’’ Bioinformatics, vol. 28, no. 11, pp. 1415–1419, 2012.

[18] X. Wang and Y. Tan, ‘‘Application of cloud computing in the health
information system,’’ in Proc. Int. Conf. Comput. Appl. Syst. Modeling
(ICCASM), vol. 1, Oct. 2010, p. V1-179.

[19] M.-H. Kuo, A. Kushniruk, and E. Borycki, ‘‘A comparison of national
health data interoperability approaches in Taiwan, Denmark andCanada,’’
Electron. Healthcare, vol. 10, no. 2, pp. 14–25, 2011.

[20] A. Moreno-Conde et al., ‘‘Clinical information modeling processes for
semantic interoperability of electronic health records: Systematic review
and inductive analysis,’’ J. Amer. Med. Inform. Assoc., vol. 22, no. 4,
pp. 925–934, 2015.

[21] E. Fernandez and T. Sorgente, ‘‘An analysis of modeling flaws
in HL7 and JAHIS,’’ in Proc. ACM Symp. Appl. Comput., 2005,
pp. 216–223.

[22] A. Hasman, ‘‘HL7 RIM: An incoherent standard,’’ in Proc. Ubiquity,
Technol. Better Health Aging Soc. (MIE), vol. 124, 2006, p. 133.

[23] R. Crichton, D. Moodley, A. Pillay, R. Gakuba, and C. J. Seebregts,
‘‘An architecture and reference implementation of an open health infor-
mation mediator: Enabling interoperability in the Rwandan health infor-
mation exchange,’’ inProc. Int. Symp. Found. Health Informat. Eng. Syst.,
2012, pp. 87–104.

[24] T. Mudaly, D. Moodley, A. Pillay, and C. J. Seebregts, ‘‘Architectural
frameworks for developing national health information systems in low
and middle income countries,’’ in Proc. Enterprise Syst. Conf. (ES),
Nov. 2013, pp. 1–9.

[25] D. V. Dimitrov, ‘‘Medical Internet of Things and big data in healthcare,’’
Healthcare Inform. Res., vol. 22, no. 3, pp. 156–163, 2016.

[26] A. B. Waluyo, S. Ying, I. Pek, and J. K. Wu, ‘‘Middleware for wireless
medical body area network,’’ in Proc. IEEE Biomed. Circuits Syst. Conf.
(BIOCAS), Nov. 2007, pp. 183–186.

[27] H.-F. Lu and J.-L. Chen, ‘‘Design of middleware for tele-homecare sys-
tems,’’Wireless Commun. Mobile Comput., vol. 9, no. 12, pp. 1553–1564,
2009.

[28] C. R. Leite, B. G. De Araújo, R. A. M. de Valentim, G. B. Brandão, and
A. M. Gueirreiro, ‘‘Middleware for remote healthcare monitoring,’’ in
Proc. Int. Conf. Innov. Inf. Technol. (IIT), Dec. 2009, pp. 185–189.

[29] S. Spahni, J.-R. Scherrer, D. Sauquet, and P.-A. Sottile, ‘‘Middleware for
healthcare information systems,’’ Stud. Health Technol. Inform., vol. 52,
no. 1, pp. 212–216, Nov. 1998.

[30] V. Shnayder, B. R. Chen, K. Lorincz, T. R. F. Fulford-Jones, and M.
Welsh, ‘‘Sensor networks for medical care,’’ Division Eng. Appl. Sci.,
Harvard Univ., Cambridge, MA, USA, Tech. Rep. TR-08-05, 2005

[31] U. Anliker et al., ‘‘AMON: A wearable multiparameter medical monitor-
ing and alert system,’’ IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 4,
pp. 415–427, Dec. 2004.

[32] P. Kakria, N. K. Tripathi, and P. Kitipawang, ‘‘A real-time health moni-
toring system for remote cardiac patients using smartphone and wearable
sensors,’’ Int. J. Telemed. Appl., vol. 2015, p. 8, Jan. 2015.

[33] A. D. Wood et al., ‘‘Context-aware wireless sensor networks for assisted
living and residential monitoring,’’ IEEE Netw., vol. 22, no. 4, pp. 26–33,
Jul./Aug. 2008.

[34] V. Rouet and J. Venet, ‘‘Low power tracking system for advanced health
monitoring,’’ in Proc. Integr. Miniaturized Syst.-MOMS, MOEMS, ICS
Electron. Compon. (SSI), 2008, pp. 1–3.

[35] R. Manguni, Jr., M. L. Navarro, K. Rosario, and C. A. Festin, ‘‘chitSMS:
Community health information tracking system using short message
service,’’ in Proc. 3rd Int. Conf. Hum.-Centric Comput. (HumanCom),
Aug. 2010, pp. 1–6.

[36] E. Hanada, T. Seo, and H. Hata, ‘‘An activity monitoring system for
detecting movement by a person lying on a bed,’’ in Proc. IEEE 3rd Int.
Conf. Consum. Electron. Berlin (ICCE-Berlin), Sep. 2013, pp. 1–3.

[37] S. Oniga, A. Tisan, and R. Bólyi, ‘‘Activity and health status monitoring
system,’’ in Proc. IEEE 26th Int. Symp. Ind. Electron. (ISIE), Jun. 2017,
pp. 2027–2031.

[38] H. Yang, ‘‘Design and implementation of electronic medical record tem-
plate based on XML schema,’’ in Proc. 2nd World Congr. Softw. Eng.
(WCSE), vol. 1, Dec. 2010, pp. 225–228.

[39] A. T. Wan and S. Sankaranarayanan, ‘‘Development of a Health Infor-
mation System in the Mobile Cloud Environment,’’ in Proc. IEEE Int.
Conf. Embedded Ubiquitous Comput. High-Perform. Comput. Commun.
(HPCC_EUC), Nov. 2013, pp. 2187–2193.

[40] Azaria, A. Ekblaw, T. Vieira, and A. Lippman, ‘‘Medrec: Using
blockchain for medical data access and permission management,’’ in
Proc. Int. Conf. Open Big Data (OBD), Aug. 2016, pp. 25–30.

[41] M. Shouman, T. Turner, and R. Stocker, ‘‘Applying k-nearest neighbour
in diagnosing heart disease patients,’’ Int. J. Inf. Educ. Technol., vol. 2,
no. 3, pp. 220–223, 2012.

[42] Accessed: Aug. 18, 2018. [Online]. Available: https://archive.
ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

[43] K. Kamnitsas et al., ‘‘Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation,’’Med. Image Anal., vol. 36,
pp. 61–78, Feb. 2017.

[44] T. Kooi et al., ‘‘Large scale deep learning for computer aided detection
of mammographic lesions,’’ Med. Image Anal., vol. 35, pp. 303–312,
Jan. 2017.

VOLUME 6, 2018 65675



G. Harerimana et al.: Health Big Data Analytics: A Technology Survey

[45] H. K. van der Burgh, R. Schmidt, H.-J. Westeneng, M. A. de Reus,
L. H. van den Berg, andM. P. van den Heuvel, ‘‘Deep learning predictions
of survival based on MRI in amyotrophic lateral sclerosis,’’ NeuroImage,
Clin., vol. 13, pp. 361–369, Jan. 2017.

[46] C. Schuster, O. Hardiman, and P. Bede, ‘‘Survival prediction in Amy-
otrophic lateral sclerosis based on MRI measures and clinical character-
istics,’’ BMC Neurol., vol. 17, no. 1, p. 73, 2017.

[47] M. P. Brown et al., ‘‘Knowledge-based analysis of microarray gene
expression data by using support vector machines,’’ Proc. Nat. Acad. Sci.
USA, vol. 97, no. 1, pp. 262–267, 2000.

[48] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, ‘‘Gene selection for can-
cer classification using support vector machines,’’Mach. Learn., vol. 46,
nos. 1–3, pp. 389–422, 2002.

[49] L. Khedher et al., ‘‘Early diagnosis of Alzheimer’s disease based on
partial least squares, principal component analysis and support vector
machine using segmented MRI images,’’ Neurocomputing, vol. 151,
pp. 139–150, Mar. 2015.

[50] W. A. Chaovalitwongse, Y. J. Fan, and R. C. Sachdeo, ‘‘On the time
series k-nearest neighbor classification of abnormal brain activity,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 37, no. 6, pp. 1005–1016,
Nov. 2007.

[51] C.-L. Liu, C.-H. Lee, and P.-M. Lin, ‘‘A fall detection system using
k-nearest neighbor classifier,’’ Expert Syst. Appl., vol. 37, no. 10,
pp. 7174–7181, 2010.

[52] C. Li et al., ‘‘Using the K-nearest neighbor algorithm for the classification
of lymph node metastasis in gastric cancer,’’ Comput. Math. Methods
Med., vol. 2012, 2012, Art. no. 876545.

[53] H. B. Burke et al., ‘‘Artificial neural networks improve the accuracy of
cancer survival prediction,’’ Cancer, vol. 79, no. 4, pp. 857–862, 1997.

[54] M. A. Mohammed, M. K. A. Ghani, R. I. Hamed, D. A. Ibrahim, and
M. K. Abdullah, ‘‘Artificial neural networks for automatic segmentation
and identification of nasopharyngeal carcinoma,’’ J. Comput. Sci., vol. 21,
pp. 263–274, Jul. 2017.

[55] W. Jiang and Z. Yin, ‘‘Human activity recognition using wearable sensors
by deep convolutional neural networks,’’ in Proc. 23rd ACM Int. Conf.
Multimedia, 2015, pp. 1307–1310.

[56] X. Meng et al., ‘‘Mllib: Machine learning in apache spark,’’ J. Mach.
Learn. Res., vol. 17, no. 1, pp. 1235–1241, 2016.

[57] Y. Geng, J. Chen, R. Fu, G. Bao, and K. Pahlavan, ‘‘Enlighten wearable
physiological monitoring systems: On-body RF characteristics based
human motion classification using a support vector machine,’’ IEEE
Trans. Mobile Comput., vol. 15, no. 3, pp. 656–671, Mar. 2016.

[58] D. Borthakur, ‘‘The Hadoop distributed file system: Architecture and
design,’’ Hadoop Project Website, vol. 11, p. 21, Aug. 2007.

[59] Borthakur, ‘‘HDFS architecture guide,’’ Hadoop Apache Project, vol. 53,
pp. 1–13, 2008.

[60] V. K. Vavilapalli et al., ‘‘Apache Hadoop yarn: Yet another resource
negotiator,’’ in Proc. 4th Annu. Symp. Cloud Comput., 2013, p. 5.

[61] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[62] A. Alam and J. Ahmed, ‘‘Hadoop architecture and its issues,’’ in Proc.
Int. Conf. Comput. Sci. Comput. Intell. (CSCI), vol. 2, Mar. 2014,
pp. 288–291.

[63] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, ‘‘A study of skew in
MapReduce applications,’’ in Proc. Open Cirrus Summit, vol. 11, 2011,
pp. 1–5.

[64] Y. Kwon, K. Ren,M. Balazinska, B. Howe, and J. Rolia, ‘‘Managing skew
in Hadoop,’’ IEEE Data Eng. Bull., vol. 36, no. 1, pp. 24–33, Mar. 2013.

[65] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, ‘‘Skewtune: Mitigating
skew in MapReduce applications,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2012, pp. 25–36.

[66] W. Lijun, H. Yongfeng, C. Ji, Z. Ke, and L. Chunhua, ‘‘Medoop:
A medical information platform based on Hadoop,’’ in Proc. IEEE 15th
Int. Conf. e-Health Netw., Appl. Services (Healthcom), Oct. 2013, pp. 1–6.

[67] C. Sweeney, L. Liu, S. Arietta, and J. Lawrence, ‘‘HIPI: A Hadoop image
processing interface for image-based MapReduce tasks,’’ Chris. Univ.
Virginia, vol. 2, no. 1, pp. 1–5, 2011.

[68] M.-H. Kuo, D. Chrimes, B. Moa, and W. Hu, ‘‘Design and construction
of a big data analytics framework for health applications,’’ in Proc. IEEE
Int. Conf. Smart City/SocialCom/SustainCom (SmartCity), Dec. 2015,
pp. 631–636.

[69] Q. Yao, Y. Tian, P.-F. Li, L.-L. Tian, Y.-M. Qian, and J.-S. Li, ‘‘Design and
development of a medical big data processing system based on Hadoop,’’
J. Med. Syst., vol. 39, no. 3, no. 3, p. 23, 2015.

[70] M. Zaharia et al., ‘‘Apache spark: A unified engine for big data process-
ing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[71] M. Zaharia et al., ‘‘Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,’’ in Proc. 9th USENIX Conf. Netw.
Syst. Design Implement., 2012, pp. 1–2.

[72] M. S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti,
P. Gawrysiak, and M. J. Okoniewski, ‘‘SparkSeq: Fast, scalable and
cloud-ready tool for the interactive genomic data analysis with nucleotide
precision,’’ Bioinformatics, vol. 30, no. 18, pp. 2652–2653, 2014.

[73] Accessed: Aug. 17, 2018. [Online]. Available:
https://bitbucket.org/mwiewiorka/sparkseq/overview

[74] J. W. Macdonald and D. Ghosh, ‘‘COPA—Cancer outlier profile analy-
sis,’’ Bioinformatics, vol. 22, no. 23, pp. 2950–2951, 2006.

[75] J. Freeman et al., ‘‘Mapping brain activity at scale with cluster comput-
ing,’’ Nature Methods, vol. 11, no. 9, p. 941, 2014.

[76] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, ‘‘Fast GPU-
based CT reconstruction using the common unified device architecture
(CUDA),’’ in Proc. IEEE Nucl. Sci. Symp. Conf. Rec. (NSS), vol. 6,
Oct. 2007, pp. 4464–4466.

[77] R. Buyya, High-Performance Cluster Computing: Architectures and Sys-
tems, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1999, p. 999.

[78] D. Singh and C. K. Reddy, ‘‘A survey on platforms for big data analytics,’’
J. Big Data, vol. 2, no. 1, p. 8, 2015.

[79] T. Jones, ‘‘Process real-time big data with Twitter Storm,’’
IBM Tech. Library, New York, NY, USA, Apr. 2013. [Online].
Available: https://www.ibm.com/developerworks/opensource/library/os-
twitterstorm/index.html

[80] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, ‘‘Apache flink: Stream and batch processing in a single
engine,’’ Bull. IEEE Comput. Soc. Tech. Committee Data Eng., vol. 38,
no. 4, pp. 28–38, Dec. 2015.

[81] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, ‘‘An efficient k-means clustering algorithm: Analysis and
implementation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[82] J. A. Hartigan and M. A. Wong, ‘‘Algorithm AS 136: A k-means cluster-
ing algorithm,’’ J. Roy. Stat. Soc. C Appl. Stat., vol. 28, no. 1, pp. 100–108,
1979.

[83] A. Likas, N. Vlassis, and J. J. Verbeek, ‘‘The global k-means clustering
algorithm,’’ Pattern Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003.

[84] P. Gasch and M. B. Eisen, ‘‘Exploring the conditional coregulation of
yeast gene expression through fuzzy k-means clustering,’’ Genome Biol.,
vol. 3, no. 11, p. research0059-1, 2002.

[85] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski,
‘‘Medical image segmentation using k-means clustering and improved
watershed algorithm,’’ in Proc. IEEE Southwest Symp. Image Anal. Inter-
pretation, Mar. 2006, pp. 61–65.

[86] B. Zheng, S. W. Yoon, and S. S. Lam, ‘‘Breast cancer diagnosis based on
feature extraction using a hybrid of K-means and support vector machine
algorithms,’’ Expert Syst. Appl., vol. 41, no. 4, pp. 1476–1482, 2014.

[87] T. G. Dietterich, ‘‘Ensemble methods in machine learning,’’ in Proc. Int.
Workshop Multiple Classifier Syst., 2000, pp. 1–15.

[88] D. J. C. MacKay, ‘‘Ensemble learning for hidden Markov models,’’
Cavendish Lab., Univ. Cambridge, Cambridge, MA, USA, Tech. Rep.,
1997.

[89] G. Wang, J. Sun, J. Ma, K. Xu, and J. Gu, ‘‘Sentiment classification:
The contribution of ensemble learning,’’ Decis. Support Syst., vol. 57,
pp. 77–93, Jan. 2014.

[90] R. Polikar, ‘‘Ensemble based systems in decision making,’’ IEEE Circuits
Syst. Mag., vol. 6, no. 3, pp. 21–45, Sep. 2006.

[91] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. London,
U.K.: Chapman & Hall, 2012.

[92] D. Opitz and R. Maclin, ‘‘Popular ensemble methods: An empirical
study,’’ J. Artif. Intell. Res., vol. 11, pp. 169–198, Aug. 1999.

[93] Q. Gu, Y.-S. Ding, and T.-L. Zhang, ‘‘An ensemble classifier based
prediction of G-protein-coupled receptor classes in low homology,’’ Neu-
rocomputing, vol. 154, pp. 110–118, Apr. 2015.

[94] A. Savio et al., ‘‘Neurocognitive disorder detection based on feature
vectors extracted from VBM analysis of structural MRI,’’ Comput. Biol.
Med., vol. 41, no. 8, pp. 600–610, 2011.

[95] U. Khan, J. P. Choi, H. Shin, and M. Kim, ‘‘Predicting breast cancer sur-
vivability using fuzzy decision trees for personalized healthcare,’’ inProc.
30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), Aug. 2008,
pp. 5148–5151.

65676 VOLUME 6, 2018



G. Harerimana et al.: Health Big Data Analytics: A Technology Survey

[96] C. Andreescu et al., ‘‘Empirically derived decision trees for the treatment
of late-life depression,’’ Amer. J. Psychiatry, vol. 165, no. 7, pp. 855–862,
2008.

[97] C. Tu, D. Shin, and D. Shin, ‘‘Effective diagnosis of heart disease through
bagging approach,’’ in Proc. 2nd Int. Conf. Biomed. Eng. Informat.
(BMEI), Oct. 2009, pp. 1–4.

[98] W.-J. Kuo, R.-F. Chang, D.-R. Chen, and C. C. Lee, ‘‘Data mining with
decision trees for diagnosis of breast tumor inmedical ultrasonic images,’’
Breast Cancer Res. Treat., vol. 66, no. 1, pp. 51–57, 2001.

[99] D. Delen, G. Walker, and A. Kadam, ‘‘Predicting breast cancer surviv-
ability: A comparison of three data mining methods,’’ Artif. Intell. Med.,
vol. 34, no. 2, pp. 113–127, 2005.

[100] K. F. Liu and C.-F. Lu, ‘‘BBN-based decision support for health risk
analysis,’’ in Proc. 5th Int. Joint Conf. INC, IMS IDC (NCM), Aug. 2009,
pp. 696–702.

[101] Y. Huang, P. McCullagh, N. Black, and R. Harper, ‘‘Feature selection and
classification model construction on type 2 diabetic patients’ data,’’ Artif.
Intell. Med., vol. 41, no. 3, pp. 251–262, 2007.

[102] T.-H. Koskela, O.-P. Ryynanen, and E. J. Soini, ‘‘Risk factors for per-
sistent frequent use of the primary health care services among frequent
attenders: A Bayesian approach,’’ Scandin. J. Primary Health Care,
vol. 28, no. 1, pp. 55–61, 2010.

[103] N. Barakat, A. P. Bradley, and M. N. H. Barakat, ‘‘Intelligible support
vector machines for diagnosis of diabetes mellitus,’’ IEEE Trans. Inf.
Technol. Biomed., vol. 14, no. 4, pp. 1114–1120, Jul. 2010.

[104] N. Razavian, S. Blecker, A. M. Schmidt, A. Smith-McLallen, S. Nigam,
and D. Sontag, ‘‘Population-level prediction of type 2 diabetes from
claims data and analysis of risk factors,’’ Big Data, vol. 3, no. 4,
pp. 277–287, 2015.

[105] M. Khalilia, S. Chakraborty, and M. Popescu, ‘‘Predicting disease risks
from highly imbalanced data using random forest,’’ BMC Med. Inform.
Decis. Making, vol. 11, no. 1, p. 51, 2011.

[106] M. Mutingi and C. Mbohwa, ‘‘Home healthcare staff scheduling: A
clustering particle swarm optimization approach,’’ in Proc. Int. Conf. Ind.
Eng. Oper. Manage., Indonesia, Jan. 2014, pp. 303–312.

[107] W.-C. Yeh, W.-W. Chang, and Y. Y. Chung, ‘‘A new hybrid approach for
mining breast cancer pattern using discrete particle swarm optimization
and statistical method,’’ Expert Syst. Appl., vol. 36, no. 4, pp. 8204–8211,
2009.

[108] M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada, and
A. S. Elmaghraby, ‘‘An approach to multimodal biomedical image reg-
istration utilizing particle swarm optimization,’’ IEEE Trans. Evol. Com-
put., vol. 8, no. 3, pp. 289–301, Jun. 2004.

[109] T. Santhanam and M. S. Padmavathi, ‘‘Application of K-means and
genetic algorithms for dimension reduction by integrating SVM for dia-
betes diagnosis,’’ Procedia Comput. Sci., vol. 47, pp. 76–83, Jan. 2015.

[110] U. Orhan, M. Hekim, and M. Ozer, ‘‘EEG signals classification using the
K-means clustering and a multilayer perceptron neural network model,’’
Expert Syst. Appl., vol. 38, no. 10, pp. 13475–13481, 2011.

[111] P. K. Anooj, ‘‘Clinical decision support system: Risk level prediction of
heart disease using weighted fuzzy rules,’’ J. King Saud Univ.-Comput.
Inf. Sci., vol. 24, no. 1, pp. 27–40, 2012.

[112] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, D. Rueckert,
and A. D. N. Initiative, ‘‘Random forest-based similarity measures for
multi-modal classification of Alzheimer’s disease,’’ NeuroImage, vol. 65,
pp. 167–175, Jan. 2013.

[113] K. L. Lunetta, L. B. Hayward, J. Segal, and P. van Eerdewegh, ‘‘Screening
large-scale association study data: Exploiting interactions using random
forests,’’ BMC Genet., vol. 5, no. 1, p. 32, 2004.

[114] T. Sørlie et al., ‘‘Gene expression patterns of breast carcinomas distin-
guish tumor subclasses with clinical implications,’’ Proc. Nat. Acad. Sci.
USA, vol. 98, no. 19, pp. 10869–10874, 2001.

[115] Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, ‘‘Diagnosis of multiple
cancer types by shrunken centroids of gene expression,’’ Proc. Nat. Acad.
Sci. USA, vol. 99, no. 10, pp. 6567–6572, 2002.

[116] S.-O. Deininger, M. P. Ebert, A. Futterer, M. Gerhard, and C. Rocken,
‘‘MALDI imaging combined with hierarchical clustering as a new tool for
the interpretation of complex human cancers,’’ J. Proteome Res., vol. 7,
no. 12, pp. 5230–5236, 2008.

[117] F. Barkhof et al., ‘‘Comparison of MRI criteria at first presentation
to predict conversion to clinically definite multiple sclerosis,’’ Brain,
J. Neurol., vol. 120, no. 11, pp. 2059–2069, 1997.

[118] Y. Chen et al., ‘‘Machine-learning-based classification of real-time tissue
elastography for hepatic fibrosis in patients with chronic hepatitis B,’’
Comput. Biol. Med., vol. 89, pp. 18–23, Jan. 2017.

[119] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and
D. I. Fotiadis, ‘‘Machine learning applications in cancer prognosis and
prediction,’’ Comput. Struct. Biotechnol. J., vol. 13, pp. 8–17, Dec. 2015.

[120] K. Zheng, R. Padman, and M. P. Johnson, ‘‘Social contagion and technol-
ogy adoption: A study in healthcare professionals,’’ in Proc. AMIA Annu.
Symp., vol. 11, Oct. 2007, p. 1175.

[121] K. Blanchet and P. James, ‘‘How to do (or not to do). . . a social network
analysis in health systems research,’’ Health Policy Planning, vol. 27,
no. 5, pp. 438–446, 2011.

[122] P. Appel, V. F. de Santana, L. G. Moyano, M. Ito, and
C. S. Pinhanez. (2018). ‘‘A Social Network Analysis Framework
for Modeling Health Insurance Claims Data.’’ [Online]. Available:
https://arxiv.org/abs/1802.07116

[123] J. Scott, ‘‘Social network analysis,’’ Sociology, vol. 22, no. 1,
pp. 109–127, 1988.

[124] K. Denecke, ‘‘Integrating social media and mobile sensor data for clin-
ical decision support: Concept and requirements,’’ in Studies in Health
Technology and Informatics, vol. 225. Amsterdam, The Netherlands: IOS
Press, 2016, pp. 562–566.

[125] J. C. Venter et al., ‘‘The sequence of the human genome,’’ Science,
vol. 291, no. 5507, pp. 1304–1351, 2001.

[126] S. Ginsburg and H. F. Willard, ‘‘Genomic and personalized medicine:
Foundations and applications,’’ Transl. Res., vol. 154, no. 6, pp. 277–287,
2009.

[127] M. Hoffman, C. Arnoldi, and I. Chuang, ‘‘The clinical bioinformatics
ontology: A curated semantic network utilizing RefSeq information,’’ in
Biocomputing. Singapore: World Scientific, 2005, pp. 139–150.

[128] M. A. Hoffman, ‘‘The genome-enabled electronic medical record,’’
J. Biomed. Inform., vol. 40, no. 1, pp. 44–46, 2007.

[129] E. D. Green, M. S. Guyer, and N. H. Genome, ‘‘Charting a course for
genomicmedicine from base pairs to bedside,’’Nature, vol. 470, no. 7333,
p. 204, 2011.

[130] J. L. Kannry and M. S. Williams, Integration of Genomics into the Elec-
tronic Health Record: Mapping Terra Incognita. London, U.K.: Nature
Publishing Group, 2013.

[131] J. C. Denny et al., ‘‘Systematic comparison of phenome-wide association
study of electronic medical record data and genome-wide association
study data,’’ Nature Biotechnol., vol. 31, no. 12, p. 1102, 2013.

[132] M. S. Islam, M. M. Hasan, X. Wang, and H. D. Germack, ‘‘A systematic
review on healthcare analytics: Application and theoretical perspective of
data mining,’’ Healthcare, vol. 6, no. 2, p. 54, 2018.

[133] M. Herland, T. M. Khoshgoftaar, and R. Wald, ‘‘A review of data mining
using big data in health informatics,’’ J. Big Data, vol. 1, no. 1, p. 2, 2014.

[134] D. Tomar and S. Agarwal, ‘‘A survey on data mining approaches for
healthcare,’’ Int. J. Bio-Sci. Bio-Technol., vol. 5, no. 5, pp. 241–266, 2013.

[135] Fang, S. Pouyanfar, Y. Yang, S.-C. Chen, and S. S. Iyengar, ‘‘Computa-
tional health informatics in the big data age: A survey,’’ ACM Comput.
Surv., vol. 49, no. 1, p. 12, 2016.

[136] A. Belle, R. Thiagarajan, S. M. Soroushmehr, F. Navidi, D. A. Beard,
and K. Najarian, ‘‘Big data analytics in healthcare,’’ BioMed Res. Int.,
vol. 2015, Jun. 2015, Art. no. 370194.

[137] A. He, X. Jin, Z. Zhao, and T. Xiang, ‘‘A cloud computing solution for
hospital information system,’’ in Proc. IEEE Int. Conf. Intell. Comput.
Intell. Syst. (ICIS), vol. 2, Oct. 2010, pp. 517–520.

[138] S. Cha, A. Abusharekh, and S. S. Abidi, ‘‘Towards a’big’health data
analytics platform,’’ in Proc. IEEE 1st Int. Conf. Big Data Comput.
Service Appl. (BigDataService), Mar. 2015, pp. 233–241.

[139] Y. Shi, X. Liu, Y. Xu, and Z. Ji, ‘‘Semantic-based data integration model
applied to heterogeneous medical information system,’’ in Proc. 2nd Int.
Conf. Comput. Autom. Eng. (ICCAE), vol. 2, Feb. 2010, pp. 624–628.

[140] D. A. Davis, N. V. Chawla, N. A. Christakis, and A.-L. Barabási, ‘‘Time
to CARE: A collaborative engine for practical disease prediction,’’ Data
Mining Knowl. Discovery, vol. 20, no. 3, pp. 388–415, 2010.

[141] M. Bittorf et al., ‘‘Impala: A modern, open-source SQL engine for
Hadoop,’’ in Proc. 7th Biennial Conf. Innov. Data Syst. Res., 2015,
pp. 1–10.

[142] Accessed: Aug. 18, 2018. [Online]. Available: https://www.ohdsi.org/
[143] F. Versaci, L. Pireddu, andG. Zanetti, ‘‘Scalable genomics: From raw data

to aligned reads on Apache YARN,’’ in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2016, pp. 1232–1241.

VOLUME 6, 2018 65677



G. Harerimana et al.: Health Big Data Analytics: A Technology Survey

[144] A. Mukherjee, A. Pal, and P. Misra, ‘‘Data analytics in ubiquitous sensor-
based health information systems,’’ in Proc. 6th Int. Conf. Next Gener.
Mobile Appl., Services Technol. (NGMAST), Sep. 2012, pp. 193–198.

[145] K. Zolfaghar, N. Meadem, A. Teredesai, S. B. Roy, S.-C. Chin, and
B. Muckian, ‘‘Big data solutions for predicting risk-of-readmission for
congestive heart failure patients,’’ in Proc. IEEE Int. Conf. Big Data,
Oct. 2013, pp. 64–71.

[146] D. Lyubimov and A. Palumbo, Apache Mahout: Beyond MapReduce.
Scotts Valley, CA, USA: CreateSpace Independent Publishing Platform,
2016.

[147] A. Thusoo et al., ‘‘Hive: A warehousing solution over a map-reduce
framework,’’Proc. VLDBEndowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[148] M. Meystre, V. G. Deshmukh, and J. Mitchell, ‘‘A clinical use case to
evaluate the i2b2 Hive: Predicting asthma exacerbations,’’ in Proc. AMIA
Annu. Symp., 2009, p. 442.

[149] G. Wang and J. Tang, ‘‘The NoSQL principles and basic application of
Cassandra model,’’ in Proc. Int. Conf. Comput. Sci. Service Syst. (CSSS),
Aug. 2012, pp. 1332–1335.

[150] K. Banker, MongoDB in Action. Shelter Island, NY, USA: Manning
Publications, 2011.

[151] A. Hospital et al., ‘‘BIGNASim: A NoSQL database structure and analy-
sis portal for nucleic acids simulation data,’’ Nucleic Acids Res., vol. 44,
no. D1, pp. D272–D278, 2015.

[152] J. Kreps, N. Narkhede, and J. Rao, ‘‘Kafka: A distributed messaging
system for log processing,’’ in Proc. NetDB, 2011, pp. 1–7.

[153] A. Lawlor, R. Lynch, M.M. Aogáin, and P.Walsh, ‘‘Field of genes: Using
Apache Kafka as a bioinformatic data repository,’’ GigaScience, vol. 7,
no. 4, p. giy036, 2018.

[154] N. T. Karonis et al., ‘‘Distributed and hardware accelerated computing
for clinical medical imaging using proton computed tomography (pCT),’’
J. Parallel Distrib. Comput., vol. 73, no. 12, pp. 1605–1612, 2013.

[155] J.-Y. Cui, G. Pratx, S. Prevrhal, and C. S. Levin, ‘‘Fully 3D list-mode
time-of-flight PET image reconstruction on GPUs using CUDA,’’ Med.
Phys., vol. 38, no. 12, pp. 6775–6786, Dec. 2011.

[156] C. Men et al., ‘‘GPU-based ultrafast IMRT plan optimization,’’ Phys.
Med. Biol., vol. 54, no. 21, p. 6565, 2009.

[157] S. S. Samant, J. Xia, P. Muyan-Özçelik, and J. D. Owens, ‘‘High
performance computing for deformable image registration: Towards a
new paradigm in adaptive radiotherapy,’’ Med. Phys., vol. 35, no. 8,
pp. 3546–3553, 2008.

[158] S. Borromeo, C. Rodriguez-Sanchez, F. Machado,
J. A. Hernandez-Tamames, and R. de la Prieta, ‘‘A reconfigurable,
wearable, wireless ECG system,’’ in Proc. 29th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBS), Aug. 2007, pp. 1659–1662.

[159] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, ‘‘NVIDIA tesla:
A unified graphics and computing architecture,’’ IEEE Micro, vol. 28,
no. 2, pp. 39–55, Apr. 2008.

[160] R. Buyya, High Performance Cluster Computing: Architectures and Sys-
tems, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1999, p. 999.

[161] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, ‘‘GPU computing,’’Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[162] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays, vol. 180. Berlin, Germany: Springer, 2012.

[163] X. Fei, X. Li, and C. Shen, ‘‘Parallelized text classification algorithm
for processing large scale TCM clinical data with MapReduce,’’ in Proc.
IEEE Int. Conf. Inf. Autom., Aug. 2015, pp. 1983–1986.

[164] R. N. Boubela, K. Kalcher, W. Huf, C. Našel, and E. Moser, ‘‘Big data
approaches for the analysis of large-scale fMRI data using apache spark
and GPU processing: A demonstration on resting-state fMRI data from
the human connectome project,’’ Frontiers Neurosci., vol. 9, p. 492,
Jan. 2016.

[165] S. V. Kovalchuk, E. Krotov, P. A. Smirnov, D. A. Nasonov, and
A. N. Yakovlev, ‘‘Distributed data-driven platform for urgent decision
making in cardiological ambulance control,’’ Future Gener. Comput.
Syst., vol. 79, pp. 144–154, Feb. 2018.

[166] J. M. Keller, M. R. Gray, and J. A. Givens, ‘‘A fuzzy k-nearest neigh-
bor algorithm,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 4,
pp. 580–585, Jul./Aug. 1985.

[167] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, ‘‘Sup-
port vector machines,’’ IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18–28,
Jul./Aug. 2008.

[168] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’ Neu-
ral Netw., vol. 61, pp. 85–117, Jan. 2015.

[169] M. Swan, Blockchain: Blueprint for a New Economy. Newton,MA, USA:
O’Reilly Media, 2015.

[170] A. J. Schaefer, M. D. Bailey, S. M. Shechter, and M. S. Roberts, ‘‘Mod-
eling medical treatment using Markov decision processes,’’ in Opera-
tions Research and Health Care. Boston, MA, USA: Springer, 2005,
pp. 593–612.

[171] F. A. Sonnenberg and J. R. Beck, ‘‘Markov models in medical deci-
sion making: A practical guide,’’ Med. Decis. Making, vol. 13, no. 4,
pp. 322–338, 1993.

GASPARD HARERIMANA (S’13) received
the B.S. degree in computer engineering from
EthiopianDefense University in 2008 and theM.S.
degree in information technology from Carnegie
Mellon University in 2015. He is currently pur-
suing the Ph.D. degree with the Department of
Computer Science, Sangmyung University, Seoul,
South Korea. He was a Staff and a Researcher
with the Rwanda’s Ministry of Defense, Kigali,
Rwanda, and a Visiting Lecturer with the Adven-

tist University of Central Africa, Kigali. He is a Research Assistant with
the Department of Computer Science, Sangmyung University. His research
interests involve computer networks, big data, and machine learning with
emphasis on deep learning.

BEAKCHEOL JANG (M’17) received the B.S.
degree in computer science from Yonsei Univer-
sity in 2001, the M.S. degree in computer sci-
ence from the Korea Advanced Institute of Science
and Technology in 2002, and the Ph.D. degree
in computer science from North Carolina State
University in 2009. He is currently an Associate
Professor with the Department of Computer Sci-
ence, SangmyungUniversity. His primary research
interests are wireless networking with an emphasis

on ad hoc networking, wireless local area networks, mobile network tech-
nologies, and machine learning. He is a member of ACM.

JONG WOOK KIM (M’17) received the Ph.D.
degree from the Computer Science Department,
Arizona State University, in 2009. He was a
Software Engineer with the Query Optimization
Group, Teradata, from 2010 to 2013. He is cur-
rently an Assistant Professor of computer science
with Sangmyung University. His primary research
interests are in the areas of data privacy, distributed
databases, query optimization, and artificial intel-
ligence. He is a member of ACM.

HUNG KOOK PARK received the B.A. degree
in business administration from Seoul National
University, SouthKorea, and theM.B.A. and Ph.D.
degrees in management of information systems
from the Claremont Graduate School, California.
He is currently a Professor of computer science
and the Head of the Center for Global Creation
and Collaboration, Sangmyung University, Seoul,
South Korea. He is also a Senior Advisor and
a Specialist of the Enterprise Growth Program,

EBRD, London, U.K., and a Consultant of the African Development
Bank, Abidjan, Côte d’Ivoire. He is a member of the Joint Advisory
Board, Carnegie Mellon University Africa, Kigali, Rwanda. His papers have
appeared in the European Journal of Operational Research and the Journal
of International Information Management. His research interests involve big
data, machine learning, computer networks, and database.

65678 VOLUME 6, 2018


	INTRODUCTION
	MOTIVATION FOR THIS SURVEY
	ORGANIZATION OF THE PAPER

	RELATED WORK
	HEALTH BIG DATA ANALYTICS CHALLENGES
	DATA AGGREGATION
	DATA MAINTAINANCE/STORAGE
	DATA INTEGRATION AND INTEROPERABILITY
	DATA ANALYSIS

	HEALTH BIG DATA SOURCES
	ELECTRONIC MEDICAL RECORDS (EMR)
	MEDICAL INTERNET OF THINGS(mIoT) AND CYBER-PHYSICAL SYSTEMS (CPA) DATA
	SOCIAL NETWORK DATA
	GENOMIC DATA

	DATA MINING TECHNICS
	K NEAREST NEIGHBOR ALGORITHM
	SUPPORT VECTOR MACHINES (SVM)
	NEURAL NETWORKS
	K-MEANS CLUSTERING TECHNIQUES
	ENSEMBLE LEARNING
	MARKOV DECISION PROCESS (MDP)

	HEALTH BIG DATA PLATFORMS AND TOOLS
	HADOOP
	HADOOP FOR HEALTH BIG DATA ANALYTICS
	PROBLEMS WITH HADOOP MAPREDUCE

	HIGH PERFORMANCE COMPUTING CLUSTER
	SPARK
	FLINK
	STORM

	CONCLUSION
	REFERENCES
	Biographies
	GASPARD HARERIMANA
	BEAKCHEOL JANG
	JONG WOOK KIM
	HUNG KOOK PARK


