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ABSTRACT In international guidelines for human protection from radio-frequency (RF) electromagnetic
fields, the specific absorption rate (SAR) averaged over 6 min and 10 g of tissue is used as a physical quantity
to prevent excess local temperature rise. The resultant SAR restriction has been set to avoid potential adverse
health effects due to the temperature elevation resulting fromRF energy absorption. In the public consultation
version of the upcoming ICNIRP RF guidelines (July 10, 2018), a specific absorption (SA) limit was set to
avoid heating from brief exposures (shorter than 6 min). However, to the best of our knowledge, no prior
research has evaluated the temperature rise for single/multiple pulses with energy equivalent to the 6-min
exposure SAR restriction for continuous waves. This paper computed the temperature rise for brief pulse
exposures based on bioheat computations. We first confirmed that the peak temperature rise for a pulse
with SA corresponding to occupational exposure exceeds the steady-state temperature rise for temporally
uniform continuous wave exposure. We then proposed the SA limit from a regression curve that is dependent
on the duration of brief exposure to RF pulse(s). The temperature rise in a multilayer cube and an anatomical
humanmodel were also computed for exposures tomultiple pulses. The temperature rise frommultiple pulses
satisfying the formula was found to be below the relevant threshold level. The SA based on this regression
curve can be used as a metric to prevent excess temperature rise for different brief exposure scenarios below
6 min.

INDEX TERMS Biological effects of radiation, dosimetry, product safety engineering, radiation safety,
standardization.

I. INTRODUCTION
International standardization bodies use the specific
absorption rate (SAR) as a physical quantity to prevent
excess temperature rise due to radio-frequency (RF) expo-
sure [1]–[3]. The SAR averaged over 10 g of tissue
and whole-body averaged SAR are used as dose metrics,
which are surrogates for local and core temperature rises
respectively.

In current international standards, the averaging time for
local exposure is 6 min for frequencies up to 3 GHz for
controlled environments [2] or 10 GHz [1]. Recent studies
discussed the effectiveness of this averaging time [4]. Unlike
body-core temperature elevation, whose time constant is of
the order of an hour or longer [5], the time required for

local temperature to reach a steady state is the order of a
few dozen minutes [6], [7] and depends on frequency and
exposure area/volume [8].

If all the energy over an averaging time of 6 min was
concentrated into a short duration (e.g., several seconds),
the local temperature rise for a pulse may exceed that due
to constant exposure [9]. This is because the effect of blood
perfusion is marginal for brief exposures (e.g., several sec-
onds), and thus the adiabatic condition is approximately valid.
Indeed, the temperature rises almost linearlywith time in such
cases. The electromagnetic energy is thus concentrated on the
superficial part of the 10 g-averaged SAR volume, which is
due to the penetration depth decreasing as a function of fre-
quency. Also, in adiabatic conditions the uneven distribution
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of local SAR in conducting tissues such as skin, in contrast to
low conducting fat, increases local peak temperature before
the heat diffusion washes them out. Human protection for
such pulses that are shorter than the averaging time has
been discussed in e.g., Global Coordination of Research and
Health Policy on RF Electromagnetic Fields (GLORE) in
November 2017 (Washington DC, USA). Further analysis is
therefore needed to understand the temperature rise due to
brief intervals in order to protect humans for pulses that are
shorter than the averaging time.

For frequencies above 10-30 GHz, the radiant exposure
(incident energy density) averaged over a specific area is
currently being discussed (e.g., GLORE in November 2017).
This physical quantity is a good metric to describe skin
temperature elevation, as it is supported by surface heat-
ing theory [10] and a computational model [11]. Note that,
as is similar to continuous exposure, a physical quantity
corresponding to local temperature elevation is ‘‘transmit-
ted’’ energy density. The transmitted energy density is a new
physical quantity introduced as the basic restriction above
6 GHz in the ICNIRP public consultation document. For
brief exposure above 6 GHz, the correlation between the
transmitted energy density and the temperature elevation is
computed [12].

For frequencies below 6 GHz, the corresponding physical
quantities would be specific (energy) absorption (SA) [2].
It was mentioned in the ICNIRP 1998 guidelines [1] that
‘‘For frequencies exceeding 10 MHz, Seq(equivalent power
density)as averaged over the pulse width should not exceed
1,000 times the reference levels or that field strengths should
not exceed 32 times the field strength reference levels. For
frequencies between about 0.3 GHz and several GHz, and
for localized exposure of the head, in order to limit or
avoid auditory effects caused by thermoelastic expansion
the specific absorption from pulses must(be)limited.’’ The
IEEE C95.1 standard [2] mentioned that ‘‘For short duration
exposures the BRs(basic restrictions)and MPEs(maximum
permissible exposures)are related to energy, i.e., specific
absorption (SA) or energy density.’’ In the ICNIRP public
consultation document, the microwave hearing effect [13]
caused by thermoelastic waves are not considered as an
harmful tissue damaging effect. The SA is also used to limit
temperature rise from brief pulses, but for a different purpose.
Specifically, it was set to limit temperature rise to 5 and 2 ◦C
for superficial and deeper tissue, respectively. The reduction
factor 2 was applied for occupational exposure. The SA limit
was mentioned in the IEEE C95.1 standard, and equivalently
instantaneous peak power density is limited below a certain
level.

However, to the best of our knowledge, no study has
evaluated temperature rise for a pulse or pulse trains with
energy concentrated shorter than the averaging time (6 min).
Since it is difficult to measure absorbed energy and resultant
temperature rise in tissue, we took the approach to evaluate
this problem by deriving the computational relation. The
purpose of the present study is to determine how best to set the

FIGURE 1. Exposure scenario with (a) a multilayer cube model and (b) an
anatomical head model.

metric in order to limit temperature rise from brief exposures
at frequencies lower than 6 GHz.

II. MODELS AND METHODS
A. NUMERICAL HEAD MODELS
Fig. 1 (a) shows a three-dimensional multilayer cube
model that was used for simulating a human head. This
model is comprised seven-layers; the skin (1.5 mm), fat
(1.5 mm), muscle (2.5 mm), skull (4.5 mm), dura (1.0 mm),
cerebrospinal fluid (1.0 mm), and brain (58.0 mm) [14].
In addition, a realistic anatomical model named TARO,which
represents a Japanese adult male [15], was used for verifying
the results from the cubic model, as shown in Fig. 1(b).
The model with an original resolution of 2 mm was seg-
mented into 51 anatomical regions. The model resolution
was further divided into 0.5 mm cells to eliminate substantial
computational error in finite-difference time-domain (FDTD)
methods. The TARO was truncated at the bottom of the neck
as we only discuss the exposure scenario in the head. The
truncated head model is composed of 23 tissues.

B. ELECTROMAGNETIC ANALYSIS
The FDTD method [16], which has capability of handling
inhomogeneous materials like biological bodies, was used
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to conduct electromagnetic dosimetry in the human head
models. The SAR was defined as

SAR(r) =
σ (r)
2ρ(r)

|E(r)|2 , (1)

where |E| is the peak value of the electric field at position
r, and σ and ρ are the conductivity and mass density of the
tissue, respectively. The dielectric properties of the tissues
were determined with a Cole–Cole dispersion model [17].

As no averaging volume/mass has been discussed for the
SA, 10 g averaging mass was chosen considering the con-
tinuity at the limit for longer than 6-min exposures. If this
averaging mass was not used, the compliance may become
very complicated; the evaluation metric varies with exposure
duration. The SARwas averaged over 10 g of tissues in a cube
shape following IEEE C95.3 [3], IEEE 1528-2013 [18], and
IEC 62209-1:2016 [19]. In the current ICNIRP guidelines [1],
the averaging volume of SAR corresponds to contiguous
tissue, but has been changed to a cube in the ICNIRP public
consultation document.

C. THERMAL ANALYSIS
The computational method for temperature elevation is iden-
tical to that in our previous study [20]. The temperature in the
human model is computed by solving the Pennes’s bioheat
transfer equation (BHTE) [21]. This equation, which takes
into account various heat exchange mechanisms such as con-
duction, blood perfusion, and electromagnetically induced
heating, is represented by the following equation:

C(r)ρ(r)
∂T (r, t)
∂t

= ∇ (K (r)∇T (r, t))+ ρ(r)SAR(r)

+M (r, t)− B(r, t) (T (r, t)− TB(t)) , (2)

where T is temperature of the tissue, TB is blood temperature,
C is specific heat of the tissue, K is thermal conductivity
of the tissue, M is metabolic heat generation, B is term
associated with blood perfusion, and t is time. The blood
temperature is assumed to be spatiotemporally constant in the
same tissue because the exposure scenario considered here
describes localized exposure. Hence, the blood temperature
TB(t) in (2) is treated as constant (37 ◦C). Metabolic heat
generation was not considered in this study because it does
not affect the steady state temperature elevation when the
thermoregulatory response is ignored. The boundary condi-
tion between ambient air and tissue for (2) is given by

−K (r)
∂T (r, t)
∂n

= H (TS (r, t)− Te(t)) , (3)

where H , Ts, and Te denote the heat transfer coefficient,
surface temperature of the tissue, and ambient temperature
(independent of position), respectively. The variable ndenotes
the axis perpendicular to the model surface. The BHTE was
solved subject to the boundary condition in (3).

Table 1 shows the thermal parameters used in this study.
The thermal parameters used in this study are the same as

TABLE 1. Thermal constant and mass density of human tissue

those used by [22], where the parameters were borrowed
primarily from [23]. In addition, the blood perfusion rate
through skin was the same as that used in [10]. The blood per-
fusion varies substantially even in a shallow region (surface
to 3 mm). Its impact on the surface temperature rise is±15%
at frequency higher than 6 GHz [11], which is consistent with
Monte-Calro approach by [24]. This study used relatively low
blood perfusion rate to discuss conservative temperature rise
in RF exposure safety. Note that for relatively brief exposure
(e.g., < 10 s), the effect of the blood perfusion rate on the
temperature rise is negligible. The heat transfer coefficient
between skin and air was set to 5W/m2/◦C, which is a typical
value at an ambient temperature of 23 ◦C [25]. Thermoregula-
tion, such as vasodilation and sweating, were not considered
in this study as the exposure duration is brief and thus the
temperature elevation is confined around the surface in most
cases (e.g. [25], [26]).

D. EXPOSURE SCENARIOS
Fig. 1 illustrates exposure scenarios using the multilayer
cube model and the anatomical model in this study. The
frequencies of the RF fields were 0.1, 0.3, 0.4, 0.5, 1, 3 and
6 GHz. To simulate plane-wave exposure using the multilayer
cube, we conducted a 1D analysis with the same seven-tissue
composite for simplicity. Hereafter, the 1D analysis will be
referred to as plane wave exposure.

Considering the effect of field non-uniformity, a half-wave
dipole antenna was also considered as a canonical near-
field source. The length of the half-wave dipole antenna was
adjusted to approximately half the wavelength of the RF field
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FIGURE 2. SAR distribution (adjusted to 10 g averaged peak SAR at
10 W/kg) and temperature rise (at constant specific absorption
(SA) = 3.6 kJ) in the multilayer cube model. Distribution of temperature
rise were normalized at the peak temperature rise in each scenario.

so as to resonate at the respective frequencies. The separation
distances between the dipole antenna and the surface of the
cube model and the head model were set to 15 mm and
25 mm, respectively.

III. COMPUTATIONAL RESULTS
A. TEMPERATURE RISE IN SKIN AT CONSTANT SA AND
DIFFERENT FREQUENCIES
Fig. 2 shows the SAR distributions and temperature rise at
400 MHz and 6 GHz in the multilayer cube model for expo-
sure from the dipole antenna. The distributions of temperature
rise were obtained at constant SA (3.6 kJ/kg, corresponding
to the energy of 10 W/kg for 6 min) and were normalized
at the peak temperature rise in each scenario. Note that the
basic restriction is 10 W/kg for occupational exposure, and
the averaging time is set to 6 min below 3 GHz in IEEE
C95.1 [2] and 10 GHz in ICNIRP [1]. As shown in Fig. 2,
the temperature rise distributions for short exposure duration
(e.g., 1 s) is almost identical to the SAR distributions, whereas
it becomes smoother with increased time due to heat diffu-
sion. The peak temperature rise at 400 MHz and 6 GHz were
2.5 and 9.8 ◦C for 1 s short exposure, while they became
0.9 and 2.0 ◦C at 6 min, respectively. These results suggest
that an enhanced temperature rise can be observed at higher
frequencies. The spatial peak temperature rise appeared in the
skin (i.e., at the model surface) except at 3 GHz, which is
attributable to the standing wave in the tissues.

Fig. 3 shows the peak temperature rise in a multilayer cube
at constant SA (3.6 kJ/kg) for exposure to a dipole antenna
and plane wave. For comparison, the steady-state temperature

rise for 10 W/kg was also plotted. The temperature rise at
6 min is lower than that at the steady state because the
time required to reach the steady state is longer than 6 min
at frequencies below 6 GHz [4]. The temperature rise for
the dipole antenna is not shown at 100 MHz because its
dimension (approximately 150 cm) is much larger than that of
the head size. Thus, results for the dipole antenna at 100MHz
may become similar to the results from plane wave exposure
at 100 MHz just as their results at 300 MHz were similar.

As shown in Fig. 3, an energy concentration of less than
30 s below 500 MHz is required to induce a temperature
rise larger than that of the steady state for plane wave expo-
sure, but the exposure time is somewhat longer for a dipole
antenna. This difference is attributable to the difference in
SAR distribution (see Fig. 2). For short pulse duration at
6 GHz, a factor of 4 enhancement was observed. Also from
Fig. 3, the effect of frequency on pulse-induced tempera-
ture elevation is dominant over the field distributions (dipole
antenna versus plane wave). At the same frequencies, the dif-
ference was smaller than a factor of 2.

B. EFFECTIVENESS OF SA AS BASIC RESTRICTIONS
Fig. 4 summarizes the SA required for a skin temperature
rise of 1 ◦C for different parameters; frequencies, sources,
and exposure durations. Even at 1 s, the variability of tem-
perature rise by SA is significant (see Fig. 3). For increasing
frequency, the SA is concentrated on more superficial layers
and consequently less absorbed energy is needed for the same
temperature rise as at lower frequencies where the energy is
distributed to a larger volume. For decreasing exposure dura-
tions, the decrease of heat flow has a similar effect on tem-
perature rise. As shown in Fig. 4, the required SA decreases
as the exposure duration decreases. The heat diffusion length
depends on the exposure time, resulting in the SA difference
required for a given temperature rise (see Fig. 2).

The draft of IEEE C95.1 limits skin temperature rise to
2-3 ◦C. The ICNIRP public consultation document applied a
reduction factor of 2 to the 5 ◦C temperature elevation in tis-
sueswhich typically have lower thermo-normal temperatures.
The SAR averaged over 10 g tissue for localized exposure
was set to 10 W/kg for occupational exposure according to
the standards and guidelines available for RF protection at
that time. This resulted in a steady-state temperature rise
of approximately 2.5 ◦C at 0.1–6 GHz (see Fig. 3). In the
following discussion, we chose 2.5 ◦C as a reference, and
then the corresponding SA is discussed based on the bioheat
calculation. This can be confirmed also by Fig. 2, which
shows that the peak temperature rise occurs at skin rather than
internal organs whose allowable temperature rise is 1 ◦C.

Fig. 5 shows the SA required for a temperature rise
of 2.5 ◦C by rescaling Fig. 4 and the allowable SA
(= 3.6 kJ/kg) for head and trunk tissue. The allowable SA
at 6 min was designed to match SAR for the head and torso
tissues (not in the limb) in a conservative manner. As shown
in Fig. 4, the scenario resulting in the lowest SA required
for a temperature rise of 2.5 ◦C is from the dipole antenna
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FIGURE 3. Temperature rise in multilayer cube model for dipole antenna and plane wave exposure. The SA was
adjusted to 3.6 kJ/kg. The observed points correspond to the maximum temperature elevation. The steady-state
temperature rise (duration longer than 30 min) are also plotted for comparison.

FIGURE 4. SA required for temperature elevation of 1 ◦C for exposure
from dipole antenna and plane wave using multilayer cube model.

exposure at 6 GHz. This condition corresponds to a non-
uniform SAR distribution in the averaging cube (10 g). The
SA required below a few seconds of exposure is almost
duration-independent, and then increases gradually as the
exposure duration increases. The local temperature rise for
a short-pulse (τ > 0.01 s) with intense exposure of 3.6 kJ/kg
exceeds 2.5 ◦C at frequencies higher than 500 MHz. We thus
proposed a regression curve for the allowable SA to match
3.6 kJ/kg exposure at 6 min as follows:

SA =

{
0.25 τ < 1 s,
0.25+ 0.177

√
τ − 1 1s ≤ τ < 360 s,

(4)

FIGURE 5. SA required for a temperature elevation of 2.5 ◦C. The
allowable SA for occupational exposure and proposed regression curve
are also plotted.

where τ denotes the RF exposure duration. For irregular pulse
patterns or non-constant exposure levels, any exposure for
exposure durations (‘‘temporal analysis windows’’) between
the pulse duration and τ is considered, as is the same in
the incoherent guidelines. Note that the regression curve is
assumed to be proportional to the square root of duration
with an intercept below 1 s, which is approximately chosen as
adiabatic regime of temperature elevation. The function form
is based on the analytic solution by [10].

Another expression for the regression curve is chosen as
follows considering allowable SA at 6 min as well as the
adiabatic conditions:

SA = 3.6
(
0.05+ 0.95

√
t/
360

)
, (5)
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The proposed regression curves in (4) and (5) are plotted
in Fig. 5, which almost coincide each other.

C. DEMONSTRATIONS FOR MULTIPLE PULSES
We computed the following four scenarios to confirm the
change in temperature over time: i) five different short pulses
of 0.1 s exposure; ii) continuous exposure to a 0.1 s pulse with
intervals of 2 s, iii) after exposure of a continuous wave for
30 min, followed by a 6 min pause and a 1 s pulse exposure;
iv) four repetitions of 200 s pulses and 160 s pauses. The SA
values in all scenarios were adjusted so as not to violate the
regression curve in (4). Note that (5) is more conservative
than (4) except around 1 sec, and thus (4) is used in the
remaining of the study. The exposure scenarios (iii) and (iv)
considered more than 6 min to confirm the cumulative effect
of temperature rise in possible complicated environments.

Fig. 6 shows the time dependence of the subjected peak
SAR averaged over 10 g of tissue and the resulting tem-
perature rise at the position where the peak temperature
appeared in the multilayer cube model in exposure scenarios
(i), (ii), (iii), and (iv). To clearly show the effect of temper-
ature for exposure to multiple pulses, the peak temperature
was normalized at the peak steady-state temperature rise for
continuous exposure (adjusted to 10 g averaged peak SAR
at 10 W/kg). As shown in Fig. 6, the temperature rise for
exposure to multiple pulses was below the steady-state tem-
perature in most investigated cases. In the case of Fig. 6d,
the instantaneous peak temperature rise reached 2.3% above
the steady state temperature rise. The peak temperature rise
did not exceed the steady-state temperature when the sepa-
ration distance between the dipole antenna and the surface
of the cube model was set to 25 mm in the same scenario.
Fig. 7 shows the temperature rise in skin and brain tissue
at 400 MHz in exposure scenarios (iii) and (iv). The peak
temperature rise in the brain was 0.82 ◦C for continuous
exposure adjusted to 10 g averaged peak SAR at 10 W/kg
for 6 min. The normalized temperature rise in the brain was
95% and 89% of steady-state temperature in Figs. 7a and 7b,
respectively. The brain temperature elevates higher at lower
frequencies because the penetration depth of electromagnetic
field is deeper than at higher frequencies. The computed SAs
below 3 GHz are sufficiently higher than the regression curve
in Fig. 5. Thus, the regression curve also suppressed the brain
temperature rise for exposure to multiple pulses.

In addition, we computed the temperature rise using the
anatomical head model in several scenarios. Fig. 8 shows
the temperature rise in the anatomical head model in expo-
sure scenarios (i), (iii), and (iv). The peak temperature
for exposure to multiple pulses was normalized at the
peak steady-state temperature rise for continuous exposure
(adjusted to 10 g averaged peak SAR at 10 W/kg), as in the
case of the multilayer cube model. As shown in Fig. 8a–d,
the peak temperature rise for multiple pulses in the human
head was less than 98% of the steady-state temperature rise.
The normalized temperature rise of the anatomical model was
lower than that of the multilayer model.

FIGURE 6. Time dependence of the peak SAR averaged over 10 g of
tissue, and the resulting temperature rise for exposure to multiple pulses
from a dipole antenna using the TARO head model. The frequencies are
(a, b) 6 GHz and (c, d) 1 GHz. The temperature rise in the brain are also
plotted for exposure to a dipole antenna at 1 GHz. The SAR averaged over
10 g was adjusted so that the SA did not exceed the proposed regression
curve. The temperature was normalized at the peak steady-state
temperature rise for continuous exposure (adjusted to 10 g averaged
peak SAR at 10 W/kg).

FIGURE 7. Time dependence of the peak SAR averaged over 10 g of tissue
and the resulting temperature rise for four scenarios of multiple pulse
exposure from a dipole antenna at 6 GHz using the multilayer cubic
model. The SAR averaged over 10 g was adjusted so that the SA did not
exceed the proposed regression curve. The temperature was normalized
at the peak steady-state temperature rise for continuous exposure
(adjusted to 10 g averaged peak SAR at 10 W/kg).

IV. DISCUSSION
We computed the temperature rise for pulse exposures using
the multilayer cubic and anatomical humanmodels. Themain
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FIGURE 8. The time dependence of the peak SAR averaged over 10 g of
tissue and the resulting temperature rise in skin and brain using the
multilayer cubic model for exposure to multiple 400 MHz pulses from a
dipole antenna. The SAR averaged over 10 g was adjusted so that the SA
did not exceed the proposed regression curve. The temperature was
normalized at the peak steady-state temperature rise for continuous
exposure (adjusted to 10 g averaged peak SAR at 10 W/kg).

contribution of this study was to reveal the limitation of SA
in the current guidelines for pulse exposures and to propose
a new limit.

The definition of the basic restriction in the ICNIRP
1998 guidelines [1] states ‘‘Restrictions on exposure to
time-varying electric, magnetic, and electromagnetic fields
that are based directly on established health effects are
termed ‘‘basic restrictions’’. Depending upon the frequency
of the field, the physical quantities used to specify these
restrictions are current density (J), specific energy absorp-
tion rate (SAR), and power density (S).’’ Repetitive exposure
(i.e., repetitive pulses, intermittent exposure, or non-constant
exposure) is stated in ICNIRP 2013 guidelines [27] ‘‘As a
basic principle, any exposure within the anticipated maxi-
mum exposure duration, has to be below the corresponding
exposure limit for that duration.’’

At RF frequencies below 6 GHz, the SAR averaged over
10 g of tissue and the entire body are used as physical
quantities describing basic exposure restrictions for local and
whole-body exposures. The 10 g averaged SAR has been
demonstrated to be the one which can relate to a local tem-
perature elevation. Although the SAR averaged over 10 g
of tissue at a fixed temperature rise depends on local heat
diffusion e.g., blood flow, the heating factor, which is the

ratio of temperature rise to SAR is rather frequency inde-
pendent [20]. Consequently, the steady-state temperature rise
can be estimated once the SAR is obtained. The whole-body
averaged SAR is also a good surrogate for steady-state body-
core temperature rise, even though it depends on the sweating
capability and body surface area-to-mass ratio, core tempera-
ture elevation can be estimated once thewhole-body averaged
SAR is obtained [28], [29].

There is, however, no clear trend between SA and local
temperature rise. The difference between SA and SAR is
that the temperature rise for SAR considers the steady state,
whereas the temperature rise for SA is an instantaneous peak
temperature rise. The distance that heat can diffuse then
differs for different exposure durations. If the adiabatic condi-
tion is considered for uniform SAR distribution, the tempera-
ture rise at 1 s should be 1.06 ◦C from the SA (3.6 kJ/kg) and
the specific heat (3400 J/kg/◦C). The computed temperature
rise was higher than this value but gradually came close to
this value with decreased frequency. This is because of the
non-uniformity in the SAR distribution, even in the averaging
cube.

Fig. 3 shows that the temperature rise in the skin does
not reach 2.5 ◦C at frequencies below 300 MHz, although it
depends on the choice of the thermal parameters. An energy
concentration shorter than 240 s induced a temperature rise
larger than that of the steady state at 6 GHz, and the enhance-
ment decreased as frequency decreased. The enhancement at
100 MHz is at most 40% and may be in the range of compu-
tational variability originating from the thermal parameters,
the antenna position, and source modeling [30].

From the computational results, we derive a regression
curves of SA to limit time-dependent allowable energy. The
curves were designed considering the continuity with expo-
sures longer than 6 min. The averaging time of 6 min has
been prescribed in the international guidelines/standard for
constant exposures. This value is supported by computational
studies for local exposures [4], [6], [7]. In addition, the
averaging mass for the SA was considered to match that of
SAR. This is approximately the optimal mass to correlate
the local SAR and local temperature elevations for constant
exposure [29], [31]–[34]. If the latter were not specified,
the compliancemay become very complicated; the evaluation
metric varies with time, as mentioned above. We chose the
plane wave and the dipole antenna as canonical far-field
and near-field wave source, respectively. Though not shown
here to avoid repetition, we also computed the relationship
between SA and temperature rise for a planar inverted-F
antenna, which is used in a commercial wireless devices.
We confirmed that the results of PIFA was in the range
between the plane wave and the dipole antenna. For example,
the SA required for a temperature elevation of 2.5 ◦C for
exposure from PIFA was 2.48 kJ/kg/◦C, which is 17% larger
than the result of dipole and 4% smaller than the plane wave
at 2 GHz.

We have computed the temperature rise over time in the
skin and brain for multiple pulses when the SA did not exceed
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the proposed regression curve in (4). The time-function form
of the regression curve should match that above and below
6 GHz, considering exposure scenarios with frequency com-
ponents both above and below 6 GHz. Equations below
6 GHz include an adjustment that incorporates the more
conservative nature of the derivations for exposures above
6 GHz (see ICNIRP public consultation document).

We treated the peak temperature for multiple pulses nor-
malized by the steady-state temperature corresponding to the
peak SAR averaged over 10 g of tissue at 10 W/kg. This was
performed because the peak SAR averaged over 10 g of tissue
is used as the local exposure limit. As a result, the proposed
regression curve kept the temperature rise below a given level
for exposure to multiple pulses and below the steady-state
temperature except for one exposure scenario investigated.
The temperature rise frommultiple pulsesmay exceed 10%or
less above the steady state temperature rise, but that excess is
within the range of numerical uncertainty discussed in IEEE
ICES Technical Committee 95. One of the reasons of this
exceedance is attributable to the temperature decay which
is attributable to the non-uniformity of the specific heat in
realistic models.

The SA may be applicable for realistic exposure assess-
ment based on reference levels for external field strength or
incident power density in the case of relatively uniform field
such as generated by scanning high power radar antennas.
The SA derived here is used for deriving the reference level
by using the conventional relationship between SAR and
external field strength [35]. The purpose of this limit is more
related to the exposure of 10 sec or shorter. Practically, the SA
may be applied for protection in occupational exposure where
the intensity is higher than the limit for constant waves, but
the exposure duration is shorter than 6 min. For example,
pulses from radar antennas are assumed; 0.3 s pulses with
intervals of 2 s at 3 GHz. The allowable energy per pulse
restricted by the proposed curve decreases as the pulse repe-
tition increases; it may match the limit for an averaging time
of 6 min.

V. CONCLUSION
This study discussed the limit for human protection from brief
RF exposures (the duration is shorter than 6 minutes) at fre-
quencies lower than 6 GHz. There is no clear trend between
SA and local temperature, unlike the relation between SAR
averaged over 10 g of tissue and peak steady-state tempera-
ture rise. For brief exposures above 400 MHz, the maximum
temperature rise at the SA corresponding to that from a 6 min
local basic exceeds the steady state temperature, depending
on the exposure scenario. Duration time dependence is more
important to introduce new SA restriction. We proposed the
SA based on the regression curve required for temperature
elevation of 2.5 ◦C. In addition, we computed the temper-
ature rise over time for four typical scenarios with expo-
sure to multiple pulses in the multilayer cube and human
anatomical models. The regression curve derived here would
be a useful index to suppress tissue temperature rise from

brief exposures. Further researchmay be required to explore a
better physical quantity to relate the temperature rise for such
exposures.
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