
Received September 20, 2018, accepted October 14, 2018, date of publication October 25, 2018,
date of current version November 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2878043

Behavioral Analysis of Scientific Workflows
With Semantic Information
JAVIER FABRA 1, MARÍA JOSÉ IBÁÑEZ1, PEDRO ÁLVAREZ1, AND JOAQUÍN EZPELETA1
Aragón Institute of Engineering Research, Department of Computer Science and Systems Engineering, Universidad de Zaragoza, 50009 Zaragoza, Spain

Corresponding author: Javier Fabra (jfabra@unizar.es)

This work was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness under Project
TIN2017-84796-C2-2-R and in part by the Aragonese Department of Innovation, Research and Universities under Project DisCo-T21-17R.

ABSTRACT The recent development in scientific computing related areas has shown an increasing interest
in scientific workflows because of their abilities to solve complex challenges. Problems and challenges that
were too heavy or time consuming can be solved now in a more efficient manner. Scientific workflows have
been progressively improved by means of the introduction of new paradigms and technologies, being the
semantic area one of themost promising ones. This paper focuses on the addition of semanticWeb techniques
to the scientific workflow area, which facilitates the integration of network-based solutions. On the other
hand, a model checking technique to study the workflow behavior prior to its execution is also described.
Using the unary resource description framework annotated Petri net formalism, scientific workflows can
be improved by adding semantic annotations related to the task descriptions and workflow evolution. This
technique can be applied using a complete environment for the model checking of this kind of workflows that
is also shown in this paper. Finally, the proposed methodology is exemplified by its application to a couple
of known scientific workflows: the first provenance challenge and the InterScan protein analysis workflow.

INDEX TERMS Petri nets, prediction analysis, RDF, scientific workflows, semantics.

I. INTRODUCTION
In the last years, scientific computing workflows have gained
a lot of interest in different areas related to science and human
life. Scientific workflows are a special type of workflows
which often underlies many large-scale complex e-science
applications such as climate modeling, structural biology and
chemistry, medical surgery or disaster recovery simulation,
among others. Scientific workflows have been progressively
improved by means of the introduction of new paradigms
and technologies in order to achieve more complex chal-
lenges. The focus of this work is on the incorporation of
semantic Web techniques to the scientific workflow area.
This has improved and made more flexible the description
and discovery of services, resources or workflows ([1]–[5]),
the composition of services and resources ([3], [6], [7]), or the
analysis of provenance data ([8]–[11]). The addition of
semantic aspects allows scientists to more efficiently and
flexibly browse, query, integrate and compose relevant cross
discipline datasets and services [1].

Scientific workflow execution is expensive in terms of
resource usage as well as a time consuming activity. For
this reason, it is of special interest to be provided with tools
and techniques making possible the analysis of the workflow

behavior prior to its execution [12], [13]. The aim of such
analysis would be to ensure a correct behavior as well as
facilitating having a very efficient resource utilization from
both budget and time points of view. In the end, it would be
a waste of time and money to realize after the execution of
a long task that the output has not the correct information
to feed the next task. The result of the analysis should allow
predicting the quality of the results and also identifying those
parameters suitable to get the expected outcome. The intro-
duction of semantic aspects in workflows increases flexibility
in the sense that it allows considering third party task imple-
mentation as a natural approach. The drawback is that such
inclusion requires new models and analysis techniques, able
to deal with such semantic aspects, to be considered. This is
the aim of this paper.

Regarding modeling techniques in scientific workflows,
one of the first research proposals that take advantage of
semantic Web technologies in the scientific workflows area
is [1]. This approach combines metadata support with (Web)
services within a framework that supports scientific work-
flows and shows how semantics descriptors are incorporated
to the services technology. In the same line [2], [14] con-
centrate on the advantages of the use of semantic aspects

66030
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5549-7649

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

in scientific workflows. Their conclusions are that providing
information of the context using semantic annotations can be
useful for the discovery and execution of workflows, for the
reuse of workflows. Reference [3] focuses on the inclusion
of quality information in science workflows. It proposes an
approach based on RDF annotations of OWL DL ontolo-
gies. [4] presents an approach that supports reasoning in
scientific workflows and uses this approach for resource dis-
covery. The project myExperiment [5] is a social network
based on semantic Web technologies that allows finding,
using and sharing scientific workflows and other research
objects. myExperiment has many different types of work-
flows, such as Taverna, Galaxy, Rapid Miner, Bio Extract,
and Kepler. As a part of this project, [15] proposes an OWL
DL ontology allowing its data to be published in a standard
RDF format allowing an expressive discovery.

As in any system, an important aspect to be considered
when preparing scientific workflows for execution is correct-
ness, thinking of it as ensuring that some important prop-
erties will be satisfied. The inherent distributed nature of
workflow executions, together with the required time and
computing resources, makes ensuring a good behavior a
necessity. Checking proper execution is a complicated task,
which becomes even more difficult when task are going to
be executed by third party services. In the case of workflow
systems, model checking has been one of the most important
technologies, mainly when control-flow aspects have to be
considered. LTLmodel checking is used in [16] for the case of
workflows in the e-commerce domain. The analysis is carried
out from a structure directly extracted from the Java code
implementing the services. On the other hand, [17] carries out
CTL model checking for a class of Petri nets with specific
building blocks for the workflow domain. A different level
of complexity is added when data and data flow must be
considered. And this is the case we are considering: workflow
tasks will correspond to service invocations, which we must
assure are adequate according to their published specifica-
tions. Also in this aspect model checking can be considered.
Reference [18] presents a review on how model-checking
technologies can be used for the verification and validation of
web services. In [19] BPEL processes are formalized in terms
of interacting agents. The model is translated into Promela
and LTL based model-checking is applied for the verification
of behavioral properties. A similar approach can be found
in [20], but the authors concentrate on providing models
for a big set of workflow control patterns, so that business
processes can also be checked for behavioral properties.
A very interesting solution is the one proposed in [12], which
presents an framework based on the modeling of control-
flow aspects by means of asynchronous π–calculus, using
λ–calculus for data flow aspects. The system is then ana-
lyzed using a CTL model checker. The framework is based
on separating the analysis of control and data properties.
Reference [21] uses LTL model checking for the formal
verification and validation of existing web applications, gen-
erating automata models from execution traces of a web

application. Another very interesting approach is presented
in a recent work [13], where authors explore the sound-
ness of Workflow nets with Data Constraints (WFDC-nets)
to describe different correctness requirements. To do that,
the reachability graphs ofWFDC nets are processedwith a set
of algorithms related to different properties that the authors
propose. The unfolding technique of Petri nets applied to the
soundness property is also applied to Workflow nets in [22].
In that work, authors propose an algorithm to generate a finite
prefix of the unfolding of a Workflow net that overcomes the
state explosion problem and allows to verify the soundness
property as well. To this end, authors propose the use of the
branching-process technique as an effective model-checking
technique.

In this paper we are going to show how the class of models
and analysis techniques (the Unary RDF Annotated Petri Net
formalism, namely U-RDF-PNs, and the RDFModel Check-
ing Analysis Technique, respectively) in [23] can be applied
to the domain of scientific workflows, allowing the scientists
community to take advantages of the new semantic technolo-
gies and facilitating sharing workflows and tasks as well as
reasoning about the results and behaviors. The starting point
of the analysis is a scientific workflow modeled by means
of a Petri net in which transitions correspond to the descrip-
tion of service invocations specified by means of semantic
information (RDF graphs) describing how the input and out-
put parameters are, as well as some pre and post-conditions
related to the service input and output. The aim is to prove
whether some behavioral properties are verified or not (such
as the possibility of the workflow to terminate or reaching
some desired state, for instance) from the model and an initial
marking corresponding to the initial data provided (described
by means of RDF graphs). Petri net structure provides with
the required means to deal with control-flow aspects, while
(RDF based) semantic technologies provide with the required
flexibility for service specification and data integration. The
usual semantics of Petri net models provides with the means
for a very natural integration of data and control flow aspects.
Once themodel is built, behavioral analysis can be done using
a CTL-based model checker specifically developed for the
U-RDF-PN formalism.

The remainder of this paper is organized as follows.
Section II introduces the main ideas in the paper by means
of a first example based in the First Provenance Challenge.
The way to use semantic Web techniques in order to describe
the data associated with each activity in a scientific workflow
is also depicted in that section. The Resource Description
Framework, RDF, is then introduced in Section III. Knowing
about the main concepts of RDF is required to understand
the nature and foundations of the proposed approach. After
that, Section IV details how to use the Parametric Unary
RDF Annotated Petri Net formalism and the Parametric RDF
Model Checking Technique in order to model and analyze
scientific workflows. The way the behavioral analysis can
be used is then introduced in Section V. The implementation
of a framework for model checking supporting the presented

VOLUME 6, 2018 66031

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 1. Workflow of the First Provenance Challenge.

approach is also provided there. Another application scenario
related to the InterProScan analysis of a protein sequence is
depicted in Section VI. Finally, Section VII concludes the
paper and addresses some limitations of the approach as well
as future research directions.

II. INTRODUCING SEMANTICS IN SCIENTIFIC
WORKFLOWS
Let us introduce the main concepts of the proposed approach
by means of an introductory example. The First Provenance
Challenge [24] is an experiment from the area of Functional
Magnetic Resonance Imaging (fMRI). Its aim is to create
population-based brain atlases from the FunctionalMagnetic
Resonance Imaging Data Center’s archive. Currently, this

archive is hosted in a cloud-based environment in the neu-
roimaging data repository at Neuroimaging Informatics Tools
and Resources Clearinghouse1 of high resolution anatomical
data.

Figure 1 depicts the workflow of this example. As shown,
the workflow specifies the set of processing steps to be
carried out over the input in order to obtain the final result.
In each stage there is a specific procedure which process the
input data and generates the output, which is then used as
an input for the next stage. Let us detail these parameters
and steps. The input of the workflow are a set of four brain
images (Anatomy Image 1 to 4) and a single reference

1http://www.nitrc.org

66032 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

brain image (Reference Image), which is used with each
previous brain image as input for the different stages of the
workflow. For each image, besides the pixel image itself there
is the metadata information (Anatomy header 1 to 4 and
Reference Header).
Let us now briefly depict the different stages of the

workflow. The first stage requires as input parameters a
brain image, the reference image and also the meta-data
information attached to the brain image. At this stage,
the align_warp process compares the reference image
to determine how the new image should be warped, this
is, the position and shape of the image adjusted, to match
the reference brain. As an output, this procedure gener-
ates the optimal warp parameter set which defines the
spatial transformation to be performed in the next stage
(Warp Params 1 to 4).

At second stage, the transformation of the image is per-
formed by the reslice process using each warp parameter
set. This creates a new version of the original brain image
with the configuration defined in the warp parameter set. The
output is a re-sliced image.

It is important to remark that these first two stages
can be executed in parallel. Once all the execution flows
(one per each input image) have finished, all the
re-sliced images are averaged into one single image using the
softmean procedure at the third stage. As a result, an atlas
image and its attached meta-data information are generated.

Then, the averaged image is sliced for each dimension
(x, y and z) to give a 2D atlas along a plane in that dimension,
taken through the center of the 3D image. The output is an
atlas data set, which is then converted into a graphical atlas
image using the ImageMagick utility convert (fourth and
fifth stages, respectively).

The specification of a scientific workflow must consider
two important aspects. On the one hand, which are the spe-
cific operations to be executed. On the other one, the set
of possible orderings in which the operations have to be
made. In the general case of scientific workflows the ordering
constrains are mainly due to the data dependencies. In this
example, the combination of the images must be done once
the align_warp and reslice operations have finished
for every input image, for example.

With respect to the specification of each operation, differ-
ent situations should be considered. In this specific example
we are dealing with a very closed workflow domain, where
the operations are taken from known and detailed libraries,
so that it is quite easy to invoke a procedure: the scientist
knows how the procedures must be invoked, as well as how
the results of each invocation are. Therefore, it is easy to
ensure that the input parameters will give a set of correct
results. The First Provenance Challenge is a good example
which reflects the traditional elements in scientific computing
scenarios, and which will properly introduce our approach.

However, it is a current (and desirable) trend to look for
processing tools and services over the Internet, integrating
them into a workflow, rather than locally develop and execute

FIGURE 2. Modeling and execution of service-oriented workflows
enhanced with semantic descriptions.

every required service. In this sense, service oriented comput-
ing allows the development of new added value services by
integrating net-based services. The integration of both Web
services and semantic Web technologies provide with the
required help: Web services facilitate the means to access ser-
vices through the Internet, while semantics provides with the
means to standardize the description of the service itself and
their properties so that automatic tools can test whether it is
the appropriate one for the task to be accomplished (see [14]
for some example in the biomedical problem domain).

Figure 2 shows the process and tools needed to design,
program and execute service-oriented workflows enhanced
with semantic information. Initially, scientists represent their
experiment by means of a sketch that determines the flow
of operations and data involved in them. Then, this non-
technical representation is translated into a workflow-based
model by computer science technicians. Workflow modeling
tools provide the functionality to help technicians in the
design of these workflows.Domain ontologieswill be used to
describe the inputs and outputs of the workfow, the require-
ments and data involved in each processing step, and the
control and data dependencies of the workflow. The result is
an abstract workflow that cannot be directly executed yet.
Service-oriented computing allows the development of

new workflow execution environment able to integrate net-
based services. Since there can be many different services,
abstract workflows can be instantiated by means of an
automatic process in which viable services are located and
selected from some service registries [25]. This automatic
service discovery and integration process is compatible with
the use and invocation of libraries and procedures provided
by scientists. Semantic descriptions provide with the means
to automate these tasks and compile a concrete workflow.
Before executing the resulting workflow, it must be ana-
lyzed in order to detect unexpected and erroneous behaviors.

VOLUME 6, 2018 66033

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

This analysis consists of verifying a set of behavioral prop-
erties which will guarantee the correct execution of the pro-
grammed workflow. Finally, this workflow is executed by an
engine which will return the corresponding results to scien-
tists and store the provenance information of each execution
into a internal data base. This information will help program-
mers to track workflow data throught all transformations and
scientists to reproduce their experiments and analyze their
defects.

Nowadays, the starting point of our proposal is a concrete
workflow enhanced with semantic information (label with
number 1 in Figure 2). In this paper we focus on two open
challenges: i) to know if a discovered and provided operation
(service) fits our needs for an specific task to be done for
some data; and ii) to be able to ensure that an entire workflow
formed using (or composed of) a set of such external opera-
tions could terminate properly. To help in dealing with these
two aspects, the presented approach relies on two different
technologies: i) semantics in order to have a rich and flexible
way of describing not only the processing capabilities of a
task service, but also the required inputs and outputs; and
ii) a class of formal models, called Unary RDF Petri nets
(U-RDF-PN) for the modeling and analysis of work-
flows using RFD-based semantic information, which
will be able to answer questions about the workflow’s
behavior.

Nevertheless, ideally new modeling tools should be devel-
oped or adapted to make the programming of these semantic-
based workflows easier (label with number 2 in Figure 2), and
new model-driven methodologies should be defined to auto-
mate the translation of high-level representations to workflow
models (label with number 3 in Figure 2).
Let us now introduce the main semantic concepts and

how semantic Web techniques can be used to describe input,
outputs, pre- and post-conditions in the tasks that conform the
workflow specification.

III. THE RESOURCE DESCRIPTION FRAMEWORK
The Semantic Web is based on the idea of adding seman-
tic and ontological metadata to the World Wide Web com-
ponents. This additional information, which describes the
content, the meaning and the relations among data, must be
provided in a formal way, so that they can be automatically
processed by machines.

The Resource Description Framework (RDF for short) is a
language designed to represent information about resources
on the Web (the author of a Web page or some license
information, for instance) [26]. However, by generalizing
the concept of a Web resource, RDF can also be used to
represent information about things that can be identified on
theWeb, even when they cannot be directly retrieved from the
Web. Examples of this usage include information about items
available from on-line shopping facilities (for example, infor-
mation about specifications, prices, and availability) or the
description of a Web user’s preferences for information
delivery [26].

In the approach presented in this paper, RDF is used to
describe information about the inputs and outputs of each task
represented in the workflow, as well as information about the
data flows which are carried out through the workflow. The
RDF model requires the description of resources in terms of
properties and values. This is done by means of the creation
of simple statements about resources which consist of three
elements: subject, property, and object. For example, for the
statement An image has a matrix called Matrix1, the sub-
ject is An image, the property is has matrix, and the object
is Matrix1.
RDF is based on the idea of identifying things using

Uniform Resource Identifiers (URIs). A URI is a string
which identifies a resource in an unique way, such
as images, documents, files, or any resource which
can be accessed through the network. For instance,
the URI <http://ImageExample.com]Image1> can be
used to identify the resource An image, while the URI
<http://Image.org]hasmatrix> can be used to identify the
resource has matrix. Sometimes, objects can be represented
using values (denoted as RDF Literals) instead of URIs.
In the statement The matrix Matrix1 X-dimension is 20,
the resource 20 can be represented as the RDF Literal 20,
which corresponds to an integer.

In order to simplify and enhace the writing of docu-
ments, RDF also allows the use of prefixes. For example,
the URI <http://ImageExample.com] > can be assigned a
prefix (@prefix ex: <http://ImageExample.com] >). Then,
ex : Image1 is a shortcut for the URI <http://Image
Example.com]Image1>.
RDF statements are composed of three components, which

are required to be written in an ordered way (subject,
predicate, value). In RDF terminology, this is called
an RDF triple. For instance, the statement A given Image
has a Matrix called Matrix1 can be represented with the
RDF triple 〈ex:Image1, im:hasMatrix, ex:Matrix1〉. When
several statements need to be linked, RDF uses sets of RDF
triples, called RDF graphs. For example, in order to link the
statements An image has a matrix called Matrix1 and The
Matrix Matrix1 X-dimension is 20, the following RDF graph
composed of two RDF triples could be used: {〈ex:Image1,
im:hasMatrix, ex:Matrix1〉, 〈 ex:Matrix1, Im:hasDimx, 20〉}.
The RDF Schema (RDFS) [27] is a language to represent

resources (as is the case of RDF) which can also deal with
rules over classes, subclasses and properties of classes. It can
be used to represent the membership to a class (rdf:type),
subsumption between classes (rdfs:subClassOf), subsump-
tion between properties (rdfs:subPropertyOf), the domain
(rdfs:domain) and range (rdfs:range) of properties, the meta-
class of classes (rdfs:Class), the meta-class of properties
(rdf:Property), etc. Rules allow deducing new data from
some given data. For example, from a rule satating that
class A is a subclass of class B and that class B is a sub-
class of class C can be deduced that class A is a subclass
of class C. A class in RDF (or RDF Schema) corresponds
to the generic concept of a type or category, somewhat

66034 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

like the notion of a class in object-oriented programming
languages.

The Web Ontology Language (OWL) [28] includes more
complex rules for describing classes based on allowed values
for properties. OWL improves the machine interpretability
of Web content supported by RDF and RDF Schema by
providing an additional vocabulary with a formal seman-
tics. For example, that two classes are equal (owl:sameAs),
equivalent (owl:equivalentClass) or have equivalent proper-
ties (owl:equivalentProperty). An RDF graph that uses the
OWL vocabulary to define classes and properties is generally
called and ontology.

Given two RDF graphs g and g′, it is said that g simply
entails g′ (g |HRDF g′) when each simple interpretation that
satisfies g also satisfies g′ [29] (the semantic information of
g is sufficient to satisfy the semantic information of g′). For
example, it is easy to see that the RDF graph g = {〈a, b, c〉,
〈d, c, e〉, 〈f, h, i〉} simply entails the RDF graph g’ = {〈a, b,
c〉, 〈d, c, e〉} being a, b, c, d, e, f, h and i different URIs.
In order to perform queries about RDF Data, RDF graph

patterns are used. AnRDFgraph pattern is a set ofRDF triple
patterns. An RDF triple pattern, like an RDF triple, contains
three fields: 〈subject, predicate, object〉. The difference is that
they can also contain variables (belonging to a given set of
variables) in any field. For example, the RDF triple pattern
〈Matrix1, Im:hasDimx, ?Dimx〉 can be used to recover the
X-dimension of Matrix1. The RDF triple pattern 〈?s ?p ?o〉
can recover any RDF triple. Query languages for semantic
data generally assume that implicit triples have been inferred
and added to the database. SPARQL is themost used language
for querying RDFData. Query languages over semanticWeb-
based databases have the same aims as SQL on relational
databases. The most well-known query language for query-
ing RDF graphs is SPARQL [30]. It reuses the SELECT
FROM WHERE shape of SQL queries (used for querying
relational data) including RDF graph patterns in the WHERE
clause. The atomic graph patterns are RDF triple patterns, and
the composing binary operations are AND (join), UNION
(set union) and OPTIONAL (left join). The new version
of SPARQL (SPARQL 1.1 [31]) extends the previous one
including EXISTS, NOTEXISTS,MINUS, path expressions,
GROUP BY, HAVING and aggregation functions (Flatten,
Count, Sum, Avg, Min, Max, etc.).

A. DESCRIBING INPUTS, OUTPUTS, PRECONDITIONS
AND POSTCONDITIONS
In this paper, RDF graph patterns are used to represent
the set of inputs and outputs of each task composing the
workflow. An RDF graph pattern is used for each input
parameter, so that any actual data entailing the graph pattern
could be used as an input value. Figure 3 depicts an intu-
itive view of task align_warp inside the scientific workflow
specification of the First Provenance Challenge [24] shown
in Figure 1. In the figure, RDF graphs are shown using
a graphical notation according to the U-RDF-PN ontology
definition.

?ai and ?ri are RDF-graphs that input actual parameters
(data provided at task invocation time) must entail. They
impose a kind of structural conditions for the provided graph
data: any RDF graphs entailing graph pattern ?ai and ?ri,
respectively, can be used to feed the image to be treated
in the align_warp service. On the other hand, the Pre-
condition imposes some constraints on the values provided
to fulfill input graph pattern variables. In this case, the fol-
lowing conditions are imposed: the images must have either
‘‘jpg’’ or ‘‘tiff’’ format, both the image to be processed and
the reference image must have the same format and, finally,
the reference image must effectively be the one the input ?ai
parameter is waiting for.

Analogously, the output graph pattern ?warp establishes
the structure of the data returned by the task execution call,
while Postcondition states how values in the output graph will
be obtained in terms of the actual parameters. In this case,
the postcondition establishes that the result stores the name
of the input image as well as the name of the reference image.
The last part establishes that as a result of the execution,
the warped image will have some new data computed from
the input parameters (the input image, ai1, and the reference
image, ri).

IV. A CLASS OF SCIENTIFIC WORKFLOW MODELS
ENHANCED WITH SEMANTIC INFORMATION
In this paper, Petri nets are used for the specification of
scientific workflows. Petri nets are a technology widely used
in the world of workflows [32]–[34] and also in the case of
scientific workflows [35], [36]. In order to be able to incor-
porate semantic information to Petri net models, we devel-
oped the class of Unary-RDF-Petri nets, U-RDF-PN [37].
This class belongs to the family of hight level Petri nets.
U-RDF-PN share the notions of place, arc, transition and
marking. Semantics are then incorporated in the tokens of the
nets (tokens are RDF graphs with information related to the
object the token refers to), in arc inscriptions (which are RDF
graph-patterns) and, finally, in transitions (incorporating pre-
conditions, postconditions and guards related to the transition
input and output arc inscriptions).

As usual in Petri nets, a system state is modeled by means
of the net marking while system evolutions are represented
as the enabling and firing of transitions. Figure 4 sketches
the Petri net view of the task invocation align_warp in
previous Figure 1. Figure 4-a) depicts formal and actual
parameters, whereas Figure 4-b) shows how token warp1
will appear in place p11 once transition align_warp is fired.
As it is shown, tasks are modeled by means of transitions as
follows:

• Data feeding the task will correspond to tokens (RDF
graphs) in the transition input places (p00 and p01).
On the other hand, data produced by the task (output
data) will correspond to the RDF graphs put by the
transition firing in transition output places. In the case of
theallign_warp task input data corresponds with the

VOLUME 6, 2018 66035

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 3. Intuitive description of task align_warp in Figure 1. a) Input graphs and preconditions.
b) Output token (RDF graph) and postcondition.

RDF graphs ai1 and r1 while the output data corresponds
to the RDF graph warp1 (Figure 4).

• Task inputs will be modeled by means of the RDF graph
patterns in the transition input arcs. At a given system-
state, a token in an input place entailing the RDF graph
pattern in the corresponding arc is a candidate for firing
the transition. In our case the RDF graph patterns ?ai and
?ri (Figure 4) model the inputs of the task align_warp.
Tokens ai1 and r1 entail the RDF graph patterns ?ai and
?ri, respectively, and they are candidates for firing the
transition.

• As it was stated, a transition can have a guard attached.
The guard is nothing else but a boolean expression
involving URIs, literals and input variables (variables
used in RDF graph patterns attached to the input arcs).
As usual in high level Petri nets, that guards can be
used to implement the preconditions of the task. Among
the possible graph candidates, only those satisfying the
guard can be used to enable the transition.

• When can the transition fire? Candidate tokens must be
found for every input arc so that a binding is possible

(which means that the same variable in different input
arcs must correspond to the same value in the different
input candidate tokens) and so that the guard attached
to the transition is made true for the chosen values.
In our example, transition align_warp can fire because
it is possible to find a binding assigning values (RDF
Literals or URIS) to the variables of the RDF graph
patterns ?ai and ?ri (this binding assigns for example
the URI ex:Image1 to the variable ?ImageID or the
RDF Literal 22 to the variable ?Dimx) and the precon-
dition (?AImExt = ‘‘jpg’’OR ?AImExt = ‘‘tif’’) AND
(?AImExt = ?RImExt) AND (?ARefImID = ?RIm-
ageID) is true (the extension of both figures is ‘‘jpg’’
and ex:RefImage is the reference image of ex:Image1).

• The RDF graph pattern attached to the output arcs rep-
resent task outputs, while the postcondition mapping
associates to a transition its corresponding postcondi-
tion, establishing the relation between the input and
output task values. In our example the postcondition
(?imageID = ?Aimage) AND (?RefImaID = ?RIm-
ageID) AND (?Matrix, ?Dimx, ?Dimy, ?Dimz, ?Voxel,

66036 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 4. A Petri net view of the task invocation align_warp
in Figure 1.

?Sizex, ?Sizey, ?Sizez) ← f(?ai,?ri) establishes a rela-
tion between the inputs (expressed with the RDF graphs
ai1 and r1) and the outputs (expressed with the RDF
graph warp1). It gives values to the variables ?imageID
and ?RefImaID using information of the input tokens
(a1 and ri) and it also gives values for the rest of
variables of the RDF graph pattern ?warp using func-
tion f . In the example sketched in Figure 4, in case
of transition align_warp fires choosing input tokens
ai1 and ri, that tokens will be removed from places
p01 and p00, respectively, and token warp1 will be put in
place p11.

The previous description deals with the way a task can be
modeled in a U-RDF-PN. However, as Petri net models, they
also include in a natural way the patterns used in (scientific)
workflows: parallel split, join, sequential composition, etc.

FIGURE 5. U-RDF-PN modeling the first provenance challenge workflow.

As usual with Petri net based formalisms, the system
semantics are defined around four main concepts: system
marking, which defines the distribution of tokens in
places, modeling the state of the system; transition
enabling, which determines the conditions under which
a system evolution can occur; transition firing,
which gives the effective state change; and reachability
graph, corresponding to the set of system states and state
transitions that can be reached by the system from a given
initial system state. The Petri net in Figure 5 shows the
U-RDF-PN model corresponding to the workflow shown in
our first example, depicted in Figure 1.

A. THE REACHABILITY GRAPH
For a given Petri net, the reachability graph is the graph
containing the set of reachable states (markings) as nodes and
an arc joining two statesm1 andm2 ifm2 is reachable fromm1
by firing a transition. Usually, since the transition will be fired
for a concrete binding, the binding itself can be associated
with the arc.

The generation of the reachability graph is based on the
classical algorithm used for computation of the reachabil-
ity graph in Petri nets [38]. This version of the algorithm

VOLUME 6, 2018 66037

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

has been modified to consider RDF annotations. The input
is an RDF graph representing the U-RDF-PN system. The
algorithm is quite simple. In the first step, the reachability
graph is empty, and the initial marking is the only marking
on a marking stack. Then an iterative process is applied as
follows: take the marking in the top of the stack; compute
the possible firings from that marking, as well as the marking
reached for each one of the possible firings; if any of these
new markings are not in the until-now computed graph, add
such marking and state transition to the graph, and also push
this marking into the stack. The process terminates when the
stack is empty. The method relies on two main functions. The
first one is the function that, for a given marking, computes
the set of enabled transition firings, as well as the markings
reached in case of such firings. The second one is the func-
tion that, given two markings, determines whether they are
equivalent or not. Let us now concentrate on these aspects.
The functions involved in the reachability graph computation
must work with RDF annotations: the function looking for
enabled transitions, the function for firing a transition and,
finally, the function checking for the equivalence of two
markings. The implementation of these RDF-based functions
is our main contribution regarding other implementations of
the classical algorithm for the computation of the reacha-
bility graph of a Petri net. Both checking for enabled tran-
sitions and equivalence between two markings have been
programmed as SPARQL queries (a SELECT and an ASK
query, respectively), whereas the firing of a transition has
been implemented using some functionalities provided by
the RDF database used for storing the input system. Both
solutions are easily integrated into our Java-based algorithm
implementation.

As an example let us show how it can be checked
whether two markings are equivalent. Let rg be a reachability
graph and S be a marking. The following SPARQL ASK
query checks if a marking exists in rg that is equivalent
to S:

1. PREFIX rg: <http://rg.org/>
2. ASK {
3.

∧k
ı=1 GRAPH rg : gi {

4. rg : gi rg : IsContainedInS ?S.
5. rg : gi rg : IsContainedInP rg : qi.
6. rg : tg1 rg : tgik .}
7. OPTIONAL {?newGraph rdf : type rg :RDFGraph.
8. FILTER (

∧k
ı=1 ?newGraph != rg : gi) }.

9. FILTER (!bound(?newGraph)) } ,
where

• S is the marking to be checked for the equivalence (〈rg :
S, rdf : type, rg : State〉),

• {g1,...,gk} are the RDF graphs contained in marking S.
(〈rg : gi, rdf : type, rg : RDFGraph〉, 〈rg : gi, rg :
IsContainedInS, rg : S〉 (i ∈ {1..k}),

• gi = {tg1 ,...,tgin } is the set of RDF Triples of gi (〈rg : tgj ,
rdf : type, rg : RDFTriple〉, 〈rg : gi, rg : hasT , rg : tgj〉
(j ∈ 1..in)).

FIGURE 6. A partial view of the reachability graph of the model
in Figure 5.

• and qi is the place that contains graphs gi in the marking
S (〈rg : qi, rdf : type, rg : Place〉, 〈rg : gi, rg :
IsContainedInP, rg : qi〉 (i ∈ {1..k}).

From a more intuitive point of view, the ASK query is
executed on the RDF database where the reachability graph rg
is stored. From marking S, Lines 3-6 define the set of
RDF graphs the target marking must contain. If a marking is
found, then it entails S. In order to guarantee the equivalence
between the found marking and S, lines 7-9 require S also
entailing the found marking and, therefore, both markings are
composed of sets of equivalent RDF graphs.

Once the algorithm execution terminates, the obtained
graph contains the set of possible states the system can
reach, as well as the set of possible transition firings,
which correspond to the set of possible system evolutions.
Figure 6 shows an excerpt of the reachability graph of the
model in Figure 5 (the whole graph contains 108 states).
Let us concentrate on the first possible evolution. Node
labeled as state_0 corresponds to the initial system con-
figuration, in which graphs ai1 to ai4 are in places
p01 to p04, respectively, and a graph r1 appears in each
p00_* place (these places are equivalent to place p00
in Figure 4). From this state four transitions could be
fired: align_warp_1 to align_warp_4, correspond-
ing each firing to the align_warp service invocation
with the different given images. In the reachability graph,
these four possibilities correspond to the four reachable
state appearing on top of Figure 6, with the corresponding
arcs (node_143, node_145, node_142 and node_144). The
central part of the figure corresponds to the system state
in which, once the four input images have been warped
and resliced, state named state_18iegssrtgl1va cor-
responds to the marking in which there is an RDF graph
describing the warped and resliced images in each
p21,p22,p23,p24 places, transition softmean_9 can
be fired, putting the same token in each p31,p32,p33
places, being state_bxsh6519ej74 the new state.

66038 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

Bottom part of the figure corresponds to the final part of the
execution in which all the images have been processed and
the X, Y and Z views have been obtained.

V. EXPLOITING THE MODEL: BEHAVIORAL ANALYSIS
As previously stated, the reachability graph is the represen-
tation of the possible system executions. In fact, it can be
viewed as an automaton recognizing the set of possible tran-
sition firings as the language. The behavior corresponds to
the properties (all the/some of the) executions verify. An exe-
cution corresponds to a possible interleaving of actions of the
involved processes.

This notion of execution introduces a new dimension to the
logical truth of propositions. In the usual mathematical logic,
for a given formula, an interpretation assigns values to atomic
variables, making the proposition to be either true or false.
In the case of executions, the value of variables can change
(due to the value assignments) and then the truth of the
proposition can also change along time. To deal with this,
temporal logic was introduced as a formal system adding
operators to manage time. This is possible because in the
interleaved executed actions one action comes after the other,
and so a notion of time can be considered. This time is not a
physical time, but rather a notion of present, past and future
related to the current, past and future system states.

Together with the classical logical operators (AND, OR,
etc.) two new kinds of operators are considered, A and E . At a
given state s, A (E) formula refer to something verified along
all the execution paths (at least one path) starting at s.

Among the different versions of temporal logic
(see [39], [40] for a good review), we have chosen Com-
putation Tree Logic (CTL). CTL formulas can begin with
one of the AX , EX , AG, EG, AU , EU , AF , EF connectives.
The first operator is either A or E . At a given state s,
A (E) formula refer to something verified along all the paths
(at least one path) starting at s. The second operator is one of
the set {X ,F,G,U}, meaning ‘‘neXt state’’, ‘‘some Future
state’’, ‘‘all future states (Globally)’’ and Until, respectively.
Symbols X ,F ,G,U cannot occur without being preceded by
an A or an E ; similarly, every A or E has to have one
of X ,F ,G,U after it.

Temporal logic formula can be used to specify properties
of the system behavior. For instance: 1) Is the value of
variable x always positive? (AGp formula, where p corre-
sponds to x being positive) 2) Can I ensure that the workflow
will always terminate properly? (AFp being p the predicate
establishing proper termination) 3) Can I ensure that the
workflow will sometimes terminate properly? (EFp being p
as in the previous case) 4) Is it possible to process the input
set of images when they have different formats, sizes, etc.?
(q ∧ EFp where q states that the input images have different
formats while p states that the images have been correctly
processed).

Figure 7 depicts the main operators in an intuitive way.
The root node corresponds to the state where proposition
p is being studied, while black nodes represent states that

FIGURE 7. Abstract representation of the main CTL temporal operators.

must verify p in order the temporal logic formula labeling
the corresponding figure be true. In the case of until formula
(the two formula at the right of the figure) non-bordered
nodes correspond to states that should verify the q part of
the formula, while black nodes correspond to those that must
verify p.
The second important concept is model checking. A model

checker takes a model of the system (the reachability graph
in our case),2 a temporal logic formula stating the property
we want to verify and a state of the model as inputs. Then,
the model checker determines wether the formula is verified
by the model at the given state. In our case, the considered
state is always the initial state. Let us describe the process in
more detail in the following sections.

A. AN ENVIRONMENT FOR MODEL-CHECKING
Figure 8 depicts the practical point of view of the approach
presented in this paper, the COMBAS framework [41]. This
framework has been updated over time and integrates a set
of tools for the generation of U-RDF-PN models, the cor-
responding reachability graph and its corresponding RDF
Annotated Kripke Structure [23]. COMBAS also allows the
creation and edition of queries and CTL formulae and the
execution of the model checking process.

From the user’s perspective, the input of the model
checking environment is composed of a scientific workflow
described as a U-RDF-PN using the PNML [42] standard3

and also its initial markings. A set of parsing tools has been
developed and integrated in COMBAS, allowing to use dif-
ferent input systems, such as a process logs or a provenance
trace, for example, which are converted to the U-RDF-PN
description for their processing.

TheCTL formula is also provided as an input of the system.
We should not forget that final users will usually be scientists,
not computer scientists. This means that maybe we are fac-

2Actually, it is a slightly modified reachability graph since the required
input is a Kripke structure (namely RDF-KS), which must be left-total: every
state must have at least one successor state. So, for those states corresponding
to total deadlocks a virtual dead state is added, which closes over himself.
This is just a technical adaption. This is the case of the self-loop in the last
state of the graph sketched in Figure 6.

3Petri NetMarkup Language (ISO/IEC 15909), anXMLbased description
for Petri nets.

VOLUME 6, 2018 66039

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 8. Architecture of the COMBAS model-checking framework.

ing with people that require some more friendly interfaces
than just a text editor for writing the formula. Some efforts
have been done in these directions, as shown in [43]. In the
COMBAS environment, the CTL Formula Generator is
a graphical Web-based tool that enables to easily build
CTL formulae.

During the model checking process, an RDF database is
used (RDF Triple Store in Figure 8). The COMBAS frame-
work allows using several different RDF databases, such
as the AllegroGraph RDFStore database or the Virtuosso
RDF Store, for example. The only requirement is that the
RDF store must allow to be accessed through a SPARQL
interface. In this paper the Virtuosso RDF Store has been
used.

As a result from the processing, the truth about the verifica-
tion of the formula is obtained. Moreover, a graph depicting
the reachability graph states can be browsed using a graphical
Web-based enabled interface (Formula results and reacha-
bility graph browser in Figure 8). Doing so, it is possible to
find the specific situations in which a predicate violates some
wanted condition, having a better insight of the workflow
behavior, and making easier the workflow improvement.

All components in COMBAS expose an easy, flexible and
usable interface, and the complexity of the graph generation,
storage in the semantic triple store and verification processes
are hidden from the user’s perspective.

Internally, the generation of the reachability graph is based
on the classical algorithm used for computation of the reacha-
bility graph in Petri nets described in subsection IV-A. A par-
allel and scalable approach for the parallel computation of the
reachability graph in COMBAS can be found in [44].

The implementation of our model checker is based on
an adaptation of the labeling algorithm proposed in [40].

The inputs are an RDF-KS and an RDF CTL formula. Both
inputs are stored into the RDF database following the corre-
sponding RDF schemas. Basically, the algorithm computes
the set of states of the input system M that satisfy the given
CTL formula φ. This process consists of three steps. Initially,
the formula φ is translated into an equivalent formula in terms
of the connectives AF , EU , EX ,>,∧ and¬. The equivalence
rules applied are defined as part of the labeling algorithm.
Secondly, the states ofM satisfying subformulas of φ (ψ) are
labeled, starting with the smallest subformulas and finishing
with the original formula. Finally, the algorithm returns the
states labeled with φ.

One of the relevant modifications of the algorithm is the
RDF encoding of the input parameters, M and φ. This
encoding makes possible to implement the EntailsRDF
and EntailsBGP in steps 2-b) and 2-c) of the proce-
dure as SPARQL queries. Let us take a deeper look at
the EntailsRDF function. Let us suppose that the RDF
database M .rdf stores the RDF-KS M. The RDF Schemas
used to represent M and φ are denoted as ks and ctl, respec-
tively. In this case the formula is an RDF graph defined by
(〈ctl : g, rdf : type, ctl : RDFGraph〉), where tg1 ,..,tgn are the
set of RDF triples of g (〈ctl : tgj , rdf : type, ctl : RDFTriple〉,
〈ctl : gi, ctl : hasT , ctl : tgj〉 (j ∈ 1..n)).
In order to calculate the set of states of the reacha-

bility graph M satisfying formula φ, the WHERE clause
(Lines 4-6) imposes the resulting states (Line 3) to satisfy g′

|HRDF g, for some g′ ∈ L(s) (in our RDF-KS definition, for a
state s, L(s) is the set of graphs that represent the state).

1. PREFIX ks: <http://ks.org/>
2. PREFIX ctl: <http://ctl.org/>
3. SELECT ?S FROM M .rdf
4. WHERE {GRAPH ctl :g{ ctl :gks : IsContainedInS

?S.
5. ?S rdf :Type ks :state.
6. ctl : tg1 ctl : tgn.} }

Finally, it must be said that the core of the algorithm
(the translation and the breaking down of the input formula,
the labeling of states, etc.) has been programmed using the
Java programming language.

Let us now express and check some interesting properties
of the example depicted in Section II, andwhich can be solved
using the COMBAS framework.

Can I ensure that the workflow will always termi-
nate properly? One should first model how this property
could be described in terms of the model. In this case it is
quite clear. A proper termination would correspond to the
case in which transitions convert_13,convert_14,
convert_15 have fired, putting the corresponding tokens
in places p51,p52,p53, respectively. The token in place
p51, for instance, must also have come firing transition
convert_13, which means that it must entail graph pattern
vaXg. Another important constraint for correctness is that
the set of images in the last state must all have the reference
image, and correspond to the same batch of images (in this

66040 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 9. Workflow for the InterProScan analysis of a protein sequence.

case we are just considering a unique batch, but in a general
case one could think about different batches, which require
preventing images from different batches to be mixed). So,
a possible formula to be checked for that property is [M,S1
|H AGEF(p51(vaXg)∧p52(vaYg)∧p53(vaZg))]. The formula
holds because for each branch in the RDF-KS it is possible to
reach a state with an RDF graph in places p51, p52 and p53
satisfying the RDF graph patterns vaXg, vaYg and vaZg.
Can a graphical atlas image be obtained if one of

the anatomy images has not been resliced? In our model
this implies to find a state s that contains an RDF graph
in places p51, p52 and p53 satisfying the RDF graph pat-
terns vaXg, vaYg and vaZg and an RDF graph satisfying
the RDF graph pattern vaw in places p11, p12, p13 or p14.
This property could be checked with the formula [M,S1
|H EF(p51(vaXg) ∧ p52(vaYg) ∧ p53(vaZg) ∧ (p11(vaw) ∨
p12(vaw) ∨ p13(vaw) ∨ p14(vaw))]. In this case the formula
does not hold because it is not posible to reach an state in
which the workflow has obtained a graphical atlas image
if there are a token in places p11, p12, p13 or p14. In this
situation transition softmean_9 could not have been fired.

VI. INTERPROSCAN ANALYSIS OF A PROTEIN SEQUENCE
In Section II, the First Provenance Challenge problem, which
constitutes a traditional environment for scientific comput-
ing, was used to introduce the applicability of the solution
proposed in this paper. As it was shown, a current trend
in scientific computing is to look for processing tools and
services over the network, integrating into our workflows
procedures and services deployed by external entities.

Let us now concentrate on this kind of solutions, by show-
ing how to analyze a protein sequence using the EMBL-
EBI’s InterProScan Web services4 from the The European
Bioinformatics Institute.5 The processing is based on the
InterProScan workflow, an integration workflow for the

4http://www.ebi.ac.uk/Tools/webservices/
5http://www.ebi.ac.uk

signature-recognition methods in InterPro [45] and depicted
in Figure 9.6 In this case, we have updated the InterProScan
workflow to use the latest EMBL-EBI’s InterProScan Web
services.

The workflow’s input is composed of the sequence to be
processed and a user email address for notification purposes.
There are a few more parameters required for the analysis,
set to their default values for this example. Starting with
this input, a protein sequence is searched inside a set of
protein families and domain signature databases integrated in
InterPro.7 As a result, a set of matches are properly formatted
and returned. These matches are also annotated with the
corresponding InterPro and GO term assignments.

Figure 10 depicts the proposed Petri net model of the work-
flow in Figure 9, using the U-RDF-PN formalism. All the
data flowing through the workflow have been semantically
annotated using instances of the PRO Protein Ontology [46].
In order to describe the Sequence_or_ID input of the
workflow (one of the twomandatory inputs) the Protein Com-
plex Concept of the protein ontology has been chosen [47].

A protein complex is a group of two or more associated
proteins. Its subconcepts Structure, StructuralDomains and
FunctionalDomains provide complete understanding of the
sequence, structure and functional interactions. In such case,
we can use po as the prefix to denote the protein ontol-
ogy. Therefore, the RDF triple :_Protein Complex
rdf:type po:ProteinComplex can be included in the
Sequence_or_ID RDF graph.

For the sake of clarity, the input sequence has been bound
to four proteins in this example. Transitions Input_data_1 to
Input_data_4 depict the process to obtain the four input pro-
teins, which will then compose a ProteinComplex structure.

In order to execute the runInterProScan activ-
ity, two different Web services, runInterProScan1
and runInterProScan2, are available in a repository.

6http://www.myexperiment.org/workflows/814.html
7http://www.ebi.ac.uk/interpro/

VOLUME 6, 2018 66041

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 10. U-RDF-PN modeling of the workflow for the analysis of a protein sequence presented in Figure 9.

Both services implement EMBL-EBI’s InterProScan Web
services, and they are able to carry out the protein analysis,
which is the more expensive part of the experiment. Both
services can also carry out the analysis using the protein crys-
tallographic data of the sequence (represented in the ontology
with theUnit Cell concept). Tomodel this, the RDF graph pat-
tern of the input arc of the transitions include the RDF triple
pattern :_ProteinComplex rdf:type ?rdftype,
while the transitions include a guard imposing the type to
be a po:UnitCell concept (?rdftype = po:UnitCell). In addi-
tion, the RDF graph representing the information of the
input data includes the RDF triple :_ProteinComplex
rdf:type po:ProteinComplex. We can see that it is
possible to execute this service because po:ProteinComplex
is a super concept of po:UnitCell, and the guard is then
evaluated to true.

However, let us suppose that the first service,
runInterProScan 1, is able to return information about
the functional properties of the interaction while the sec-
ond one, runInterProScan 2, is only able to return
information about the structure. Functional interactions
of proteins are represented with the Source Cell

concept of the protein ontology. The RDF graph rep-
resenting the information of the output data of transi-
tion runInterProScan1 will include the RDF triple
:_ProteinComplex rdf:type po:SourceCell.
However, the RDF graph representing the information of
the output data of transition runInterProScan2 will
include the RDF triple :_ProteinComplex rdf:type
po:UnitCell. In this last case, the output data can
also contain different parameters describing crystallographic
data: :_ProteinComplex po:A :_A (a in angstroms),
:_ProteinComplex po:B :_B (b in angstroms),
:_ProteinComplex po:C :_C (c in angstroms),
:_ProteinComplex po:Alpha :_Alpha (alpha in
angstroms), :_ProteinComplex po:Beta :_Beta
(beta in angstroms), :_ProteinComplex po:Gamma
:_Gamma (gamma in angstroms), :_ProteinComplex
po:z :_z (Z value), etc.

On the other hand, let us suppose that in the Web ser-
vice repository all the Web services that can be invoked
for the checkStatus activity (transition checkStatuts
in Figure 10) need information about the functional
interactions of the sequence proteins in order to be executed.

66042 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

FIGURE 11. A partial view of the reachability graph of the model in Figure 10.

Tomodel this, the RDF graph pattern of the input arc of transi-
tionrunInterProScan should include the RDF triple pat-
tern :_ProteinComplex rdf:type ?rdftype as in
the case of transitions runInterProScan. In this case
the transition guard should express that the type should
be a po:SourceCell concept (?rdftype = po:SourceCell). In
this situation, the token in the input place of transition
checkStatus can reach that place by either firing transi-
tion runInterProScan 1 or runInterProScan 2.
In the first case, checkStatus could be fired after,
but not in the second case. This last case is due to
the fact that the information in the token contains the

crystallographic data of the sequence, but the service
needs the information about functional interactions as
input.

If we built the reachability graph of this system we
could see that there are not states including the Inter
ProScan_GFF, VInterProScan_text_result,
InterProScan_XML_result and Status outputs
when transition runInterProScan 2 is fired. The exper-
iment execution will fail. This can be easily asked using the
temporal logic formula: AG(p_scaned(structureInformation)
⇒ EF(p_scanedInterProScan_GFF ∨ VInterProScan_text
_result ∨ InterProScan_XML_result ∨ Status)).

VOLUME 6, 2018 66043

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

Figure 11 depicts a partial view of the generated reach-
ability graph. As it can be seen, there is a clear sepa-
ration between the processing up to the checkStatus
transition firing in Figure 9 (places between state_0
and state_17az0tuohmiva in the reachability graph),
in which there is a state explosion, and the rest of the work-
flow (which is simpler). The full reachability graph contains
45 states.

A. PROPERTIES CHECKING
Let us now formulate two different queries over the model.
First, we would like to check if it is possible to get the
results from the workflow’s execution without specifying an
email address. This query corresponds to the following CTL
predicate: EG(AND(NOT (RDFGmail),EF(RDFGresult))),
where RDFGmail and RDFGresult are two RDF graphs that
specify if there exists a path in which for all its states there is
no information about the email while the result is calculated
and propagated up to the end. We want to check if this
formula fails, so the answer to the question will positive.
The model does not verify the formula, so the answer to the
query is TRUE. As a result, the COMBAS tool produced the
following output:

ERROR [main] (CombasApp.java:241) -
Model doesn’t satisfy the formula.

INFO [main] (CombasApp.java:244) -
Output files generated.

INFO [main] (CombasApp.java:248) -
Checked in 142 millis

INFO [main] (CombasApp.java:249) -
Formula: formula_qdlgfxyo3yn2

INFO [main] (CombasApp.java:250) -
Model: netId2p7pw09m4j1x_RG

As a second example, let us now check if it is possible to
get the results from the protein analysis in GFF format but
not as a formatted text. This query can be expressed with the
following formula: EG((RDFGPgff) → AF(RDFGPtxt)),
stating that there exist a path in which every state verifies
one or both of these conditions: i) RDFGPgff is not verified,
which implies that the result has not been calculated in GFF
format, so the formula is true at these states, or ii) RDFGPgff
and AF(RDFGPtxt) are both verified, which means that from
that point, for every path there exist a future state where the
solution is formatted as text.

Therefore, the formula will be true if: i) the solution is not
formatted as GFF, or ii) the solution is calculated in GFF and
text formats. The way the net in Figure 10 has been modeled
produces the formula to be satisfied, since the result is first
formatted as text and then transformed to GFF. The model
satisfies the formula, so the answer to the query is false. This
was checked with the COMBAS tool:

INFO [main] (CombasApp.java:239) -
Model satisfies the formula!

INFO [main] (CombasApp.java:244) -
Output files generated.

INFO [main] (CombasApp.java:248) -
Checked in 1186 millis

INFO [main] (CombasApp.java:249) -
Formula: formula_e2bi82zmwasx

INFO [main] (CombasApp.java:250) -
Model: netId2p7pw09m4j1x_RG

Another different inconsistences of the input data could
be detected using the approach presented in this paper.
For example, if the output of a service returns the infor-
mation about the structure of some proteins in angstroms
being this result used in a later step as the input of a ser-
vice requiring the used of millimeters, the analysis could
detect this situation, avoiding the problem to be detected
at execution time, after a few hours of computations! The
proposed approach also allows detecting problems without
knowing specific data, detecting two properties of a con-
cept to be different. Let us, for instance, suppose a ser-
vice needs a Unit Cell containing the same parameters for
Alpha and Beta. This can be represented in our model
with a transition whose input arcs contain the RDF graph
patterns :_ProteinComplex po:Alpha ?Alpha and
:_ProteinComplex po:Beta ?Beta and the guard
?Alpha 6=?Beta. If the input data of the transition contain
the triples :_ProteinComplex po:Alpha :_Alpha
and :_ProteinComplex po:Beta :_Alpha it can
be ensured without execution that the experiment will fail
(because the guard will be evaluated to false).

VII. CONCLUSIONS
Petri nets and model checking techniques are widely used in
different application domains. This work has focused on their
application to the area of scientific workflow analysis. The
use and adaptation of traditional model checking techniques
to this area not only allows checking interesting properties
and behaviors of a workflow prior to its execution, but also the
safe modeling and implementation of reliable systems with-
out any additional cost in terms of computation or physical
resources.

Adding semantic aspects to workflow models allows a
higher flexibility for analysis and improves resource usage
when dealing with complex problems. However, this requires
some specific considerations at both the modeling and analy-
sis stages. This has been the main focus of this paper, where
the U-RDF-PN has been presented as a high level formalism
for the modeling of scientific workflows with well defined
semantics, which allows the set of system states and state
transitions to be generated and used as the inputs of the model
checker. In order to prove the feasibility of the proposed
approach, a fully-functional environment for model checking
has been implemented.

The suitability of the approach presented in this work
has been demonstrated by means of its application to two
different cases. On the one hand, the First Provenance
Challenge (FPC) workflow has been used to introduce the
main concepts related to semantics and model checking.

66044 VOLUME 6, 2018

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

On the other hand, the InterScan protein analysis work-
flow has been presented to depict an example in the field
of biocomputing engineering. Both scenarios are educa-
tive enough as to allow presenting the main concepts and
techniques behind our proposal as well as exemplifying its
application.

However, the proposed method has some important limita-
tions. For a given task specification there are different types of
postconditions that could be defined. Many of them could be
evaluated without executing the task invocation, and there are
sets of postconditions that could only be evaluated by means
of the task execution. These cases cannot be considered if we
want the U-RDF-PN model as a mean to foresee the system
behavior. For instance, in the First Provenance Challenge
Workflow, if a task specification states that the output format
of an image is JPEG, or it is the same of the input image, and
the initial marking of the net establishes the initial parameter
that will feed the workflow, it would be possible to evaluate
the transition enabling and the algorithm will construct the
reachability graph allowing the workflow analysis. However,
there are sets of postconditions that require the task to be
executed in order to get them. For instance, when some output
parameter depends on data received at run-time or refers to
the result of the task invocation (for instance, the first element
of the resulting vector is the negative value of the first input
parameter).
On the other hand, another limitation is that our tech-

nique is not able to deal with preconditions requiring
results that would only be known after the real task exe-
cution. For instance, let us suppose that in the EBIs
WSInter-ProScan service example the runInterProScan ser-
vice has a precondition in which is established that this
service will be executed only if the parameters describ-
ing crystallographic data verify some property, for example
po:Alpha and po:Beta are over 50 angstroms. In such
case, our model is not able to answer if this precondition is
true or false because this data will depend of the final exper-
iment, and therefore it is not able to build the reachability
graph.

A solution to tackle these issues is being addressed: the
presented formalism and the analysis techniques are being
extended in order to deal with parametric data in precondi-
tions allowing this way to analyze a wider number of scien-
tific workflows [37].

Our ongoing work is also focusing on the efficiency of
the prototype, which is being improved to deal with more
complex systems, as experimental results demonstrated the
existence of a bottleneck in the computation of the reacha-
bility graph. We have already developed a parallel version
of the tool that is executed in cluster and cloud environ-
ments, greatly decreasing computation time [44]. Finally, the
COMBAS framework allows the use of different RDF stor-
ages, so we are carrying out a study to analyze and improve
the efficiency of the overall system as each RDF solu-
tion exposes different costs depending on the inference
engine.

REFERENCES
[1] C. Berkley, S. Bowers, M. B. Jones, B. Ludäscher, M. Schildhauer, and

J. Tao, ‘‘Incorporating semantics in scientific workflow authoring,’’ in
Proc. 17th Int. Conf. Sci. Stat. Database Manage. (SSDBM). Berkeley, CA,
USA: Lawrence Berkeley Nat. Lab, 2005, pp. 75–78.

[2] M. C. Cavalcanti et al., ‘‘Managing structural genomic workflows using
Web services,’’ Data Knowl. Eng., vol. 53, no. 1, pp. 45–74, 2005.

[3] A. Preece et al., ‘‘Managing information quality in e-science using seman-
tic Web technology,’’ in Proc. 3rd Eur. Semantic Web Conf. (ESWC), 2006,
pp. 472–486.

[4] Z. Lacroix, C. R. L. Legendre, and S. Tuzmen, ‘‘Reasoning on scien-
tific workflows,’’ in Proc. IEEE Congr. Services (SERVICES), Jul. 2009,
pp. 306–313.

[5] C. A. Goble et al., ‘‘myExperiment: A repository and social network for
the sharing of bioinformatics workflows,’’ Nucleic Acids Res., vol. 38,
pp. W677–W682, Jul. 2010.

[6] K. Derouiche and D. A. Nicole, ‘‘Semantically resolving type mismatches
in scientific workflows,’’ in Proc. Move Meaningful Internet Syst., Vilam-
oura, Portugal, Springer-Verlag, 2007, pp. 125–135.

[7] J. Kim, Y. Gil, and V. Ratnakar, ‘‘Semantic metadata generation for large
scientific workflows,’’ in Proc. 5th Int. Semantic Web Conf. (ISWC), 2006,
pp. 357–370.

[8] S. Munroe, S. Miles, L. Moreau, and J. Vazquez-Salceda, ‘‘PrIMe: A soft-
ware engineering methodology for developing provenance-aware applica-
tions,’’ in Proc. 6th Int. Workshop Softw. Eng. Middleware (SEM), 2006,
pp. 39–46.

[9] Y. L. Simmhan, B. Plale, and D. Gannon, ‘‘A framework for collecting
provenance in data-centric scientific workflows,’’ in Proc. IEEE Int. Conf.
Web Services (ICWS), Sep. 2006, pp. 427–436.

[10] S. M. S. da Cruz, M. Luiza, M. Campos, and M. Mattoso, ‘‘Towards a
taxonomy of provenance in scientific workflow management systems,’’ in
Proc. Congr. Services (SERVICES), Jul. 2009, pp. 259–266.

[11] T. Ellqvist, D. Koop, J. Freire, C. Silva, and L. Strömbäck, ‘‘Using
mediation to achieve provenance interoperability,’’ Proc. IEEE Congr.
Services (SERVICES), Jul. 2009, pp. 291–298.

[12] V. Curcin, M. Ghanem, and Y. Guo, ‘‘The design and implementation of a
workflow analysis tool,’’ Philos. Trans. Roy. Soc. A, Math. Phys. Eng. Sci.,
vol. 368, no. 1926, pp. 4193–4208, 2010.

[13] Y. He, G. Liu, D. Xiang, J. Sun, C. Yan, and C. Jiang, ‘‘Verifying the
correctness of workflow systems based on workflow net with data con-
straints,’’ IEEE Access, vol. 6, pp. 11412–11423, 2018.

[14] M. D. Wilkinson, B. Vandervalk, and L. McCarthy, ‘‘The semantic auto-
mated discovery and integration (SADI) Web service design-pattern, API
and reference implementation,’’ J. Biomed. Semantics, vol. 2, no. 8,
pp. 1–24, 2011.

[15] D. Newman, S. Bechhofer, and D. De Roure, ‘‘myExperiment: An ontol-
ogy for e-research,’’ Semantic Web Appl. Sci. Discourse, Aug. 2009.

[16] J.-H. Pfeiffer, W. R. Rossak, and A. Speck, ‘‘Applying model checking
to workflow verification,’’ in Proc. 11th IEEE Int. Conf. Workshop Eng.
Comput.-Based Syst. (ECBS), May 2004, pp. 144–151.

[17] F. L. Tiplea, D. C. Marinescu, and C. Lin, ‘‘Model checking and abstrac-
tion for workflow net verification,’’ in Proc. 1st Int. Workshop Petri nets
Coordination (PNC), 2004, pp. 131–145.

[18] H. Huang and R. A. Mason, ‘‘Model checking technologies for Web
services,’’ in Proc. 4th IEEE Workshop Softw. Technol. Future Embedded
Ubiquitous Syst. (SEUS-WCCIA), Apr. 2006, p. 6.

[19] R. Dong, Z. Wei, and X. Luo, ‘‘Model checking behavioral specifica-
tion of BPEL Web services,’’ in Proc. World Congr. Eng., vol. 1, 2008,
pp. 383–399.

[20] S. Patig and M. Stolz, ‘‘A pattern-based approach for the verification
of business process descriptions,’’ Inf. Softw. Technol., vol. 55, no. 1,
pp. 58–87, 2013.

[21] M. Haydar, A. Petrenko, S. Boroday, and H. Sahraoui, ‘‘A formal approach
for run-time verification of Web applications using scope-extended LTL,’’
Inf. Softw. Technol., vol. 55, no. 12, pp. 2191–2208, 2013.

[22] G. Liu, W. Reisig, C. Jiang, and M. Zhou, ‘‘A branching-process-based
method to check soundness of workflow systems,’’ IEEE Access, vol. 4,
pp. 4104–4118, 2016.

[23] M. J. Ibanez, J. Fabra, P. Alvarez, and J. Ezpeleta, ‘‘Model checking
analysis of semantically annotated business processes,’’ IEEE Trans. Syst.,
Man, Cybern. A, Syst. Humans, vol. 42, no. 4, pp. 854–867, Jul. 2012.

[24] L. Moreau et al., ‘‘Special issue: The first provenance challenge,’’ Con-
currency Comput., Pract. Exper., vol. 20, no. 5, pp. 409–418, 2008,
doi: 10.1002/cpe.v20:5.

VOLUME 6, 2018 66045

J. Fabra et al.: Behavioral Analysis of Scientific Workflows With Semantic Information

[25] I. Paik, W. Chen, and M. N. Huhns, ‘‘A scalable architecture for auto-
matic service composition,’’ IEEE Trans. Services Comput., vol. 7, no. 1,
pp. 82–95, Jan./Mar. 2014.

[26] D. Brickley and R. V. Guha. (Feb. 2014). RDF Vocabulary
Description Language W3C Recommendation. [Online]. Available:
https://www.w3.org/TR/rdf11-primer/

[27] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph.
(Feb. 2014). RDF Vocabulary Description Language 1.0: RDF Schema
W3C Recommendation. [Online]. Available: https://www.w3.org/TR/rdf-
schema/

[28] P. Hayes. (2012). Rudolph OWL Web Ontology Language Primer, W3C
Recommendation, World Wide Web Consortium. [Online]. Available:
https://www.w3.org/OWL/

[29] P. Hayes, ‘‘RDF semantics,’’ World Wide Web Consortium, Tech. Rep.
W3C, Feb. 2014. [Online]. Available: https://www.w3.org/TR/rdf11-mt/

[30] E. P. Hommeaux and A. Seaborne. (Jan. 2008). SPARQL Query Language
for RDF W3C Candidate Recommendation World Wide Web Consortium.
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[31] S. Schenk, P. Gearon, and A. Passant. SPARQL 1.1. Technical Report, W3C
2013. [Online]. Available: https://www.w3.org/TR/rdf-sparql-query/

[32] W. M. P. van der Aalst, ‘‘Three good reasons for using a Petri-Net-based
workflow management system,’’ in Proc. Int. Work. Conf. Inf. Process
Integr. Enterprises (IPIC), 1996, pp. 161–182.

[33] W. M. P. van der Aalst, ‘‘The application of Petri nets to workflow man-
agement,’’ J. Circuits, Syst. Comput., vol. 8, no. 1, pp. 21–66, 1998.

[34] K. M. van Hee, N. Sidorova, and J. M. van der Werf, ‘‘Business process
modeling using Petri nets,’’ in Transactions on Petri nets and OtherModels
of Concurrency VII, (Lecture Notes in Computer Science), vol. 7480.
Berlin, Germany: Springer, 2013, pp. 116–161.

[35] T. Gubala, D. Herezlak, M. Bubak, and M. Malawski, ‘‘Semantic com-
position of scientific workflows based on the Petri nets formalism,’’ in
Proc. 2nd IEEE Int. Conf. e-Sci. Grid Comput. (E-SCIENCE), Dec. 2006,
pp. 1–12.

[36] Z. Guan et al., ‘‘Grid-flow: A grid-enabled scientific workflow systemwith
a Petri-Net-based interface,’’ Concurrency Comput., Pract. Exper., vol. 18,
pp. 1115–1140, Dec. 2005.

[37] M. J. Ibáñez, P. Álvarez, and J. Ezpeleta, ‘‘Analyzing behavioral proper-
ties of semantic business processes with parametric data,’’ Concurrency
Comput., Pract. Exper., vol. 23, pp. 525–555, Apr. 2011.

[38] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[39] E. M. Clarke, E. A. Emerson, and A. P. Sistla, ‘‘Automatic verification
of finite state concurrent system using temporal logic specifications: A
practical approach,’’ in Proc. 10th ACM SIGACT-SIGPLAN Symp. Princ.
Program. Lang. (POPL), 1983, pp. 117–126.

[40] E. González-López de Murillas, ‘‘Temporal and modal logic,’’ in Hand-
book of Theoretical Computer Science (Formal Models and Semantics).
Cambridge, MA, USA: MIT Press, 1990, pp. 995–1072.

[41] E. González-López de Murillas, J. Fabra, P. Álvarez, and J. Ezpeleta,
‘‘COMBAS: A semantic-based model checking framework,’’ in Proc. 6th
Int. Conf. Adv. Eng. Comput. Appl. Sci. (ADVCOMP), 2012, pp. 46–52.

[42] J. Billington et al., ‘‘The Petri net markup language: Concepts, technology,
and tools,’’ in Proc. 24th Int. Conf. Appl. Theory Petri Nets (ICATPN),
2003, pp. 483–505.

[43] A. Rutle, F. Rabbi, W. MacCaull, and Y. Lamo, ‘‘A user-friendly tool for
model checking healthcare workflows,’’ Procedia Comput. Sci., vol. 47,
no. 5, May 2017.

[44] E. González-López de Murillas, J. Fabra, P. Álvarez, and J. Ezpeleta,
‘‘Parallel computation of the reachability graph of Petri net models with
semantic information,’’ J. Softw., Pract. Exper., vol. 47, no. 5, pp. 647–668,
2017.

[45] E. M. Zdobnov and R. Apweiler, ‘‘InterProScan—An integration platform
for the signature-recognitionmethods in InterPro,’’Bioinformatics, vol. 17,
no. 9, pp. 847–848, 2001.

[46] D. A. Natale et al., ‘‘The protein ontology: A structured representation of
protein forms and complexes,’’Nucleic Acids Res, vol. 39, pp. D539–D545,
Jan. 2011.

[47] C. J. Bult et al., ‘‘The representation of protein complexes in the protein
ontology (PRO),’’ Bioinformatics, vol. 12, no. 1, p. 371, 2011.

JAVIER FABRA received the Ph.D. degree in com-
puter science from the University of Zaragoza,
Spain, in 2010. He has been an Associate Pro-
fessor with the Department of Computer Science
and Systems Engineering, University of Zaragoza,
since 2008. His main research areas focus on
service-oriented computing and cloud architec-
tures, semantic and scientific computing, and
interoperability issues in cluster, grid, and cloud
scenarios.

MARÍA JOSÉ IBÁÑEZ received the M.S. degree
in mathematics from the University of La Rioja,
Spain, in 2006, and the Ph.D. degree in computer-
science engineering from the University of
Zaragoza, Spain, in 2011. Her research inter-
ests include service oriented computing, machine
learning, and semantic Web.

PEDRO ÁLVAREZ received the Ph.D. degree in
computer science engineering from the University
of Zaragoza, Zaragoza, Spain, in 2004. He has
been a Lecture Professor with the University of
Zaragoza since 2000. His current research interests
focus on two main aspects—the integration prob-
lems of network-based system and the use of novel
techniques and methodologies for solving them
and the application of formal analysis techniques
to mine event logs and databases.

JOAQUÍN EZPELETA received the M.S. degree
in mathematics and the Ph.D. degree in computer
science from the University of Zaragoza, Spain.
He is currently a Professor of the Department of
Computer Science and Systems Engineering, Uni-
versity of Zaragoza, where he conducts lectures
on formal methods for sequential and concurrent
programming and service-oriented architectures.
His research focuses on the problem of modeling,
analysis, and control synthesis for concurrent sys-

tems, the application of formal techniques to help in the development of
correct distributed systems based on Internet and cloud technologies, and the
parallel processing of data and computing intensive computing problems.

66046 VOLUME 6, 2018

	INTRODUCTION
	INTRODUCING SEMANTICS IN SCIENTIFIC WORKFLOWS
	THE RESOURCE DESCRIPTION FRAMEWORK
	DESCRIBING INPUTS, OUTPUTS, PRECONDITIONS AND POSTCONDITIONS

	A CLASS OF SCIENTIFIC WORKFLOW MODELS ENHANCED WITH SEMANTIC INFORMATION
	THE REACHABILITY GRAPH

	EXPLOITING THE MODEL: BEHAVIORAL ANALYSIS
	AN ENVIRONMENT FOR MODEL-CHECKING

	INTERPROSCAN ANALYSIS OF A PROTEIN SEQUENCE
	PROPERTIES CHECKING

	CONCLUSIONS
	REFERENCES
	Biographies
	JAVIER FABRA
	MARÍA JOSÉ IBÁÑEZ
	PEDRO ÁLVAREZ
	JOAQUÍN EZPELETA

