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ABSTRACT A nonlinear tracking error model for unmanned ground systems (UGS) was developed, and
the constraints and objective function were established; the tracking control problem for UGS was converted
to a continuous nonlinear optimal control problem. In order to solve the complex problem, a symplectic
pseudospectral method based on the third kind of generation function is proposed. This approach largely
reduces the sensitivity of the initial guess for costate variables, and the characteristics of the original system
are not lost after discretization, which is not the case for other methods. Subsequently, by considering
the influences of random disturbances in the environment, the symplectic pseudospectral method and the
receding horizon control principle are combined to solve the nonlinear tracking problem; this method
overcomes the problem that a nonlinear optimal control method is difficult to apply for online tracking.
Finally, the proposed method is verified using simulation experiments, and it is demonstrated that the
proposed method achieves online and real-time tracking control of a standard trajectory in the presence
of random disturbances and it provides great maneuverability and feasibility for practical applications.

INDEX TERMS Optimal control, nonlinear control systems, mathematical programming.

I. INTRODUCTION
Recently, unmanned ground systems (UGS), including
ground transport of unmanned aerial vehicles (UAV),
unmanned vehicles and robots, has been widely used in the
aerospace, military, civil and other fields and an increasing
number of research studies on UGS are being conducted [1].
The most important control problems of UGS include posi-
tioning, path planning, and trajectory tracking [2]. Trajectory
tracking is a key issue that allows the UGS to move according
to a given standard path (or reference path). However, there
are still critical issues in trajectory tracking that are difficult
to solve and they include (1) the nonlinear and coupled char-
acteristics of the system, (2) the physical constraints of the
control input and output, and (3) the impact of uncertainties
in the environment [3], [4].

In order to solve these problems, the original nonlinear
system is commonly converted into a linear time-varying/
time-invariant system by using a linearization method and the
controller is designed to implement the tracking task using
linear control theory. Falcone et al. [5], [7] and Borrelli [6]
proposed a model predictive control (MPC) method based on
a continuous online linearization of nonlinear vehicle models.
Kühne et al. [8] used the linear MPC for the linearization

of an error model for a wheeled mobile robot (WMR), and
proposed an optimal control strategy for the WMR with non-
holonomic constraints. A nonlinear tracking error model of
a mobile robot was linearized by Bahadorian et al. [9], [10],
and a robust model prediction controller (RMPC) was pro-
posed to perform path tracking control. The guidance of
autonomous vehicles was described as an optimal control
problem with constraints by Gutjahr et al. [11], and a lateral
guidance strategy was developed using a linear time-varying
MPC method. Plessen and Bemporad [12] designed a lin-
ear time-varying predictive control method based on the
closed-loop tracking control theory. Li et al. [13] proposed
an MPC method based on neural-dynamic optimization to
achieve the trajectory tracking of a nonholonomic mobile
robot. Ali et al. [14] linearized the nonlinear behavior of a
robot and proposed a hybrid controller based on the fuzzy
logic theory, pole placement, and tracking.

The methods based on the first-order Taylor expansion
of complex nonlinear systems has obvious advantages for
simple applications and the more mature linear control theory
can be used to solve the problems rapidly [15]. However,
when the higher order terms are ignored, some features of
the original system may be lost and the defect is amplified
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when the errors and continuous random disturbances are
large.

With the increasing development of computer technology,
some researchers have tried to solve this problem by using
nonlinear theory and numerical calculation theory. For exam-
ple, Park et al. [16] proposed an adaptive output-feedback
controller in the presence of parametric uncertainties to study
the tracking control of nonlinear systems. Chen et al. [17]
proposed a hierarchical control system structure at three lev-
els (high, low and intermediate) that tracked the autonomous
vehicles under the conditions of uncertainty and external
disturbances. Ostafew et al. [18] proposed a learning-based
nonlinear MPC method by modeling the disturbance as a
Gaussian process to achieve the path control of a mobile
robot. The kinematics, actuator dynamics, and rolling resis-
tance were modeled by Leena and Saju [19], a smooth tra-
jectory tracking controller was designed, and the precise
trajectory tracking results were presented. Asif et al. [20] put
forward a type of output-feedback control using an adaptive
sliding mode control theory and analyzed the stability of the
observer. Based on the theory of an extreme learning machine
and a hybrid chaos optimization algorithm, Yang et al. [21]
designed a nonlinear predictive control strategy to solve a
tracking control problem in the presence of external distur-
bances. Korayem and Nekoo [22] designed a state-dependent
differential Riccati equation (SDDRE) controller for a nonlin-
ear tracking system and obtained suboptimal and feedforward
control gain.

Although these methods can largely retain the original
system characteristic and the accuracy can be high, the calcu-
lation efficiency is relatively low and it is difficult to achieve
online tracking control. In addition, the detection of real-time
errors and disturbances are often required in engineering
practice and this is difficult to achieve. In order to solve
this problem, we design an online tracking control method
with high precision and computational efficiency. For this
purpose, we firstly model the tracking problem of the UGS
and convert it into a continuous nonlinear optimal control
problem. According to the characteristics of tracking prob-
lem, the main purpose is to reduce the deviation between the
actual and ideal value of state variables, and [23] designed the
method to solve the optimal control problem of path planning
for UGS, but the objective function is mainly composed of
control variables and time terms. Therefore, on the basis of
the previous work, the symplectic pseudospectral method is
proposed to solve the optimal control problem, including
state variables and control variables in the objective func-
tion, combined with the third kind of generation function
in this paper, which not only has a high efficiency but also
greatly reduces the sensitivity of the initial assumed values
of the costate variables. The most obvious characteristic is
the introduction of the symplectic theory, which allows the
phase flow to maintain the symplectic structure after the dis-
cretization. The online optimal tracking control method based
on the receding horizon control (RHC) principle and the
symplectic pseudospectral method is designed by considering

the influences of random disturbances in the environment;
a simulation experiment is conducted to verify the proposed
method.

II. THE NONLINEAR OPTIMAL CONTROL
MODEL OF ERROR
The acceleration of motion control for UGS is provided
by the rear wheels, and the orientation is controlled by the
front wheels. Assuming that sliding rolling will not occur,
the motion can be analyzed without considering the horizon-
tal thrust, friction or inertia characteristics, and a nonholo-
nomic constraint can be obtained as follows,

d
dt

 xr

yr

θ r

 =
V r cos θ r

V r sin θ r

ωr

 (1)

where, (∗)r denotes the values corresponding to standard
trajectories, the direction variable θ r is the angle between the
x axis and the longitudinal axis of the UGS, ωr is the angular
velocity of the front wheel. The state variables Xr includes
two coordinates

(
xr yr

)
and the direction variable θ r .

The control variable Ur consists of ωr and translational
velocity V r .

Kanayama et al. [24] deduced the nonlinear error
model of the UGS based on the geometrical relation in
two-dimensional coordinate system:

f (X) =
d
dt

 x
y
θ

 =
 (ωr − u2)y+ u1
−(ωr − u2)x + V r sin θ

u2

 (2)

where, X =
(
x y θ

)T is error state variables, and U =(
u1 u2

)T is error control variables. And the state and control
variables should also satisfy the corresponding constraints,
which can be expressed as

h
(
X U t

)
≤ 0 (3)

In the case of tracking problems, the minimum tracking error
is usually the final goal, but the control process should be
stable too. So, the Bolza type cost function can be used as the
objective function,

J
(
X (∗) U (∗) t

)
=

1
2

tf∫
t0

(
XTQX+ UTRU

)
dt (4)

where, tf is the time to reach the goal, t0 is the departure
time, (Q)ns×ns and (R)nu×nu are the weight matrix and J is
the objective function, ns and nu is the number of state and
control variables, respectively.

As the error system is a highly coupled nonlinear system,
and it is hard to solve it directly, we can adopt the quasi-
linearization method to solve the equation. So, the nonlin-
ear optimal control model can be converted into a series
of linear-quadratic optimal control problems (LQOCPS),
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and the objective function can be expressed as,

J [k+1] =
1
2

tf∫
t0

((
X[k+1]

)T
Q[k+1]

(
X[k+1]

)
+

(
U[k+1]

)T
R[k+1]

(
U[k+1]

))
dt (5)

where, (∗)[k+1] denotes the value within the (k + 1) − th
iterations.

The original nonlinear error system can be expressed as[
dX (t)
dt

][k+1]
= A[k]X[k+1]

+ B[k]U[k+1]
+W[k] (6)

where,

A[k]
=
∂f
(
X U t

)
∂X

∣∣
X[k],U[k]

B[k]
=
∂f
(
X U t

)
∂U

∣∣
X[k],U[k]

W[k]
= f[k] − A[k]X[k]

− B[k]U[k]

And constraints can be expressed as

C[k]X[k+1]
+ D[k]U[k+1]

+ V[k]
≤ 0 (7)

where,

C[k]
=
∂h
(
X U t

)
∂X

∣∣
X[k],U[k]

D[k]
=
∂h
(
X U t

)
∂U

∣∣
X[k],U[k]

V[k]
= h[k] − C[k]X[k]

− D[k]U[k]

According to the preceding derivation, the results from
quasilinearization will not lead to the loss of precision for
introducing the W[k] and V[k]. In order to make it more
concise, the iteration designation will be ignored, and{

Ẋ = AX+ BU+W, X (t0) = X0, X
(
tf
)
= Xf

CX+ DU+ V ≤ 0
(8)

The equality of constraints can be obtained by introducing
a non-negative slack vector α for the inequality,

CX+ DU+ V+ α = 0 (9)

Then, the optimal control model for path planning is
described as

Minimize J =
1
2

tf∫
t0

(
(X)TQX+ (U)T RU

)
dt

subject to

{
Ẋ = AX+BU+W, X (t0)=X0, X

(
tf
)
=Xf

CX+ DU+ V+ α = 0
(10)

And Eq. (10) can be transformed into an unconstrained
problem by introducing the Lagrange multiplier vector λ
and the multiplier vector β. According to the Pontryagin’s

maximum principle, the multiplier vector should satisfies
αTβ = 0, and β ≥ 0. So, the objective function can be
described as

J =
1
2

tf∫
t0

(
H − λTẊ

)
dt (11)

where, the Hamiltonian function is

H =
1
2

(
(X)TQX+ (U)TRU

)
+λT (AX+ BU+W)+ βT (CX+ DU+ V+ α)

According to the classical variational method, if J is mini-
mal, theHamiltonian system needs to satisfy the control equa-
tion, the Hamiltonian canonical equation. And the control
equation is

∂H
∂U
= U+ BTλ+ DTβ = 0 (12)

Combining Eq. (12) with the Hamiltonian function, and
taking the partial derivative of the Hamiltonian function,
the Hamiltonian canonical equations can be obtained as
follows,

Ẋ =
∂H
∂λ
= AX− BR−1

(
BTλ+ DTβ

)
+W

λ̇ = −
∂H
∂X
= −ATλ− CTβ −QX

(13)

The Hamiltonian function is the function of X, U, λ, β
and α, and U can be expressed by X, λ, β and α according
to Eq. (12). Thus, H can be viewed as the function of the
four independent variables X, λ, β and α. And the third
kind of generation function within the time interval

[
a b

]
is [25]–[27]

S = (λb)T Xb +

∫ b

a

(
λTẊ− H

)
dt (14)

According to the Hamiltonian canonical equation, the
variation of S is

δS = (δλa)T Xa + (δXb)
T λb (15)

So, the third kind of generation function is just a function
of the state variables at the right end of the interval and costate
variables at the left end of the interval.

III. THE SYMPLECTIC PSEUDOSPECTRAL METHOD
BASED ON THE THIRD KIND OF
GENERATION FUNCTION
A. THE APPROXIMATION OF THE FOUR INDEPENDENT
VARIABLES BASED ON THE LEGENDRE
PSEUDOSPECTRAL METHOD
The time domain3 =

[
t0 tf

]
can be discretized into P inter-

vals, and the jth interval is3j
=
[
tj−1 tj

]
, j = 1, 2, · · · , P .

∀t ∈ 3j, there is a mapping relations 4 to realize the
transformation from t to τ ∈

[
−1 1

]
,

4 : τ =
2t − (tj + tj−1)

tj − tj−1
(16)
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Then, the following relationship can be obtained,

dτ
dt
=

2
tj − tj−1

(17)

In the next step, the Xj, λj, β j and αj in the jth interval
should be approximated by the N j order Lagrange interpo-
lating polynomial based on the LGL quadrature nodes, and
the LGL nodes τ jl , l = 1, 2, · · · , N j

− 1 , are the roots of
the derivative of the Legendre polynomial L̇ j (τ ) = 0. The
nodes are located in

[
−1 1

]
, and the N j

+ 1 LGL nodes

are
(
−1, τ j1, · · · , τ

j
N j−2

1
)
combined with the first nodes

τ
j
0 = −1 and the last nodes τ jN j = 1. The expression of H0j

as follows [28]:

H0j (τ ) =
N j∑
l=0

H0jl

(
τ 2 − 1

)
L̇ j (τ )

N j
(
N j + 1

) (
τ − τ

j
l

)
L jl

(18)

where, H0j can be Xj, λj, β j and αj, and (∗)j0 = (∗)
j−1
N j−1 ,.

j = 2, 3, · · · ,P

B. THE APPLICATION OF THE SYMPLECTIC METHOD
BASED ON THE THIRD KIND OF GENERATION
FUNCTION TO EACH INTERVAL
The derivative of Xj (τ ) at the LGL node is given by:

dXj
k (τ )

dτ
=

N j∑
l=0

Xj
lD

j
kl (19)

where, the (N + 1) × (N + 1) differentiation matrix Dj
kl

is defined as the pseudospectral differential matrix. And
the third kind of generation function can be expressed
as [29], [30]:

S
(
λ
j
0 Xj

N j

)
=

(
λ
j
0

)T
Xj
0

+

N j∑
k=0

wjk

(λjk)T N j∑
l=0

Dj
klX

j
l−

t j − t j−1

2
H


(20)

where, wjk is the weight coefficient of the jth interval, and the
expression is

wjk =
2

N j
(
N j + 1

) (
L jk
)2 (21)

Since the third kind of generation function is just a function
of λj0 and X

j
N j , it can be considered as independent variables,

while the others are stationary points of S j in the jth inter-
val, thus the stationary condition can be applied to them as

follows, 

∂S j0
∂λ

j
0

= Xj
0

∂S jm

∂λ
j
m

= 0, m = 1, 2, · · · ,N j

∂S jm

∂Xj
m

= 0, m = 0, 1, · · · ,N j
− 1

∂S jN j

∂Xj
N j

= λ
j
N j

(22)

where,

X̄j
=

{(
Xj
0

)T
,
(
Xj
1

)T
, · · · ,

(
Xj
N j−1

)T }T
λ̄
j

=

{(
λ
j
1

)T
,
(
λ
j
2

)T
, · · · ,

(
λ
j
N j

)T }T
And ∂S jm

∂Xjm
, ∂S

j
m

∂λ
j
m
can be expressed as

∂S jm

∂λ
j
m

=

N j∑
n=0

(
Kλλmn

)j
λ
j
n+

N j∑
n=0

(
KλXmn

)j Xj
n+

(
ξλm

)j
β
j
m+

(
γ λm
)j

∂S jm

∂Xj
m

=

N j∑
n=0

(
KXλ
mn
)j
λ
j
n+

N j∑
n=0

(
KXX
mn
)j Xj

n+

(
ξXm

)j
β
j
m+

(
γX
m
)j

(23)

where,(
Kλλmn

)j
=

t j − t j−1

2
wjmB

j
m

(
Bjm
)T
δnm(

KλXmn
)j
=

[(
KXλ
mn

)j]T
= −wjmD

j
mn − δ

0
mδ

0
mI−

t j − t j−1

2
wjm

(
Aj
m

)T
δnm(

KXX
mn

)j
= (0)ns(N j+1)×ns(N j+1)(

ξλm

)j
=

t j − t j−1

2
wjmB

j
m

(
Dj
m

)T
(
ξXm

)j
= −

t j − t j−1

2
wjm

(
Cj
m

)T
(
γ λm

)j
= −

t j − t j−1

2
Wj

m(
γ λm

)j
= (0)ns(N j+1)×1

Then,
Kj

11 Kj
12 Kj

13 Kj
14

Kj
21 Kj

22 Kj
23 Kj

24

Kj
31 Kj

32 Kj
33 Kj

34

Kj
41 Kj

42 Kj
43 Kj

44

 σ j+
[
ξ
j
λ

ξ
j
X

]
β j+

[
γ
j
λ

γ
j
X

]
=


Xj−1

(0)N j×1
(0)N j×1
λj


(24)
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where, the expression of σ j and β j is
σ j =

{ (
λj−1

)T
,
(
λ̄
j
)T
,
(
X̄j
)T
,
(
Xj
)T }T

β j =

{(
β
j
0

)T
,
(
β
j
1

)T
, · · · ,

(
β
j
N j

)T }T
The detailed coefficient expressions of σ j is

Kj
11 =

(
Kλλ

)j
(1:ns)×(1:ns)

,Kj
12 =

(
Kλλ

)j
(1:ns)×(ns+1:end)

,

Kj
13 =

(
KλX

)j
(1:ns)×(1:ns)

,Kj
21 =

(
Kj

12

)T
,

Kj
23 =

(
KλX

)j
(ns+1:end)×(1:ns)

,

Kj
24 =

(
KλX

)j
(ns+1:end)×(ns+1:end)

,

Kj
31 =

(
Kj

13

)T
,Kj

32 =

(
Kj

23

)T
,

Kj
33 =

(
Kλλ

)j
(1:end−ns)×(1:ns)

,

Kj
34 =

(
Kλλ

)j
(1:end−ns)×(ns+1:end)

,

Kj
41 =

(
Kj

14

)T
,Kj

42 =

(
Kj

24

)T
,Kj

43 =

(
Kj

34

)T
.

The coefficient matrix of β j is ξ j, the constant matrix term
is γ j, the right side is rj, then,

Kjσ j + ξ jβ j + γ j = rj (25)

The relationships of U = g
(
X, λ, β

)
can be obtained,

and the constraint equation in the jth interval can be organized
as

CjXj
−Hjλj −Mjβ j + Vj

+ αj = 0 (26)

where, the detailed coefficient expressions of Xj, λj, β j are
Cj
= diag

(
Cj
0, C

j
1, · · · , C

j
N j

)
Hj
= diag

{
Dj
0

(
Bj0
)T
, Dj

1

(
Bj1
)T
, · · · , Dj

N j

(
BjN j

)T }
Mj
= diag

{
Dj
0

(
Dj
0

)T
, Dj

1

(
Dj
1

)T
, · · · , Dj

N j

(
Dj
N j

)T }
and

Vj
=

{(
Vj
0

)T
,
(
Vj
1

)T
, · · · ,

(
Vj
N j

)T }T
αj =

{(
α
j
0

)T
,
(
α
j
1

)T
, · · · ,

(
α
j
N j

)T }T
Accordingly, the compact formula of the jth interval is

Kjσ j + ξ jβ j + γ j = rj

0jσ j −Mjβ j + Vj
+ αj = 0(

αj
)T
β j = 0, αj ≥ 0, β j ≥ 0

(27)

where, 0j = [−Hj, Cj ].

C. THE RESULT OF THE WHOLE-TIME DOMAIN
The compact form can be obtained by assembling the result
of each interval in the whole-time domain as follows,

Kσ + ξβ + γ = r
0σ −Mβ + V+ α = 0
(α)T β = 0, α ≥ 0, β ≥ 0

(28)

where, the coefficient K is a sparse and symmetric matrix,
and the coefficient matrixes of Eq. (28) are

K =


K1 Z1(
Z1
)T K2 Z2(

Z2
)T . . . ZP−1(

ZP−1
)T KP


Zj =

[
0(2ns×N j+ns)×ns 0(2ns×N j+ns)×(2ns×N j+ns)
−Ins×ns 0ns×(2ns×N j+ns)

]

ξ = diag

(
ξ1, ξ2, · · · , ξP

)
0 = diag

(
01, 02, · · · , 0P

)
M = diag

(
M1, M2, · · · , MP

)
The constant matrix terms are

γ =
{ (
γ 1
)T
,
(
γ 2
)T
, · · · ,

(
γ P
)T }T

r =
(
X0, 01×sd , λf

)T
V =

{ (
V1
)T
,
(
V2
)T
, · · · ,

(
VP
)T }T

α =
{ (
α1
)T
,
(
α2
)T
, · · · ,

(
αP
)T }T

where, sd =
P∑
k=1

2ns
(
N j
+ 1

)
− 2ns, and



X =
{ (

X1
)T
,
(
X2
)T
, · · · ,

(
XP
)T }T

λ =
{ (
λ1
)T
,
(
λ2
)T
, · · · ,

(
λP
)T }T

β =

{(
β1
)T
,
(
β2
)T
, · · · ,

(
βP
)T }T

σ =
{ (
σ 1
)T
,
(
σ 2
)T
, · · · ,

(
σP
)T }T

Considering the boundary conditions X0 and Xf , the
relevant matrix need to be modified as follows,

(1). The elements in the row ns
(
N 1
+ 1

)
+1 : ns

(
N 1
+ 2

)
of K, ξ and γ are replaced with 0, the sections of columns
ns
(
N 1
+ 1

)
+ 1 : ns

(
N 1
+ 2

)
and rows ns

(
N 1
+ 1

)
+

1 : ns
(
N 1
+ 2

)
are replaced with the unit matrix, the rows

ns
(
N 1
+ 1

)
+ 1 : ns

(
N 1
+ 2

)
of r are replaced with X0;

(2). The elements in the last ns rows of K, ξ and γ are
replaced with 0, the sections of the last ns columns and the
last ns rows of K are replaced with the unit matrix, and the
last ns rows of r are replaced with Xf .

The state variables and covariates can be obtained as
follows,

σ = −K−1ξβ −K−1 (γ − r) (29)
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Thus, the optimal control solution can be obtained by the
following relationship.{

Yβ + q = α
(α)T β = 0, α ≥ 0, β ≥ 0

(30)

where, Y = 0K−1ξ +M, q = 0K−1 (γ − r)− V.
Since the β and α satisfy the orthogonality relationship,

the Lemke method is adopted to obtain the β and α in this
paper, and the optimal control U = g

(
X, λ, β

)
can also

be obtained. Thus, the optimal control question is completely
solved.

IV. THE ONLINE OPTIMAL TRACKING CONTROL
METHOD BASED ON RHC
A. THE BOUNDARY CONDITIONS OF THE TIME WINDOW
Assuming the length of the sliding time window is T and the
window is 1k =

[
t01k t

0
1k + T

]
. At k = 1, the initial error

X0 can be regarded as the initial state variable X0
11 of the

nonlinear error model in the first window.
When k > 1, the state variables X0

1k at t01k denote
the difference between the actual state variables Xa

k and the
standard state variables Xr

k ; the actual error contains two
parts: the first part is caused by the error during the preorder
moment and it can be calculated within the time window
1k−1 =

[
t01k−1 t

0
1k−1 + T

]
; the second part is the distur-

bance caused by the equipment, measurement errors, or other
random factors at t01k , which is described by white noise or
colored noise.

The first part is only caused by the initial value X0
1k−1

within 1k−1 without considering the disturbance wk at t01k .
When the time window is increased 1k =

[
t01k t

0
1k + T

]
,

we have to calculate and measure the actual error state vari-
able at t01k ; it should be used as the left side of the boundary
value in the window 1k . Therefore, it can be denoted as:

X0
1k = X1

1k−1 + wk (31)

Because the optimal control is designed to eliminate or
reduce the error as far as possible, the final error of the time
window can be regarded asXf

1k = 0 and the deviation caused
byX0

1k can be eliminated within1k . Therefore, the right side
of the boundary value is 0.
Above all, the original problem can be transformed into

an optimal control problem in different time windows with a
fixed boundary and a fixed time interval. The online tracking
can also be achieved by sliding the time window and by
solving the optimal control problem in each time window.

B. THE FRAME OF THE ONLINE OPTIMAL TRACKING
CONTROL METHOD BASED ON RHC
Based on the above ideas, the online optimal tracking control
method based on the RHC can be designed according to the
framework as shown in Fig. 1.

The specific steps are as follows,
1) Initialize the time window length parameter T , the

sliding time window parameter k = 1, and the

FIGURE 1. The frame of the online tracking optimal control method
based on RHC.

corresponding boundary of the first time window
X0
11 = X0, Xf

11 = 0;
2) Initialize the parameters of the symplectic pseudospec-

tral method, where the number of LGL points is N + 1
and the corresponding boundary of the time window
1k =

[
t01k t

0
1k + T

]
is X0

1k , X
f
1k = 0;

3) Initialize the initial reference solution at each iteration
for the symplectic pseudospectral method. For the u−th
iteration (u ≥ 1), if u = 1, the initial reference solution
X[0]
1k , U

[0]
1k , λ

[0]
1k is generated randomly or the initial

reference solution is obtained from the results of the
last iteration;

4) Use the symplectic pseudospectral method for iter-
ation. Obtain the optimal control variables set(
U0
1k ,U

1
1k , · · ·U

N
1k

)
, state variables set

(
X0
1k ,X

1
1k ,

· · ·Xf
)
, and the corresponding time set

(
t01k ,t

1
1k ,

· · · t f
)
in time window 1k ; record and output the

result U0
1k , X

0
1k , t

0
1k ;

5) Determine the sliding time window, where the initial
time and state of the current time window are the
second value of the corresponding time set and the
corresponding state variable of the last time window
respectively; in order to consider the influence of ran-
dom disturbances, the disturbance is added to the initial
state variable of the current time window;

6) If t01k+1 + T ≥ tf , stop the sliding time window and
exit the program; otherwise, return step 2) continues
the loop.

V. RESULTS
In order to verify the accuracy and computational efficiency
of the online tracking method proposed in this paper, a stan-
dard trajectory Xr and corresponding control Ur are used for
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the simulation experiments. The computing environment is
Windows 7 64-bit, RAM 4.00 GB, MATLAB R2017a.

A. THE RELATIONSHIP BETWEEN THE STATE
VARIABLES AND WEIGHT MATRIX
Because the weight matrix in the objective function reflects
the importance of each variable, different results may occur.
In order to evaluate this outcome, the importance of the three
state variables is assumed to be the same. Because the posi-
tion of the UGS is only determined by the abscissa, ordinate,
and direction angle, the assumption is reasonable and the state
variable weight matrix is Q = diag

(
1 1 1

)
. In the case of

two control variables, the importance can be assumed to be
the same, namely, the weight matrix is R = diag

(
1 1

)
.

The coefficient τ is used to adjust the importance of
the state relative to the control variables; the value of R
does not change and Q is multiplied by the coefficient τ .
To describe the effects of different values of τ , an experiment
is conducted. The initial setup is: X0

=
(
0.1 0.8 −0.5

)T ,
Xf
=
(
0.0 0.0 0.0

)T , t0 = 0.0s, tf = 192.76s, and random
disturbances are ignored. The time domain is divided into
20 intervals and each interval is divided into 20 sections in
the simulation experiment. The values of τ are 1, 0.1, 0.01,
and 0.001. The specific results are as follows.

FIGURE 2. The relationship between the state variables over time under
different τ .

Figure 2 (a), (b), and (c) represents the relationship
between the three error state variables over time for different
coefficients. A comparative analysis of the results shown
in Fig. 2 and the specific calculation results indicates that it
takes only 6.3s to reach the level of 10−3 with τ = 1, 11.7s
with τ = 0.1, 24.8s with τ = 0.01, and 87.4s with τ = 0.001.

As the coefficient decreases, the importance of the state
variables decreases and the settling-time and overshoot of the
state variables increase.

B. TRACKING EXPERIMENT
The principle of this simulation experiment can be expressed
as follows, (1) the time interval of the sliding time window
is about 1s; (2) the error caused by the initial moment in the
time window is basically eliminated with the level of 10−3.
According to the results and the principle, the length T = 12s
and τ = 0.1.
As the existence of disturbances in the real world,

the actual trajectory cannot be exactly coincident with the
standard trajectory, and the deviation between the actual
trajectory and the standard trajectory is inevitable, a buffer
area (to expand the actual contour of the obstacle) should be
adopted for obstacle avoidance when the standard trajectory
is being calculated. In other words, there is deviation between
the actual trajectory and the standard trajectory within a cer-
tain range. So, the state should be constrained to ensure that
the deviation will be located within a certain range, and the
range is predetermined when the standard trajectory is being
calculated. The constraints of state and control variables in
this simulation experiment are x2 + y2 ≤ 1

V r cos(θ )− u1 ≤ 1.1
|u2| ≤ 0.3

where, the first constraint denotes that the deviation of tra-
jectory will be constrained as

[
0 1

]
, the second constraint

denotes that the actual linear speed of UGS is no more
than 1.1m/s, and the third constraint denotes that the deviation
of angular speed will be constrained as

[
−0.3 0.3

]
.

The random disturbance is selected as being 0.1 times
of the standard Gaussian white noise and X0

=(
0.06 1 −0.6

)T . The symplectic pseudospectral method
uses a nested grid; the time window is divided into 4 intervals
and each interval is divided into 3 segments, N = 12. The
specific results are shown below.

Figure 3(a) shows the results with the added noise, Fig. 3(b)
shows the error state variables based on the error model,
it denotes that the state error is located within the range of
constraints. What’s more, the results are consistent with the
constraint of horizontal and vertical axes (x2+y2 ≤ 1), which
is very important in engineering practice, and it canmake sure
that the real path will not collision with the obstacles by using
the tracking method.

Even though the continuous disturbances occurs in the
environment, the online control is achieved to ensure the
tracking precision by the method proposed in this paper;
it also implies that the control strategy obtained by themethod
is capable of anti-interference. In order to further test the
validity of the results, the control variables can be obtained
as follows,

According to the Fig. 4, the actual linear speed of
UGS is less than 1.1m/s, and the actual angular speed is
located at

[
−0.3 0.3

]
, it proved that the results can satisfy
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FIGURE 3. Noise and state error of the simulation experiment.

FIGURE 4. Actual linear velocity and angular velocity.

the constraints. So, the proposed method can solve the
constrained-state and constrained-control tracking problem.
To analyze the tracking accuracy and computational effi-
ciency, the comparison of standard path and actual path will
be made as follows,

Fig. 5 shows the standard path and actual path obtained
by the proposed method. According to the results, the actual
path almost overlaps with the standard path, and the tracking
error at the terminal position is 0, which can further prove
that the tracking results obtained by this method are of good
precision. What’s more, it indicates that the method can also
be applied in practice with high requirements on terminal pos-
ture, such as the parking problem and the trajectory tracking
for carrier aircraft on flight deck.

In addition, the interval of the sliding time window is
0.8292s and for 219 sliding time windows, the time required
is 8.168s. Each calculation requires 0.0373s, which repre-
sents only 4.4983% of the interval. It demonstrates that the
proposed method possesses the advantages of fast calculation
and can be used for real-time and online tracking.

FIGURE 5. The standard path and actual path.

Even though the errors are nonlinear with random distur-
bances, the online optimal tracking control method based on
the RHC achieves online and real-time standard trajectory
tracking control and can be used in engineering practice.

VI. CONCLUSIONS
The tracking of a UGS is converted to a continuous nonlinear
optimal control problem based on a nonlinear error model
and the characteristic of a Hamiltonian system. In order to
solve the problem, the symplectic pseudospectral method is
proposed. Subsequently, an online optimal tracking control
method based on the RHC is presented. Finally, the proposed
method is verified using a specific simulation experiment.
The results shows that the method has obvious advantages
as follows,

(1) It can solve the optimal problems with an infinite-
horizon discounted cost, and it can avoid solving the algebraic
Riccati equation (ARE) while the traditional methods are
hard to avoid it.

(2) The tracking precision is an important aspect of a
tracking method, and the real trajectory must not collision
with the obstacles for UGS. So, the control and state should
be constrained. However, the traditional tracking methods
are difficult to solve the tracking problem with inequality
constraint of control and state simultaneously. And it can be
solved by the method in this paper, and the tracking precision
is high.

(3) It eliminates the disadvantages of the traditional non-
linear optimal control method, and reduces the sensitivity to
the initial reference solution and the covariates.

(4) The calculation efficiency of this method is very high,
which can achieve the purpose of real-time tracking. More-
over, the RHC theory compensates for the disadvantage that
the symplectic pseudospectral method is not applicable to
online computing. It can be used for online and real-time
tracking control of the standard trajectory with disturbances,
and it also shows a good ability to adjust the control strategy
depending on the actual situation.

In order to improve the efficiency of the algorithm,
the framework of the algorithm needs to be further opti-
mized in future work. What’s more, if the parameters in

65436 VOLUME 6, 2018



J. Liu et al.: Design of an Online Nonlinear Optimal Tracking Control Method for UGS

weight matrix Q can be smaller or the parameters in R are
larger, it will increase the importance of control variables, and
control variables will be smoother too, but it will increase
the risk of larger errors. To find the balance, it needs to be
further studied. And it’s another challenging work to keep
balance the relationships of calculation efficiency, accuracy
requirements and other engineering requirements, and it will
be discussed in future work.
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