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ABSTRACT Vehicle routing problem with time windows (VRPTW) contains two crucial objectives:
minimizing the number of vehicles and minimizing the total travel distance. However, most algorithms
focus on the number of vehicles, while the travel distance should be considered as the primary objective in
some practical situations, especially in the modern logistics. Research has shown that designing a systematic
framework to combine multiple algorithms with different characteristics will significantly improve the
overall performance of the hybrid algorithm. This paper proposes an evolutionary scatter search particle
swarm optimization algorithm (ESS-PSO) to solve the VRPTW with the objective of minimizing the total
travel distance. In ESS, a genetic algorithm and a new ‘‘route+/−’’ evolutionary operator are introduced in
scatter search template. In addition, we proposed a discrete PSO that sets the route-segment as the velocity
of particles and in which the velocity and position updating rules are designed based on the concept of ‘‘ruin
and recreate.’’ These two algorithms work in a cascade learning architecture, in which PSO learns from the
exemplary solutions in the reference set maintained by ESS. The search direction of the algorithm is adjusted
by analyzing the relationship between the number of vehicles and the total travel distance in real time.
We designed a new solution representation called ‘‘auxiliary code’’ based on customer allocation to maintain
the diversity of the reference set. Experiments with the Solomon benchmark show that ESS-PSO is effective
and efficient, and it achieves very competitive results, especially in the datasets of the category ‘‘2.’’

INDEX TERMS Genetic algorithm, particle swarm optimization, optimal scheduling, scatter search, vehicle
routing problems with time windows.

I. INTRODUCTION
TheVehicle Routing Problemwith TimeWindows (VRPTW)
is a logistics and distribution management problem which
has many real-world applications such as supply chain man-
agement and express delivery [1]. It is one of the most
important and difficult NP-hard combinatorial optimization
problems [2] and has been selected as a classic test problem
for performance verification by many algorithms. Solomon
benchmark [3] is themost well-known test dataset in VRPTW
which has been widely studied.

The exact algorithms for solving VRPTW can obtain
optimal solutions [4], but the performance of the algorithms
mainly depends on the structure of the problem and the com-
puting time grows exponentially when dealing with large-
scale issues. The latest exact algorithm [5] has been able to
obtain all the optimal solutions of 56 examples of Solomon
benchmark(100 customers), but the computational time in the

dataset of category ‘‘2’’ with a wide time window is still
unsatisfactory (e.g. the average computational time on Intel
X-ES2637 3.5GHz CPU of R2 instances is 6432 seconds in
which instance R208 is solved in 64105 seconds). The meta-
heuristic algorithms [6] can obtain a ‘‘good enough’’ solution
in a short time and have the capacity to solve the large-scale
complex problems, which is more suitable for application in
practical situations.

In meta-heuristics, the algorithms based on the con-
cept of ‘‘Memories and Guidance’’ have achieved excellent
results. Rochat and Taillard [11] first proposed the Adap-
tive Memory (AM) which stores good solutions or partial
solutions. The new solution is created by combining the
promising solution components (routes) in the AM. Based
on AM, many modified methods achieved good results
[12], [14]. Russell and Chiang [1] used the scatter search
algorithm to solve VRPTW and pointed out that the method
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proposed by Rochat and Taillard [11] is very similar to the
scatter search algorithm where AM is equivalent to the
‘‘reference set’’ according to the framework of algorithms.
In some population-based algorithms, Baños et al. [15]
and Wu et al. [16] used an external archive to store the
non-dominated solutions. Barbucha [18] proposed a guid-
ing framework for the parallel cooperative search using a
so-called ‘‘solution warehouse’’ to store the good solution.
It is noteworthy that all of the above algorithms have used
various means to maintain the diversity of the population
to avoid premature convergence. Balancing the quality and
diversity of the elite populations is critical to the ‘‘Memories
and Guidance’’ algorithms.

With the strong constraints, VRPTW does not have a
clear neighborhood structure. It means that feasible solu-
tions may not locate in the neighborhood of any candidate
solutions in the searching space [19]. ‘‘Ruin and recreate’’
approach partially destroys the current solutions and reinsert
the removed part into the ‘‘destroyed’’ partial solution by
using some heuristics, and it is always able to obtain feasi-
ble solutions. There are many researchers used ‘‘Ruin and
recreate’’ approach for solving VRPTW [20]–[22]. For this
kind of ‘‘construct’’ algorithm, the introduction of random-
ness outside ‘‘greedy rules’’ can significantly improve the
effectiveness and efficiency [24].

As a classic heuristic, PSO has attracted great attention
of researchers due to its attributes of high efficiency, fast
optimization speed, and simple implementation. However,
since it is more suitable for solving continuous optimization
problems, the successful applications of PSO on VRPTW is
still less. Some researchers use conventional PSO to solve
this problem by encoding the solutions into real numbers
[29], [30]. The solution representation is always too long in
this way which would limit the performance of solving large-
scale problems. Gong et al. [31] proposed a set-based PSO
taking the searching space as a set of arcs and transforming
the PSO into discrete forms. The experimental results show
that the discrete PSO algorithm is very effective for VRPTW.
Wu et al. [16] introduced a multi-objective algorithm based
on the same discrete PSO as Gong et al. PSO has strong
local searching ability while the inherent nature of GA is
global exploration. So, combining GA and PSOwould highly
improve the algorithm performance [32]. There are few stud-
ies using GA and PSO hybrid algorithms for VRPTW. Only
Xu et al. [33] proposed a GA-PSO hybrid algorithm which is
based on real coding and using GA to optimize the population
after the PSO operation. It is still a challenging task to design
an appropriate hybrid structure tightly coupled GA and PSO
to improve the overall performance of the algorithm [34].

In VRPTW, most heuristics have considered hierarchical
objectives in which the primary objective is to minimize
the number of vehicles and the secondary objective is to
minimize the total travel distance. However, few studies
considered the travel distance as the primary objective.
Alvarenga et al. [35] proposed a two-stage method based
on genetic algorithm and set partitioning formulation (CGH)

which uses islands of GA to handle the whole problem in
the first stage and reduced the problem to 30% for further
evolution in the second stage. All routes in the best indi-
vidual from each island are included in the set of routes R.
The set partitioning problem (SPP) model is solved over the
subset R to obtain the best combination of routes in a unique
solution. Subsequently, Labadi [36] proposed a memetic
algorithm using the giant tour for chromosome encoding,
which is a genetic algorithm hybridized with several local
search algorithms. Ursani et al. [37] proposed a local genetic
algorithm(LGA) based on localized optimization framework
which solved the smaller sub-problems decomposed from the
whole problem first and then constructed the global problem
from the sub-problems. The construction of overlapping sub-
problems and the de-optimization of global solutions make
LOF be a powerful decomposition scheme. Compared with
CGH, LGA has achieved better results. Yu et al. [38] pro-
posed a tabu search and ant colony optimization (ACO-Tabu)
hybrid algorithm using ant colony optimization with local
search to obtain an approximately optimal solution and using
tabu search to maintain population diversity and explore the
new solution. Similarly, Zhang et al. [39] proposed a hybrid
algorithm by combining the tabu search and the artificial
bee colony algorithm (Tabu-ABC). After the artificial bee
colony algorithm has generated an initial feasible solution,
tabu search is applied to generate a high-quality solution
rapidly. The experimental results of Tabu-ABC are better
than ACO-Tabu. Xu et al. [33] combined GA and PSO in
the form of real code. The main body of the algorithm is
PSO, and the crossover operator of GA is used to improve the
population diversity. The experiment results of the algorithm
are very competitive. Some multi-objective algorithms have
also achieved excellent results in minimizing the total travel
distance. Tan et al. [19] proposed a hybrid multi-objective
evolutionary algorithm (HMOEA) that incorporates special-
ized genetic operators and local search methods featured
with variable-length chromosome representation and Pareto
fitness ranking. Qi et al. [43] presented a multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
framework for solving the VRPTW. It decomposes the whole
problem into a set of scalar sub-problems with uniformly
distributed aggregation weight vectors and minimizes these
scalar sub-problems simultaneously by evolving a popula-
tion of solutions. This multi-objective algorithm achieved
outstanding results in minimizing the travel distance. The
analysis of the results of some multi-objective algorithms
shows that there is an indeterminate relationship between
these two objectives, sometimes positively correlating some-
times conflicting [23], [44]. Positively correlating means that
the total travel distance is increased as the number of vehicles
is increased, while conflicting means that the total travel
distance is reduced as the number of vehicles is increased.
This relationship is unknown until the problem has been
solved and varies according to different test datasets [19].
However, there is a lack of research on using this relationship
to improve the performance of algorithms.
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The travel distance is the most critical objective [15], [45]
in cases where it has a higher economic impact (e.g., fuel
consumption and environmental requirements) and where the
mission time is required accurate (e.g., transporting perish-
able goods). As shown in Fig.1, different from the conven-
tional VRPTW with the primary objective of minimizing the
number of vehicles, the solution space of this problem can be
divided into three classes of sub-solution spaces: the solution
space with the same number of vehicles, the solution space
with the same customers allocation and the single solution.
The number of vehicles, i.e., the number of routes, has a
strong correlation with the total travel distance. When the
number of vehicles reaches some specific value, the total
travel distance will get the minimum value. In the solutions
space with a same number of vehicles, there are many dif-
ferent types of customers allocations. Customers allocation
refers to which customers are included in each route regard-
less of the sequence of customers. Each kind of customer
allocation contains several different solutions.

FIGURE 1. Sub-solution spaces.

The primary objective of this paper is to minimize the total
travel distance. Therefore, we introduced two algorithmswith
different search characteristics: evolutionary scatter search
(ESS) and route-segment based discrete Particle swarm opti-
mization (PSO). The ESS is a hybridization of scatter search
with evolution operators. Two new designed evolution oper-
ators: ‘‘route+/−’’ and route-exchange based GA are used
as the ‘‘solution combination method’’ in the scatter search
framework. ‘‘Route+/−’’ operator is good at finding the
‘‘specific’’ number of vehicles, while GA focuses on explor-
ing different customers allocations. The PSO is transformed
into discrete form by setting the route-segment as the ‘‘veloc-
ity of particles’’ and can find better solutions rapidly due to
its strong local search capability and fast convergence speed.
Based on the concept of ‘‘Memories and Guidance,’’ ESS and
PSO are combined by a cascade learning architecture that
each particle in PSO learns from the ‘‘exemplary solutions’’
stored in the reference set which is maintained by ESS. The
selection method adjusts selection criteria according to the
relationship between the number of vehicles and the travel

distance to guide the algorithm searching in more potential
direction. All the algorithms are designed based on ‘‘ruin
and recreate’’ rules while randomness is introduced into the
heuristic insertion methods.

The main contributions of this paper can be summarized as
follows:

(1) proposed a new discrete PSO based on route-segment
to solve the VRPTW.

(2) designed a cascade learning architecture that tightly
coupled scatter search and PSO to efficiently integrate the
search characteristics of different algorithms and improve the
overall performance of the algorithm.

(3) set the criteria of the selection method according to the
relationship between the number of vehicles and total travel
distance to guide the search direction of the algorithm.

(4) introduced a new solution representation called
‘‘auxiliary code’’ to maintain the diversity of the population.

The remainder of this paper is organized as follows.
In Section II, we describe the mathematical model of
VRPTW. In section III, ESS-PSO is proposed with the
entire design process of the algorithm. Experiments with
the Solomon benchmark is performed to analyze the impact
of different operators on the performance of the algorithm
and compared with other excellent algorithms in Section IV.
Finally, Section V gives an overall conclusion.

II. MATHEMATICAL MODELS FOR VRPTW
VRPTW is a complex combinatorial optimization problem.
In the problem, some customers are waiting to be served, and
each customer has its time window and demand. A fleet of
identical vehicles should visit all the customers andmeet their
needs while satisfying the time window constraints. Each
vehicle can only serve one customer, and each customer can
only be served by one vehicle, a total load of a vehicle cannot
exceed its capacity. A solution of the VRPTW is a collection
of routes containing an ordered queue of customers, in which
a vehicle departs from the depot, visits these customers
in sequence and return to the depot. The objective of the
designed algorithm is to minimize the total travel distance of
all the vehicles. The mathematical model is as follows:

The VRPTW can be defined as a directed complete graph
G(V , A) with a node set V = {c0, c1, . . . , cn} and an arc set
A = {〈ci, cj〉):i 6= j, ci, cj ∈ V}. c0 represents the depot
and ci(i = 1, 2, . . . ,n) represents the customer. Each node is
associated with a demand quantity qi, a service time si and
a time window[ei, li] (To the node c0: q0 = 0, s0 = 0,
ei = 0). Each arc 〈ci, cj〉 is associated with a travel time tij
between nodes ci and cj. The travel time is represented by
the Euclidean distance dij(dij = dji). If a vehicle arrives at
customer ci earlier than ei, it should wait until ei to serve the
customer. And if the vehicle arrives after li , it cannot serve ci.
When the vehicle serves the customer ci , it has to spend at ci
for a time interval at least si for service. There are K vehicles
with same capacity Q. All the vehicles can depart from the
depot after the earliest time e0 and return to the depot before
the latest time l0.
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Objective function:

minTD =
K∑
k=1

N∑
i=0

N∑
j=0

tijxkij (1)

Subject to:

xkij =
{
1 if vehicle k travels from i to j
0 otherwise

(2)

N∑
j=1

xk0j =
N∑
i=1

xki0 = 1 (∀k = 1, 2, . . . ,K ) (3)

N∑
j=0

xkij =
N∑
j=0

xkji ≤ 1 (i 6= j,∀i = 1, 2, . . . ,N ;

∀k = 1, 2, . . . ,K ) (4)
K∑
k=1

N∑
i=0

xkij = 1 (i 6= j,∀j = 1, 2, . . . , n) (5)

K∑
k=1

N∑
j=0

xkij = 1 (i 6= j,∀i = 1, 2, . . . , n) (6)

N∑
i=0

qi
N∑
j=0

xkij ≤ Q (i 6= j; ∀k = 1, 2, . . . ,K ) (7)

tki + si + tij − t
k
j ≤ (1− xkij) ·M

(i 6= j,∀i, j = 0, 1, . . . ,N ; ∀k = 1, 2, . . . ,K ) (8)

ej
∑
j=0

xkij ≤ t
k
j ≤ lj

∑
j=0

xkij

(i 6= j,∀i = 0, 1, . . . ,N ; ∀k = 1, 2, . . . ,K ) (9)

xkij ∈ {0, 1} (i 6= j,∀i, j = 0, 1, . . . ,N ; ∀k = 1, 2, . . . ,K )

(10)

Equation (1) is the objective function of the problemwhich
is to minimize the total travel distance TD. Equation (2)
defines the decision variable. Equation (3) represents each
vehicle departs from the depot and return to the depart at
last. Equation (4) is the flow conservation constraints of a
node. Equation (5) and (6) ensure that each customer can
only be served by one vehicle exactly once. Equation (7)
represents that the total demands of customers served by a
vehicle cannot exceed its capacity. Equation (8) and(9) define
the time window constraint, where ti is the time the vehicle k
arrives at customer i. M is a large constant. Equation (10)
imposes binary conditions on the decision variable.

III. THE PROPOSED ALGORITHM
The hybrid algorithm ESS-PSO works in a cascade learning
architecture using scatter search with evolution operators to
do diversification search, while PSO performs intensification
search by learning from excellent ‘‘gene’’ of the exemplary
solutions in the reference set. The reference set stores the
preferred solution observed throughout the evolutionary his-
tory, and it is the ‘‘bridge’’ that connects the two algorithms.
By learning from the good solution in the reference set,
it improves the learning capability of the particles which is

rigidly constrained in the conventional PSO that each particle
is limited to learn from the global best solution and the best
solution of its neighbors. In turn, the reference set is updated
not only by the scatter search but also by the PSO,which helps
scatter search generate better solutions.

The pseudo-code of the whole algorithm is shown in Fig.2.
Firstly, the initial population is generated by the diversifi-
cation generation method of ESS with two improved PFIH
insertions: customer-random PFIH and hardest-first PFIH.
The initial population is also the initial particle swarm of
PSO. Then, the reference set is built by the reference set
update method of ESS according to the auxiliary code.

After the initialization of population and reference set, this
algorithm enters themain loop. The subset generationmethod
of ESS is employed to generate one solution subsets for the
‘‘route+/−’’ operator and for the GA operator. The solu-
tion combination method of ESS which contains these two
operators is performed over the solutions subsets to obtain
a population of new solutions. The reference set is updated
by the reference set update method. Then, the route-segment
based discrete PSO is performed. The solutions which are
also called particles in the particle swarm of PSO search the
reference set to find their guidance particles. According to
the difference of auxiliary code and objective function value
from their guidance particles, the particles are evolved by
the new velocity and position updating rules or the local
path relinking method. Therefore, the new particle swarm
is obtained, and the reference set is updated with these new
solutions by the reference set update method. The main loop
of ESS-PSO will be repeated until the stopping criterion is
reached. The algorithm is described in more detail in the
following subsections.

A. EVOLUTIONARY SCATTER SEARCH
Scatter search is a population-based meta-heuristic algo-
rithm that combines preserved solutions from a reference set
to create new improved solutions. The reference set stores
the preferred solution with high quality and high diversity.
Compared with Evolution algorithm (EA), scatter search is
a structured strategy, it clearly stated where the improve-
ment method can be applied and avoids using random com-
ponents such as crossover or mutation operators. However,
Nebro et al. [42] have proved that applying stochastic opera-
tors in the scatter search leads the algorithm to be more robust
and accurate. Therefore, two randomized evolution operators:
‘‘route+/−’’ and route-exchange based GA, are introduced
into scatter search as ‘‘solution combination methods’’.

The evolutionary scatter search is based on the scatter
search template. The template defines five methods: diversi-
fication generation method, improvement method, reference
set update method, subset generation method, and solution
combination method. In ESS, we did not use any local search
procedure, so the improvement method is excluded from the
algorithm. However, the designed PSO can be seen as an
‘‘improvement method’’ but with its own population. Notes
that, the initial population generated by the diversification
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FIGURE 2. Pseudo-code of the whole algorithm.

FIGURE 2. (Continued.) Pseudo-code of the whole algorithm.

generation method of ESS is also the initial particles swarm
of PSO, and the diversification generation method would not
enter the main loop of the ESS-PSO algorithm.

The design process of the algorithm is detailed below.

1) SOLUTION REPRESENTATION
The representation of the solution is the basis of the evolu-
tionary algorithms and has a significant impact on the imple-
mentation and performance of the algorithms. For VRPTW,
each solution is composed of several routes, and each route
contains the sequence of the customer to be served. The algo-
rithm runs directly on this phenotype of the solution. In par-
ticular, we designed a genotype code called ‘‘auxiliary code’’
to represent the customers allocation of the solution. The
customers allocation refers to which customers are included
in each route regardless of the sequence of customers.

As shown in Fig.3, solution 1 and solution 2 are dif-
ferent, but each route contains the same customer in these

FIGURE 3. Two similar solution.
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two solutions, and the difference is only the sequence of
the customers. These two solutions are very similar because
of their same customers allocation. When there are a lot
of similar solutions in the population, the diversity of the
population will decline, and the algorithm is easily trapped
in local optima. Therefore, using auxiliary code to distin-
guish individuals can maintain the diversity of populations
and remove the redundant solutions. Also, the auxiliary code
can reduce the calculation scale and help the operators run
efficiently.

The auxiliary code consists of N integers, N is the total
quantity of customers, customers are placed in the order
of its number 1, 2, . . .N , Let A = [a1, a2, . . . , ai, . . . , aN ]
represents an auxiliary code of a solution. There is a route
R = [c1, c2, . . . , cj, . . . , cM ], cj is the ‘‘customer number’’ at
the jth position in route R. Sort route R by customer number
from small to large, Rsort = [cmin, . . . , cprev, ci, . . . , cmax].
The auxiliary code of ci is ai = cprev, if ci is at the
head of the route ai = cmax. Take the above two solutions
as an example, the auxiliary code of solution 1 is A1 =
[9, 10, 8, 1, 3, 5, 2, 6, 4, 7], the auxiliary code of solution 2 is
A2 = [9, 10, 8, 1, 3, 5, 2, 6, 4, 7], these two solutions’ auxil-
iary code are identical.

2) DIVERSIFICATION GENERATION METHOD
This method is used to generate the initial solutions with
diversity. In this algorithm, solutions are distinguished by
the auxiliary code, so the population is inherently diverse.
Since ESS-PSO is base on ‘‘Ruin and recreate,’’ the insertion
methods that generate the initial population is also used for
all operators.

Push forward insertion heuristics (PFIH) is a classic
heuristic insertion method used in VRPTW [3]. The tradi-
tional PFIH selects the customer farthest from the depot or the
customerwith the earliest start time as a seed customer to con-
struct a new route and then inserts the optimal customer into
its optimal position of the new route with the least insertion
cost. The seed customer is the first customer of the new route.
We introduced two improved PFIH: customer-random PFIH
and hardest-first PFIH as the insertion method. Customer-
random PFIH randomly selects an unrouted customer as the
next customer to be inserted. It greatly increases the diversity
of solutions by introducing randomness. Hardest-first PFIH
selects the unrouted customer with the shortest time window
interval as the next customer to be inserted. By firstly han-
dling the customers that are difficult to insert, the convergence
and optimization capabilities of the method are improved.
The insertion criteria used in these two methods is the cost
of the distance from inserting the selected customer between
two consecutive customers on the same route.

3) REFERENCE SET UPDATE METHOD
This method maintains and updates the reference set. The
reference set is a population of solutions with high-quality
and high-diversity. The traditional scatter search method gen-
erally uses two subsets to store solutions according to their

quality and diversity respectively. In ESS, auxiliary code is
used to distinguish each solution to maintain the population
diversity. Also, we construct two subsets but with different
evaluation criteria and scale. The subset refset1 is the set of
the best solutions with minimum total travel distance found in
the searching process, while subset refset2 store the solutions
with the least number of vehicles. By comparing the solutions
of the two subsets, we can clearly understand the difference
number of vehicles between the solution with the minimum
travel distance and the solution with the least vehicles, which
will guide the algorithm to search in the direction of more
promising ‘‘number of vehicles’’. The size of refset1 is much
larger than refset2 because the main role of the latter is to
help identify the relationship between the number of vehicles
and the total travel distance.

4) SUBSET GENERATION METHOD
This method generates subsets from the reference set which
are used in the combination method to create new solutions.
The most usual strategy considers all pairwise combinations
of solutions in the reference set. In ESS, we generate different
subsets for different operators. For the ‘‘route+/−’’ operator,
each subset consists of only one solution, each solution in
the reference set is one subset. For the GA operator, the sub-
set consists of two solutions, solutions in the reference set
must be the first solution in one subset once and only once,
the second solution is selected by the designed selection
method.

The selection method is based on the k-tournament method
with two criteria: the number of vehicles and the total travel
distance. The selection method dynamically changes the cri-
teria by the relationship between the number of vehicles and
the total travel distance to guide the search direction of the
algorithm. Let the difference value of the number of vehicles
between the best solution in the refset2(the solution with the
least vehicles) and the global best solution (the solution with
the least total travel distance) be |Vd|, define the steering
threshold as Vs. When |Vd | ≤ Vs, select the number of
vehicles as criteria; when |Vd | > Vs, select the total travel
distance as criteria. It is because the relationship between the
number of vehicles and the travel distance is more likely to be
positively correlating when the number of vehicles between
the solutionwith the least vehicles and the global best solution
is similar. In this case, solutions with fewer vehicles are pre-
ferred, and the algorithm is guided to search in the direction
of fewer vehicles. On the contrary, if there is a significant
difference in the number of vehicles, the relationship is nearly
conflicting. So, it is unnecessary to consider the influence of
the number of vehicles and directly select solution according
to the travel distance. The selection method is also used in
the PSO.

5) SOLUTION COMBINATION METHOD
This method transform a given subset of solutions into new
solutions. In ESS, we introduced two evolution operators to
search the solution space in different directions according to
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their characteristics. The first one is route-exchange based
GA which is good at exploring the promising type of
‘‘customers allocation.’’ The second one is ‘‘route+/−’’
operator, it focuses on finding the appropriate number of
vehicles to reduce the total travel distance.

(1) Due to the strong constraints in VRPTW, the traditional
genetic operators will produce a lot of infeasible solutions,
so the insertion-based crossover operator and mutation oper-
ator are used in GA. The insertion-based crossover operator
is called route-exchange crossover used in [19]. The solu-
tions in the crossover operation would share their routes to
generate two new solutions. Different from Tan et al. [19],
the routes for exchanging are randomly selected, and the
unrouted customers after exchanging are inserted into the
partial solution by the two designed insertion methods. The
process of crossover is shown in Fig.4.

FIGURE 4. The process of route-exchange crossover.

The insertion-based mutation operator is called customer-
extracted mutation which extracts some customers randomly
and reinserts them back to the solution by the designed
insertion methods. Each customer in the solution determines
whether it is extracted according to the mutation probability.
The process of mutation is shown in Fig. 5

(2) ‘‘Route+/−’’ is also an insertion-based operator.
It increases or decreases the number of vehicles in the selected
solution according to the relationship between the number of
vehicles and the total travel distance.

First, compare the number of vehicles of the currently
selected solution VIwith the number of vehicles of the global
best solutionVB.WhenVI < VB, it indicates that the solution
with few vehicles also has a good objective function value
and there is potential to continue searching in the direction
of few vehicles, use the ‘‘route −’’ operator for the selected
solution. On the contrary, when VI > VB, use the ‘‘route +’’
operator for the selected solution to continue searching in the

FIGURE 5. The process of customer-extracted mutation.

direction of more vehicles. When VI = VB, it is difficult
to determine which direction is more potential, so randomly
choose an operator to keep searching.

‘‘route −’’ operator randomly deletes Rp routes from the
selected individual and adds the customer of the deleted
routes in the unrouted customer set. Rp = rand[1,Rpmax],
where rand denotes a random selection operator, Rpmax
denotes the upper limit of the number of routes can be
deleted. Then, Rp − 1 routes are created using the customer
in the unrouted customer set, and each route has only one
seed customer. The heuristic insertion method is randomly
used to insert the unrouted customer to the partial solution.
‘‘route +’’ operator creates Rp + 1 routes after deleting Rp
routes, the other parts are the same as the ‘‘route−’’ operator.
The process of the two operators is shown in Fig. 6.

FIGURE 6. The process of ‘‘route −’’ and ‘‘route +’’ operator.
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The workflow of ESS is shown in Fig.7.

FIGURE 7. Workflow of ESS.

B. DISCRETE PARTICLE SWARM OPTIMIZATION
PSO is a kind of population-based iterative stochastic opti-
mization algorithm. The core of PSO is the learning strategy
which involves two issues: which solution to choose as exem-
plars, and how to use them [50]. The standard PSO keeps
learning from the previous best solution of each particle and
of its neighbors, which restricted particles search neighbor-
hoods and make them hardly jump out of local optimum. So,
we proposed a route-segment based discrete PSO algorithm,
in which particles(solutions) learns from the reference set
maintained by the ESS. Yin et al. [49] have proven that the
PSO with particles learning from the reference set performs
better in the term of both solution quality and robustness than
the standard version.

In this algorithm, we designed two learning strategies
depending on the auxiliary code of each particle solution.
If there is a solution in the reference set that has the same aux-
iliary code but a better objective function value, the current
particle learns from it by the ‘‘local path relinking’’ method.
Otherwise, the selection method is used to select a solution
with a better objective function value from the reference set to
be the guidance particle. The current particle learns from it by

the new designed position update rules. By learning from the
reference set updated by ESS, the designed PSO can search
in the vicinity of the more promising ‘‘number of vehicles’’
and ‘‘customers allocation’’ to find better solutions.

The conventional PSO is used for continuous optimizations
and needs to be modified when solving discrete problems
such as VRPTW. In route-segment based discrete PSO, each
particle learns from only one ‘‘teacher’’ which is called guid-
ance particle. The particle’s position is directly represented
by the routes with a sequence of customers. The velocity is
consist of a set of route segments with possibilities. Route
segment is a partial route with some customers which are
appeared together in a specific route both in the guidance
particle and current particle. In the position update rules,
the route segments will be selected by their possibility to
construct a new position of the particle. The position update
rules are defined as an operator using insertion method.

1) PARTICLE REPRESENTATION
The position of a particle is represented by:

Xi(t) = [X1
i ,X

2
i , . . .X

k
i . . . ,X

D
i ] (11)

X ki = [cki,1, c
k
i,2, . . . c

k
i,n . . . , c

k
i,N k

c
], k ∈ {1,D} (12)

Xi(t) is the position of the i th particle at the t th iteration,
it contains D routes. The kth dimension X ki is the kth route of
the ith particle, cki,n is the customer which is at the nth order
in the kth route, N k

c is the total quantity of customers in the
kth route.

2) VELOCITY UPDATING
The velocity of the particle is obtained by comparing the
routes between the guidance particle and current particle.
It consists of the route segment and the selection probability
of the route segment:

Vi(t) = [V 1
i ,V

2
i , . . .V

k
i . . . ,V

Dv
i ] (13)

V k
i = {(Rx , px)|Rx ∈ ∪i∈D

(X kd − Xi)} (14)

px =
Sx∑

i∈N k
R

Si
(15)

Vi(t) is the velocity of the ith particle at the tth iteration,
Dv is the total dimension of the velocity and also the number
of routes in guidance particle. V k

i is the kth dimension of the
velocity, Rx is the xth route segment in V k

i , px ∈ [0, 1] is the
selection probability of Rx . px denotes the possibility of Rx to
be selected in position updating step. X kd is the kth dimension
(i.e., kth route) of the guidance particle, ∪

i∈D
(X kd − Xi) is the

set of all the route segments generated by the kth route of
the guidance particle. N k

R is the number of route segments
generated by the kth route of the guidance particle. Sx is the
score of the route segment Rx ,it is obtained from the total
number of customers inRx and the number of customers inRx
which were both consecutive in the being compared routes.
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Route segments and the selection probability are obtained
from the following steps: Select the kth route of the guidance
particle and compare with all the routes of the current par-
ticle. Select the customers who both appeared in the being
compared routes of guidance particle and current particle to
be a route segment. Then select the next route in the guidance
particle and repeat the above process until all the routes have
been selected. Note that the segment with only one customer
is discarded because one customer does not have any ‘‘neigh-
borhood information’’ with other customers which cannot
afford helpful guidance. Each route segment gets a score
based on the number of customers it contains and the con-
secutive customer segment is rewarded because it contains
stronger route information. For example, the selected route
in the guidance particle is [1-4-8-5-9], the current particle
contains three routes [4-7-2], [8-1-10-3] and [5-9-6]. Then,
three route segments [4], [1-8]/[8-1] and [5-9] are obtained.
The first segment is discarded, the second segment has a score
of 2, the third segment has a score of 3 because of two consec-
utive customers contained. So, the segment set contains two
segments, the selection probability p1 of segment [1-8]/[8-1]
is 0.4, the selection probability p2 of segment [5-9] is 0.6.

3) POSITION UPDATING
The position of the particles is updated after the velocity of
the particles is obtained:

Xi(t + 1) = Insert(Vi(t), pW ) (16)

Xi(t + 1) is the updated position of the particle, pW repre-
sents the selection probability of the customers’ sequence in
the route segment, the function ‘‘Insert()’’ represents insert-
ing the customers outside the route segment to all selected
route segments. Firstly, route-segment is selected accord-
ing to its selection probability px . Then, a random number
between [0,1] is generated and compared with pW. When the
random number is larger than pW, the customers’ sequence
of the selected route segment is the same as them in the
guidance particle; otherwise, it is the same as them in the
current particle. Then, randomly select an insertion method
to insert the customers outside the route-segment into all
the selected route-segment. Finally, a new position of the
particle is generated. The process of position updating is
shown in Fig.8.

4) LOCAL PATH RELINKING
When the auxiliary code is the same as its guidance particle,
i.e. their customers allocations are identical, the current par-
ticle will get less evolution on using the designed position
updating rules. Therefore, we introduced a local path relink-
ing strategy to search for more solutions in this situation.

Based on the path relinking method [51], the local path
relinking works on a single route each time. The detail pro-
cess is as follows: select one route from the current particle to
be the ‘‘starting solution,’’ the route with the same customers
in guidance particle is set as ‘‘target solution.’’ The method
of simple swapping of two nodes is used to transform the

FIGURE 8. The process of position updating.

‘‘starting solution’’ to ‘‘target solution.’’ If a new better route
is found during the transform, the current route is replaced
with the new one and the next route in the current particle
is selected to be ‘‘starting solution’’; otherwise, the next
route is selected until the ‘‘starting solution’’ is completely
transformed to the ‘‘target solution.’’

The workflow of the designed PSO is shown in Fig.9.

C. THE ANALYSIS OF THE ALGORITHM
Since the GA, route+/− and PSO is designed based on the
‘‘ruin and recreate’’ rules, the time complexity of all the
algorithm mainly depends on the improved PFIH methods.
In addition, the reference set update method also plays a
major role. Assume N is the number of customers (the dimen-
sion of the problem), M is the size of the reference set and Q
is the size of particle swarm in PSO. The time complexity of
the insertion methods to construct a new solution is O(N3),
and the time complexity of the insertion methods to insert
the unrouted customers to the partial solution is O(N2).
Therefore, the time complexity of population initialization
is O(QN3), the time complexity of GA and Route+/− are
O(MN2) and the time complexity of PSO isO(QN2). The time
complexity of updating the reference set for one new solution
is O(M2). So, the time complexity of updating the refer-
ence set after initialization and performing PSO is O(QM2),
and the time complexity of updating the reference set after
performing GA and route+/− is O(5M3). Assume that the
algorithm runs T iterations, the time complexity of ESS-PSO
can be calculated as

O((QN3
+QM2)+((MN2

+MN2
+5M3)+(QN2

+ QM2))T)

= O(QN3
+MN2T+M3T+ QN2T+ QM2T)

IV. EXPERIMENT RESULTS
Solomon benchmark with 100 customers is used to ver-
ify the quality of the algorithm. The benchmark contains
six classes of problems: C1, C2, R1, R2, RC1 and RC2,
a total of 56 test instances. The depot and 100 customers are
distributed in a Cartesian coordinate space of 100x100, and
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FIGURE 9. Workflow of the designed PSO.

the distance between customers is calculated using a sim-
ple Euclidean distance while assuming that 1 unit distance
equals 1 unit travel time. ‘‘R’’ represents the random dis-
tribution of customers, ‘‘C’’ represents customer located in
clusters and ‘‘RC’’ contains a mix of randomly distributed an
clustered customers. Customers in the category ‘‘1’’ have a
narrow time window and each vehicle can only serve a small
number of customers with less capacity. Customers in the

category ‘‘2’’ have a wide time window, and each vehicle
can serve more customers with larger capacity. The proposed
algorithm is programmed in C++ and runs on a 64-bit win7
system using an Intel Core i7 2.9 GHz CPU with 8GB of
memory.

A. EFFECTIVENESS OF THE OPERATORS
In order to understand the influence on the performance of
using the relationship between the number of vehicles and
the total travel distance to guide search direction, we compare
three different scales of the subset refset2 in the reference set.
The size of refset2 RS2 is set to: 1/5 of the size of refset1 RS1,
1/10 of RS1 and 0. Steering threshold Vs = 1. The size of
the whole reference set RS is set to 50, RS = RS1 + RS2.
The selection method in algorithm without refset2 directly
select the total travel distance as the criteria. The rest of the
algorithm and the parameter in the experiment is the same
between the three algorithms. As all instances in the classes
of C1 and C2 have positively correlating objectives, there
are many instances in R1, R2, RC1 and RC2 that are having
conflicting objectives [19]. We select several instances from
categories of ‘‘R’’ and ‘‘RC,’’ and run 10 times for each
instance. The obtained results are shown in Table 1. In the
table, ‘‘minNV’’ represents the best-known results of mini-
mizing the number of vehicles, ‘‘minTD’’ represents the best-
known results of minimizing the total travel distance, ‘‘TD’’
represents the results of average distance, ‘‘NV’’ represents
the average number of vehicles, ‘‘T’’ represents the average
operation time of the proposed algorithm in seconds.

The two instances from category ‘‘R1’’ have positively
correlating objectives. In these instances, algorithms ‘‘1/5’’
and ‘‘1/10’’ outperform the algorithm ‘‘0’’ with less total
travel distance and fewer vehicles. The same result is also
obtained in ‘‘RC204’’ but with the same number of vehi-
cles between the three algorithms. It indicates that keeping
searching in the direction of the fewer number of vehicles
brings less total travel distance in these instances. In category
‘‘RC1’’, the two instances which are more difficult to solve
also has positively correlated objectives. Algorithm ‘‘1/10’’
gets the best result but the difference between the results
of algorithms ‘‘1/5’’ and ‘‘0’’ are not obvious. The number

TABLE 1. Comparison of the selection method.
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TABLE 2. Comparison of different operators.

TABLE 3. Comparison of population size.

of vehicles obtained by algorithm ‘‘1/10’’ and ‘‘1/5’’ are
both slightly less than algorithm ‘‘0.’’ It is because searching
in potential direction gives the algorithm more opportunity
to jump out of local optimum although sometimes it did
not work. In ‘‘R202,’’ ‘‘R206,’’ and ‘‘RC201’’ which have
conflicting objectives, the results of the three algorithms are
not significantly different and algorithm ‘‘0’’ is slightly better.
It proves that because of the small proportion of refset2,
it does not weaken too much to the searching ability of
the algorithm when the instance has conflicting objectives.
The three algorithms have almost the same runtime in all
instances. Although the absolute difference is not significant,
this improvement is necessary for finding the optimal solu-
tion. To balance the performance in different instances, we
select RS2 = 1/10 · RS1 as the parameter of the algorithm.

Moreover, we perform some experiments to analyze the
impact of different operators on the performance of the
algorithm. The operators are employed in pairs, we use
(GA, PSO, route+/−) to present which operators are
employed. For example, (GA,PSO) means GA and PSO are
employed. We select the same instances used in the above
experiments and run 10 times for each instance. Results are
shown in Table 2, and ‘‘TD’’ represents the results of average
distance, ‘‘NV’’ represents the average number of vehicles,
‘‘T’’ represents the average operation time of the proposed
algorithm in seconds.

As shown in Table 2, these three operators have different
search characteristics and the designed hybrid structurewhich
combined all the operators has achieved obvious dominant
results. The results of (GA, route+/−) have shown that the

designed GA which is good at exploring more ‘‘customer
allocations’’ has a strong global search ability. The con-
vergence time of (GA, route+/−) is almost the same as
(GA, PSO, route+/−), which indicates that GA has always
been exploring the solution space. The runtimes of (PSO,
route+/−) are very short, but its results are excellent which
demonstrates the powerful local search ability and fast con-
vergence speed of PSO. The (GA, PSO) has achieved almost
the same results as (GA, PSO, route+/−) in the instances
with positively correlating objectives. It is very effective to
hybrid these two algorithms together. The ‘‘route+/−’’ which
is focus on finding the ‘‘appropriate number of vehicles’’ has
little effect on the instances with positively correlating objec-
tives, but significantly improves the performance of algo-
rithms in the instance with conflicting objectives. When these
three operators are working together, GA and ‘‘route+/−’’
lead the algorithm towards high-quality solution space and
PSO causes more precise search in these areas.

B. PARAMETER SETTINGS
After the above experimental analysis, some parameters in
the algorithm are set as follows: steering threshold Vs = 1,
RS2 = 1/10 · RS1, k-tournament method k = 3, mutation
probability Pm = 0.1.

The size of the reference set RS is an important factor in
both the computational requirements and solution quality of a
scatter search implementation. The size of the particle swarm
in PSO PS is also critical. Several experiments are performed
to examine the effects of these two parameters. The value for
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TABLE 4. Comparison with the best-known result.
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TABLE 4. (Continued.) Comparison with the best-known result.

each parameters is set to (20, 50, 100), we use (RS, PS) to
represent each combination. We select four problems from
different classes of the dataset and run 10 times for each prob-
lem. The results are shown in Table 3, and ‘‘TD’’ represents
the results of average distance, ‘‘T’’ represents the average
operation time of the proposed algorithm in seconds.

It can be seen from the experimental results that as the size
of the reference set and the size of the population increase,
the experimental results are getting better and the runtime is
getting longer. However, when the scale of the two collections
is too large, the experimental results are hard to go further
improvement, but the runtime is still growing. To balance
performance and runtime, we choose (50, 50) as the size

of the reference set and the size of the particle swarm. The
number of iterations for the whole algorithm is set to 50. The
algorithm run 30 times on each instance.

C. RESULT ANALYSIS
In Table 4, the proposed algorithm is compared with the best-
known results, the data of the best-known results are selected
from [43]. In the table, ‘‘TD’’ represents the best-known
result of distance, ‘‘NV’’ represents the number of vehi-
cles, ‘‘BTD’’ represents the best results of distance obtained
by the proposed algorithm, ‘‘MTD’’ represents the results
of average distance obtained by the proposed algorithm,
‘‘Time’’ represents the average operation time of the pro-
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TABLE 5. Comparison with recent published and representative algorithms.

VOLUME 6, 2018 63481



J. Zhang et al.: ESS-PSO for the VRPTW

TABLE 5. (Continued.) Comparison with recent published and representative algorithms.

posed algorithm in seconds. ‘‘Gap’’ = (BTD-TD)/BTD is
the percentage deviation between the ESS-PSO and the best-
known results, which is used to measure the quality of the
algorithm. ‘‘Std’’ is the standard deviation of the algorithm
which is used to measure the stability of the solution.

The results show that the proposed algorithm has obtained
2 new best solutions and reached 27 best solutions. There is
no percentage deviation in the C1 andC2 classes. The average
percentage deviation of R1, R2, RC1, RC2, and the total
dataset are 0.30%, 0.22%, 0.40%, 1.47%, and 0.38% respec-
tively and most of the percentage deviation are below 0.50%.
It shows that the optimization performance of the algorithm

is excellent. There is no standard deviation in the C1 class,
only C204 in the C2 class has 3.12. The average standard
deviation of R1, R2, RC1, RC2, and the total dataset are 8.89,
10.97, 11.29, 11.02, and 7.30 respectively and most of the
standard deviation are below 10. It shows that the algorithm
is stable and has good robustness. The average runtime of C1,
C2, R1, R2, RC1, RC2, and the total dataset are 29.78, 51,
41.17, 72.36, 38.50, 69, and 50.46 in seconds respectively and
most of the runtimes are below 60. It shows the algorithm
is highly competitive in terms of convergence speed. It is
worth mentioning that in C1 and C2 classes the algorithm
can find the optimal solution in less than 10 seconds in
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TABLE 6. The Wilcoxon signed-ranks non-parametric test.

TABLE 7. Average comparison.

most instances except for a few problems. More appropriate
termination rules should be designed to improve the running
speed further.

D. COMPARISON WITH OTHER METHODS
In Table 5, we selected several more recently published and
representative algorithms for complete data comparison. The
best results obtained for each instance are highlighted in bold.

The results show that the proposed algorithm achieves
45 of the best results in 56 datasets, with 32 of Xu et al., 22 of
LGA, 18 ofM-MOEA / D and 15 of Tabu-ABC. In the C1 and
C2 classes, all algorithms except the Tabu-ABC achieve the
best results for all datasets. In the R1 and RC1 classes,
the proposed algorithm gets 9 and 3 best results respectively,
while Xu et al. gets 7 and 6. To other algorithms, only
LGA gets 1 in the RC1 class. In the R2 class, the proposed
algorithm gets 8 best results, while LGA gets 3 and Xu et al.
gets 1. The proposed algorithm gets all 8 best results in
RC2 class. Also, the difference between the result obtained
by the proposed algorithm and the best result is very small
even in the dataset that the algorithm does not get the best
results. It can be seen that the proposed algorithm has the best
comprehensive ability and occupies an absolute superiority in
the category ‘‘2’’ problem with longer time windows, but it
is slightly inferior to Xu et al. in the category ‘‘1’’ problem

with narrow time windows. This result shows that it is very
effective to adjust the search direction of the algorithm by
analyzing the relationship between the number of vehicles
and travel distance. However, due to the lack of a powerful
method which is more time-consuming to reduce the number
of vehicles, the searching ability of the algorithm in a fewer
vehicles direction is weaker when the two objectives have a
positive correlation. Also, it is more effective to improve the
performance of the algorithm by maintaining the diversity
of the population in the category ‘‘2’’ problem where the
vehicle contains more customers, that is, each auxiliary code
represents more different individuals.

The non-parametric Wilcoxon signed-ranks is employed
to compare the ESS-PSO with the above four algorithms for
each instance (pairwise comparison) to determine whether
the differences in performance are statistically signifi-
cant or not. Table 6 shows the p-value resolved by the
Wilcoxon test with the significance level α = 0.05. The
symbol ‘‘+’’ represents the null hypothesis is rejected and
ESS-PSO gets statistically superior performance on the
corresponding instance. In C1 and C2 classes, ESS-PSO
is not significantly different with all the four algorithms.
In R1 and RC1 classes, except Xu et al., ESS-PSO outper-
forms other 3 algorithms. Finally, in R2 and RC2 classes,
ESS-PSO outperforms all the four algorithms. The results of
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the non-parametric test show the outstanding superiority of
the ESS-PSO for solving the ‘‘2’’ category problems again.

In Table 7, we select eight state-of-art algorithms for the
average comparison. The table lists the average minimum
travel distance obtained by each algorithm and the best-
known result over the 6 classes of problems. The best results
for each class are highlighted in bold.

The results show that the proposed algorithm almost
achieved the best results in all classes and is close to the best-
known results, but only slightly inferior to the CGH algo-
rithm in the RC1 class. Similar to the previous comparison,
it proved that although the algorithm is better at solving the
category ‘‘2’’ problems, it also performs very well in the
category ‘‘1’’ problems.

V. CONCLUSION
This paper presents a hybrid algorithm of evolutionary scatter
search and PSO to solve VRPTW with the objective of mini-
mizing the total travel distance. In ESS, two algorithms: a GA
with route-exchange crossover and customer-extract muta-
tion and a newly designed evolution operator ‘‘route+/−’’
are used as solution combination methods. Also, we designed
a route-segment based PSO to make the algorithm run effi-
ciently in the discrete space for solving VRPTW. Taking the
reference set of scatter search as the core, ESS-PSO com-
bined these three population-based algorithms which have
different searching characteristics into a systematic structure
to improve the overall performance of the hybrid algorithm.
We introduced ‘‘auxiliary code’’ to distinguish each solution
in the reference set to maintain the population diversity.
Inspired by themulti-objective algorithm, the search direction
of the algorithm is adjusted by the relationship of the number
of vehicles and the total travel distance.

The experimental results show that the proposed algorithm
is both effective and efficient, and has obvious advantages
in solution quality and running speed compared with other
algorithms.

Although the algorithm has achieved excellent results,
it did not use any local search algorithms. In the next step,
we can add some local search algorithms in the structure
to improve the effectiveness and stability of the algorithm
further. We would also like to apply the algorithm to other
combinatorial optimization problems, especially the various
variant problems of VRP.

REFERENCES
[1] R. A. Russell and W.-C. Chiang, ‘‘Scatter search for the vehicle routing

problem with time windows,’’ Eur. J. Oper. Res., vol. 169, pp. 606–622,
Jan. 2006.

[2] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, ‘‘The vehicle
routing problem: State of the art classification and review,’’ Comput. Ind.
Eng., vol. 99, pp. 300–313, Sep. 2016.

[3] M. M. Solomon, ‘‘Algorithms for the vehicle routing and scheduling
problems with time window constraints,’’ Oper. Res., vol. 35, no. 2,
pp. 254–265, 1987.

[4] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger, ‘‘Subset-row
inequalities applied to the vehicle-routing problem with time windows,’’
Oper. Res., vol. 56, no. 2, pp. 497–511, 2008.

[5] D. Pecin, C. Contardo, G. Desaulniers, and E. Uchoa, ‘‘New enhancements
for the exact solution of the vehicle routing problem with time windows,’’
Inf. J. Comput., vol. 29, no. 3, pp. 489–502, 2017.

[6] O. Bräysy and M. Gendreau, ‘‘Vehicle routing problem with time win-
dows, part II: Metaheuristics,’’ Transp. Sci., vol. 39, no. 1, pp. 119–139,
Feb. 2005.

[7] M. Schneider, F. Schwahn, and D. Vigo, ‘‘Designing granular solution
methods for routing problems with time windows,’’ Eur. J. Oper. Res.,
vol. 263, pp. 493–509, Dec. 2017.

[8] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, ‘‘A hybrid genetic
algorithm with adaptive diversity management for a large class of vehicle
routing problems with time-windows,’’ Comput. Oper. Res., vol. 40, no. 1,
pp. 475–489, Jan. 2013.

[9] Y. Nagata, O. Bräysy, and W. Dullaert, ‘‘A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows,’’
Comput. Oper. Res., vol. 37, pp. 724–737, Apr. 2010.

[10] J. Nalepa and M. Blocho, ‘‘Adaptive memetic algorithm for minimizing
distance in the vehicle routing problem with time windows,’’ Soft Comput.,
vol. 20, no. 6, pp. 2309–2327, 2016.

[11] Y. Rochat and E. D. Taillard, ‘‘Probabilistic diversification and intensifica-
tion in local search for vehicle routing,’’ J. Heuristics, vol. 1, pp. 147–167,
Sep. 1995.

[12] P. Badeau, F. Guertin, M. Gendreau, J.-Y. Potvin, and E. Taillard, ‘‘A par-
allel tabu search heuristic for the vehicle routing problem with time win-
dows,’’ Transp. Res. C, Emerg. Technol., vol. 5, pp. 109–122, Apr. 1997.

[13] J. Li, J. Zhang, C. Jiang, and M. Zhou, ‘‘Composite particle swarm
optimizer with historical memory for function optimization,’’ IEEE Trans.
Cybern., vol. 45, no. 10, pp. 2350–2363, Oct. 2015.

[14] E. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis, ‘‘An adaptive
memory methodology for the vehicle routing problem with simultane-
ous pick-ups and deliveries,’’ Eur. J. Oper. Res., vol. 202, pp. 401–411,
Apr. 2010.

[15] R. Baños, J. Ortega, C. Gil, A. L.Márquez, and F. de Toro, ‘‘A hybrid meta-
heuristic for multi-objective vehicle routing problemswith timewindows,’’
Comput. Ind. Eng., vol. 65, no. 2, pp. 286–296, 2013.

[16] D. Q.Wu,M. Dong, H. Y. Li, and F. Li, ‘‘Vehicle routing problemwith time
windows using multi-objective co-evolutionary approach,’’ Int. J. Simul.
Model., vol. 15, no. 4, pp. 742–753, Dec. 2016.

[17] A. L. Bouthillier, T. G. Crainic, and P. Kropf, ‘‘A guided cooperative search
for the vehicle routing problem with time windows,’’ IEEE Intell. Syst.,
vol. 20, no. 4, pp. 36–42, Jul. 2005.

[18] D. Barbucha, ‘‘A cooperative population learning algorithm for vehi-
cle routing problem with time windows,’’ Neurocomputing, vol. 146,
pp. 210–229, Dec. 2014.

[19] K. C. Tan, Y. H. Chew, and L. H. Lee, ‘‘A hybrid multiobjective evolution-
ary algorithm for solving vehicle routing problem with time windows,’’
Comput. Optim. Appl., vol. 34, pp. 115–151, May 2006.

[20] D. Pisinger and S. Ropke, ‘‘A general heuristic for vehicle routing prob-
lems,’’ Comput. Oper. Res., vol. 34, no. 8, pp. 2403–2435, Aug. 2007.

[21] J.-F. Cordeau andM.Maischberger, ‘‘A parallel iterated tabu search heuris-
tic for vehicle routing problems,’’ Comput. Oper. Res., vol. 39, no. 9,
pp. 2033–2050, Sep. 2012.

[22] P. P. Repoussis, C. D. Tarantilis, and G. Ioannou, ‘‘Arc-guided evolutionary
algorithm for the vehicle routing problem with time windows,’’ IEEE
Trans. Evol. Comput., vol. 13, no. 3, pp. 624–647, Jun. 2009.

[23] B. Ombuki, B. J. Ross, and F. Hanshar, ‘‘Multi-objective genetic algo-
rithms for vehicle routing problem with time windows,’’ Appl. Intell.,
vol. 24, no. 1, pp. 17–30, 2006.

[24] D. M. Pierre and N. Zakaria, ‘‘Stochastic partially optimized cyclic shift
crossover for multi-objective genetic algorithms for the vehicle routing
problem with time-windows,’’ Appl. Soft Comput., vol. 52, pp. 863–876,
Mar. 2017.

[25] J. Luo, X. Li, M.-R. Chen, and H. Liu, ‘‘A novel hybrid shuffled frog
leaping algorithm for vehicle routing problem with time windows,’’ Inf.
Sci., vol. 316, pp. 266–292, Jan. 2015.

[26] L. Tan, F. Lin, and H. Wang, ‘‘Adaptive comprehensive learning bacterial
foraging optimization and its application on vehicle routing problem with
time windows,’’ Neurocomputing, vol. 151, pp. 1208–1215, Mar. 2015.

[27] X. Liang, W. Li, Y. Zhang, and M. Zhou, ‘‘An adaptive particle swarm
optimization method based on clustering,’’ Soft Comput., vol. 19, no. 2,
pp. 431–448, Feb. 2015.

[28] E. T. Yassen, M. Ayob, M. Z. A. Nazri, and N. R. Sabar, ‘‘An adap-
tive hybrid algorithm for vehicle routing problems with time windows,’’
Comput. Ind. Eng., vol. 113, pp. 382–391, Nov. 2017.

63484 VOLUME 6, 2018



J. Zhang et al.: ESS-PSO for the VRPTW

[29] V. Kachitvichyanukul, ‘‘A particle swarm optimization for vehicle routing
problem with time windows,’’ Int. J. Oper. Res., vol. 6, no. 4, pp. 519–537,
Jan. 2009.

[30] W. Hu, H. Liang, C. Peng, B. Du, and Q. Hu, ‘‘A hybrid chaos-particle
swarm optimization algorithm for the vehicle routing problem with time
window,’’ Entropy, vol. 15, no. 4, pp. 1247–1270, 2013.

[31] Y.-J. Gong, J. Zhang, O. Liu, R.-Z. Huang, H. S.-H. Chung, and
Y.-H. Shi, ‘‘Optimizing the vehicle routing problem with time windows:
A discrete particle swarm optimization approach,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 2, pp. 254–267, Mar. 2012.

[32] H. Garg, ‘‘A hybrid PSO-GA algorithm for constrained optimization prob-
lems,’’ Appl. Math. Comput., vol. 274, pp. 292–305, Feb. 2016.

[33] S. H. Xu, J. P. Liu, F. H. Zhang, L. Wang, and L. J. Sun, ‘‘A combination
of genetic algorithm and particle swarm optimization for vehicle routing
problem with time windows,’’ Sensors-Basel, vol. 15, pp. 21033–21053,
Aug. 2015.

[34] Y.-J. Gong et al., ‘‘Genetic learning particle swarm optimization,’’ IEEE
Trans. Cybern., vol. 46, no. 10, pp. 2277–2290, Oct. 2016.

[35] G. B. Alvarenga, G. R. Mateus, and G. de Tomi, ‘‘A genetic and set
partitioning two-phase approach for the vehicle routing problem with time
windows,’’ Comput. Oper. Res., vol. 34, pp. 1561–1584, Jun. 2007.

[36] N. Labadi, C. Prins, and M. Reghioui, ‘‘A memetic algorithm for the
vehicle routing problem with time windows,’’ RAIRO-Oper. Res., vol. 42,
pp. 415–431, Jul. 2008.

[37] Z. Ursani, D. Essam, D. Cornforth, and R. Stocker, ‘‘Localized genetic
algorithm for vehicle routing problem with time windows,’’ Appl. Soft
Comput., vol. 11, pp. 5375–5390, Dec. 2011.

[38] B. Yu, Z. Z. Yang, and B. Z. Yao, ‘‘A hybrid algorithm for vehicle routing
problem with time windows,’’ Expert Syst. Appl., vol. 38, pp. 435–441,
Jan. 2011.

[39] D. Zhang, S. Cai, F. Ye, Y.-W. Si, and T. T. Nguyen, ‘‘A hybrid algo-
rithm for a vehicle routing problem with realistic constraints,’’ Inf. Sci.,
vols. 394–395, pp. 167–182, Jul. 2017.

[40] E. T. Yassen, M. Ayob, M. Z. A. Nazri, and N. R. Sabar, ‘‘Meta-harmony
search algorithm for the vehicle routing problem with time windows,’’ Inf.
Sci., vol. 325, pp. 140–158, Dec. 2015.

[41] W. Dong and M. Zhou, ‘‘A supervised learning and control method to
improve particle swarm optimization algorithms,’’ IEEE Trans. Syst., Man,
Cybern., Syst., vol. 47, no. 7, pp. 1135–1148, Jul. 2017.

[42] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham,
‘‘AbYSS: Adapting scatter search to multiobjective optimization,’’ IEEE
Trans. Evol. Comput., vol. 12, no. 4, pp. 439–457, Aug. 2008.

[43] Y. Qi, Z. Hou, H. Li, J. Huang, andX. Li, ‘‘A decomposition basedmemetic
algorithm formulti-objective vehicle routing problemwith timewindows,’’
Comput. Oper. Res., vol. 62, pp. 61–77, Oct. 2015.

[44] K. Ghoseiri and S. F. Ghannadpour, ‘‘Multi-objective vehicle routing prob-
lem with time windows using goal programming and genetic algorithm,’’
Appl. Soft Comput., vol. 10, pp. 1096–1107, Sep. 2010.

[45] J. de Armas, B. Melián-Batista, J. A. Moreno-Pérez, and J. Brito, ‘‘GVNS
for a real-world rich vehicle routing problem with time windows,’’ Eng.
Appl. Artif. Intell., vol. 42, pp. 45–56, Jun. 2015.

[46] S. Jung and B. R. Moon, ‘‘A hybrid genetic algorithm for the vehicle
routing problemwith timewindows,’’ inProc. 4th Annu. Conf. Genet. Evol.
Comput., New York, NY, USA, 2002, pp. 1309–1316.

[47] P. Shaw, ‘‘Using constraint programming and local searchmethods to solve
vehicle routing problems,’’ in Proc. Int. Conf. Princ. Pract. Constraint
Program., 1998, pp. 417–431.

[48] J.-F. Cordeau, G. Laporte, and A. Mercier, ‘‘A unified tabu search heuristic
for vehicle routing problems with time windows,’’ J. Oper. Res. Soc.,
vol. 52, no. 8, pp. 928–936, Aug. 2001.

[49] P. Yin, F. Glover, M. Laguna, and J.-X. Zhu, ‘‘Cyber swarm algorithms—
Improving particle swarm optimization using adaptivememory strategies,’’
Eur. J. Oper. Res., vol. 201, pp. 377–389, Mar. 2010.

[50] Z. Ren, A. Zhang, C. Wen, and Z. Feng, ‘‘A scatter learning particle swarm
optimization algorithm for multimodal problems,’’ IEEE Trans. Cybern.,
vol. 44, no. 7, pp. 1127–1140, Jul. 2014.

[51] Y. Marinakis and M. Marinaki, ‘‘A hybrid genetic—Particle swarm opti-
mization algorithm for the vehicle routing problem,’’ Expert Syst. Appl.,
vol. 37, pp. 1446–1455, Mar. 2010.

[52] Z. Zhang, Y. Sun, H. Xie, Y. Teng, and J. Wang, ‘‘GMMA: GPU-based
multiobjective memetic algorithms for vehicle routing problem with route
balancing,’’ Appl. Intell., vol. 48, pp. 1–16, Jun. 2018.

[53] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y. Zhou, ‘‘A hybrid multiobjec-
tivememetic algorithm for multiobjective periodic vehicle routing problem
with time windows,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be pub-
lished. [Online]. Available: https://ieeexplore.ieee.org/document/8438859

[54] F. Zaman, S. M. Elsayed, T. Ray, and R. A. Sarker, ‘‘Configuring two-
algorithm-based evolutionary approach for solving dynamic economic dis-
patch problems,’’ Eng. Appl. Artif. Intell., vol. 53, pp. 105–125, Aug. 2016.

[55] F. Zaman, S. M. Elsayed, T. Ray, and R. A. Sarkerr, ‘‘Evolutionary algo-
rithms for finding nash equilibria in electricitymarkets,’’ IEEE Trans. Evol.
Comput., vol. 22, no. 4, pp. 536–549, Aug. 2018.

JINGTIAN ZHANG received the B.S. degree from
the School of Automation, Huazhong University
of Science and Technology, Wuhan, China,
in 2010. He is currently pursuing the Ph.D. degree
in mechatronic engineering with the Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China. His current research interests include intel-
ligent control system of autonomous vehicles and
logistics automation.

FUXING YANG received the Ph.D. degree from
the School of Mechatronics Engineering, Harbin
Institute of Technology, Harbin, China, in 1996.
From 1996 to 1999, he was with the National
Defense Key Laboratory of Ultra-Precision Pro-
cessing Technology, Aviation Industry Corpora-
tion of China. From 1999 to 2001, he was with
the China AcademyOf Engineering Physics. Since
2001, he has been with the Beijing University
of Posts and Telecommunications, Beijing, China,

where he is currently a Professor and the Ph.D. Supervisor with the Depart-
ment of Logistics Engineering. His research interests include logistics infor-
mation technology, Internet-of-Things application technology, and advanced
manufacturing technology.

XUN WENG received the Ph.D. degree from the
School of Mechanical Engineering, University of
Science and Technology Beijing, Beijing, China,
in 2007. Since 2007, he has been with the Beijing
University of Posts and Telecommunications,
Beijing, where he is currently an Associate Profes-
sor and the Director of the Department of Logistics
Engineering. His research interests include logis-
tics equipment and automation, logistics center
planning, and logistics center equipment design.

VOLUME 6, 2018 63485


	INTRODUCTION
	MATHEMATICAL MODELS FOR VRPTW
	THE PROPOSED ALGORITHM
	EVOLUTIONARY SCATTER SEARCH
	SOLUTION REPRESENTATION
	DIVERSIFICATION GENERATION METHOD
	REFERENCE SET UPDATE METHOD
	SUBSET GENERATION METHOD
	SOLUTION COMBINATION METHOD

	DISCRETE PARTICLE SWARM OPTIMIZATION
	PARTICLE REPRESENTATION
	VELOCITY UPDATING
	POSITION UPDATING
	LOCAL PATH RELINKING

	THE ANALYSIS OF THE ALGORITHM

	EXPERIMENT RESULTS
	EFFECTIVENESS OF THE OPERATORS
	PARAMETER SETTINGS
	RESULT ANALYSIS
	COMPARISON WITH OTHER METHODS

	CONCLUSION
	REFERENCES
	Biographies
	JINGTIAN ZHANG
	FUXING YANG
	XUN WENG


