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ABSTRACT The recently developed Bacterial Foraging Optimization algorithm (BFO) is a nature-inspired
optimization algorithm based on the foraging behavior of Escherichia coli. Due to its simplicity and
effectiveness, BFO has been applied widely in many engineering and scientific fields. However, when
dealing with more complex optimization problems, especially high dimensional and multimodal problems,
BFO performs poorly in convergence compared to other nature-inspired optimization techniques. In this
paper, we therefore propose an improved BFO, termed ChaoticBFO, which combines two chaotic strategies
to achieve a more suitable balance between exploitation and exploration. Specifically, a chaotic initialization
strategy is incorporated into BFO for bacterial population initialization to achieve acceleration throughout
early steps of the proposed algorithm. Then, a chaotic local search with a ‘shrinking’ strategy is introduced
into the chemotaxis step to escape from local optimum. The performance of ChaoticBFO was validated
on 23 numerical well-known benchmark functions by comparing with 10 other competitive metaheuristic
algorithms. Moreover, it was applied to two real-world benchmarks from IEEE CEC 2011. The experimental
results demonstrate that ChaoticBFO is superior to its counterparts in both convergence speed and solution
quality in most of the cases. This paper is of great significance for promoting the research, improvement and
application of the BFO algorithm.

INDEX TERMS Bacterial foraging optimization, function optimization, chaotic local search, chaos theory.

I. INTRODUCTION
In recent years, multiple nature-inspired optimization
algorithms have been proposed, including Genetic Algo-
rithm (GA) [1], [2], Particle Swarm Optimization (PSO)
[3], [4], and Ant Colony Optimization (ACO) [5], [6],
Fruit Fly optimization (FOA) [7], Grasshopper Optimization
Algorithm (GOA) [8]. Based on the competitive-cooperative
mechanism of Escherichia coli.(E. coli) in the foraging
process, Passino [9] proposed a novel swarm intelligence
algorithm called Bacterial Foraging Optimization algorithm
(BFO), which consists mainly of four behaviors: chemotaxis,
swarming, reproduction and elimination-dispersal.

Owing to its effectiveness, BFO has been widely and suc-
cessfully applied in many fields such as optimal control [10],
harmonic estimation [11], transmission loss reduction [12]
and training neural network [13]. Dasgupta et al. [14]
presented an algorithm based on BFO for the automatic

detection of circular shapes from complicated and noisy
images without using the conventional Hough transform
method. Majhi et al. [15] used BFO to develop an efficient
forecasting model for prediction of various stock indices.
Sakthivel et al. [16] proposed an adaptive BFO for the
design optimization of an energy efficient induction motor.
Bhushan and Singh [17] introduced a BFO-based high per-
formance speed control system for a DC motor that can
track the desired trajectory with less computational time.
Sanyal et al. [18] proposed an adaptive BFO for fuzzy entropy
optimization that is suitable for thresholding-based image
segmentation. Sathya et al. [19] proposed a multilevel thresh-
olding approach for histogram-based image segmentation
using a modified BFO. In [20], a new approach was pro-
posed for edge detection using a combination of BFO and a
probabilistic derivative technique derived from Ant Colony
Systems. In [21], a modified algorithm called adaptive
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crossover BFOwith improved recognition rate was proposed.
Tang et al. [22] proposed a multilevel thresholding approach
based on a modified BFO to enhance the applicability and
practicality of optimal thresholding techniques.

However, when dealing with complex, high dimensional
and multimodal problems, the original BFO is still easily
trapped in local optima. Therefore, many improved BFO
algorithms have been proposed in recent years. In [23],
Jain et al. proposed a novel algorithm named Genetically
Bacterial Swarm Optimization (GBSO), which hybridizes
the best features of the three basic algorithms, GA, BFO
and PSO. In [24], Tan et al. proposed an adaptive comprehen-
sive learning BFO. In [25], a novel method called Chemotaxis
Differential Evolution Optimization Algorithm (CDEOA)
was proposed, which augments BFO with conditional intro-
duction of Differential Evolution (DE) and Random Search
operators. Yang et al. [26] proposed a new swarm intelligence
algorithm based on BFO for structural learning of Bayesian
networks. To address issues on real-parameter single objec-
tive optimization problems, Yang et al. [27] proposed a
new BFO using newly designed chemotaxis and conjugation
strategies. In [28], an effective BFO was proposed using a
gravitational search strategy incorporated into the chemotaxis
step and a swarm diversity strategy integrated into the repro-
duction step.

Although the above schemes have improved the origi-
nal BFO to some extent, for the optimization problems of
high dimensional functions, they are only effective for some
high dimensional functions and have such defects as low
universality.

In this paper, an improved BFO, termed ChaoticBFO, is
proposed, which introduces two strategies into the original
BFO to improve its effectiveness. Specifically, a chaotic
initialization strategy is incorporated into BFO for bacterial
population initialization to achieve acceleration throughout
early steps of the proposed algorithm. Then, a chaotic local
search with a ‘shrinking’ strategy is introduced to the chemo-
taxis step, enabling ChaoticBFO to explore a huge search
space in the early run phase to avoid premature convergence
while exploiting a small region in the later run phase to
refine the final solutions. To the best of our knowledge,
there are few papers applying chaos theory to BFO. In [29],
an adaptive chaotic BFO (ACBFO) was proposed for data
clustering problem. In [30], a chaotic local search based
BFO was proposed, which introduces the DE operator and
the chaotic search operator into the chemotaxis step of the
original BFO.

In order to further improve the local searching ability of
individuals, both our proposed algorithm and the algorithm
described above in [30] introduce the chaotic local search into
the chemotaxis step and use the logistic chaotic mapping to
generate the chaotic sequence. However, they differ greatly
in how to use the chaotic local search in the chemotaxis step.
Specifically, the above algorithm implements the chaotic
search for the entire population on the position of the current
bacterium, whereas our proposed algorithm applies a chaotic

local search with a ‘shrinking’ strategy to the optimal position
in the current bacterial population.

ChaoticBFO is proposed to achieve the trade-off between
exploration and exploitation and offer significantly better
results than the original BFO in terms of solution accuracy
and convergence speed. The performance of ChaoticBFOwas
validated on 23 well-known numerical benchmark functions
by comparing with 10 other typical metaheuristic algorithms.
It was also applied to two real-world benchmarks from
IEEE CEC 2011. The results show that ChaoticBFO is more
effective than the original BFO and its competitors in both
convergence speed and solution quality in most of the exper-
iments. The main contributions of this study are as follows:

a) In order to achieve a more suitable balance between
exploitation and exploration for BFO, we have incorporated
two chaotic strategies (chaotic initialization strategy and
chaotic local search with a ‘shrinking’ strategy) into BFO.

b) The proposed method was validated on 23 numerical
well-known benchmark functions and the experimental
results show that the proposed method outperforms its com-
petitors in terms of convergence speed and solution quality
in most of the cases. Moreover, it was also successfully
applied to two real-world engineering problems from
IEEE CEC 2011 benchmark set.

c) This study is of great significance to analyze, improve
and expand the application of the BFO algorithm. Moreover,
it is of great value to the study of swarm intelligence opti-
mization algorithms.

The remainder of this paper is organized as follows.
Section 2 explains the original BFO. The chaos theory is
described in Section 3. In Section 4, ChaoticBFO is pro-
posed. In Section 5, the comprehensive results are reported
and analyzed. Section 6 provides a comparative study on
two real-world benchmarks from IEEE CEC 2011. Finally,
conclusions and future work are summarized in Section 7.

II. BACTERIAL FORAGING OPTIMIZATION
ALGORITHM (BFO)
BFO [9], proposed by Passino in 2002, is a novel swarm
intelligence algorithm based on the competitive-cooperative
mechanism of E.coli in the foraging process. Simulating
the foraging behavior of E.coli, BFO consists mainly of
four behaviors: chemotaxis, swarming, reproduction, and
elimination-dispersal. Suppose we seek to find the optimal
solution to a problem, a virtual bacterium is actually one
trial solution (regarded as a search-agent) that moves on
the functional surface (see Figure 1) to locate the global
optimum. As shown in Figure 1, the red circle represents the
best bacterium to deal with the case.

The four main behaviors of bacteria are as follows:
1) Chemotaxis: Chemotaxis operation is the core of the

algorithm, which simulates E.coli’s foraging behavior of
swimming and tumbling. In areas poorer in food, bacte-
ria tumble more frequently, whereas bacteria swim in areas
where food is more abundant. Figure 2 depicts how clock-
wise and counterclockwise movement of a bacterium takes
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FIGURE 1. A bacterial swarm on a unimodal benchmark function surface.

FIGURE 2. Swimming and tumbling of a bacterium.

place in a nutrient solution. The chemotaxis operation of the
ith bacterium can be represented as:

θ i (j+ 1, k, l) = θ i (j, k, l)+ C (i) ∗ dcti

dcti =
1(i)√

1T (i)1 (i)
(1)

Where the θ i (j, k, l) represents the ith bacterium at the
jth chemotaxis, kth reproductive, and lth elimination-
dispersal step. C(i) is the trend step length of bacterium i
in a random direction (dcti). 1 is a random vector between
−1 and 1.

2) Swarming: In the chemotaxis of bacteria in the forag-
ing process, there are both attraction and repulsion among
individual bacteria. Bacteria generate attraction information
to allow individual bacteria to travel to the center of the
population, bringing them together. However, at the same
time, individual bacteria are kept at a distance based on their
respective repulsion information.

3) Reproduction: According to the natural mechanism of
survival of the fittest, after some time, bacteria with weak
ability to seek foodwill eventually be eliminated, and bacteria

with strong feeding ability will breed offspring to maintain
the size of the population. By simulating this phenomenon,
a reproduction operation is proposed. In a S-sized population,
S/2 bacteria with poor fitness are eliminated and S/2 individu-
als with higher fitness self-replicate after the bacteria perform
the chemotaxis operator.

4) Elimination-Dispersal: In the foraging process, unex-
pected situations can not be ruled out such as the death of
bacteria or their migration to new areas. To simulate this
phenomenon, an elimination-dispersal operation is proposed.
This operation occurs with a certain probability Ped. When
a bacterial individual satisfies the probability Ped, it dies and
randomly generates a new individual anywhere in the solution
space. This new individual may be different from the original
bacterium; however, it can jump out of the local optimal
solution, promoting the search for the global optimal solution.

III. CHAOS THEORY
Over the last decade, much progress has been made in the
chaos theory. It has been used widely in different fields of
science such as chaos control [31], feature selection [32], and
parameter optimization [33]. Chaotic sequences have three
basic dynamic properties: sensitive dependence on initial
conditions, randomicity, and ergodicity. Chaotic sequences
have been applied to various metaheuristic optimization algo-
rithms in recent years. In [34], a novel GA with chaotic
mutation was proposed by replacing the Gaussian muta-
tion operator in real-coded GA with a chaotic mapping.
Mingjun and Huanwen [35] introduced chaotic initializa-
tion and chaotic sequences into Simulated Annealing (SA)
instead of Gaussian distribution. In [36], Alatas et al. pro-
posed new PSO methods that use chaotic maps for param-
eter adaptation. In order to improve the overall searching
performance of basic algorithms, other metaheuristic opti-
mization algorithms also use the chaos theory, including
Moth-Flame Optimization (MFO) [37], Firefly Algorithm
(FA) [38], Artificial Bee Colony (ABC) [39], Biogeography-
Based Optimization (BBO) [40], Krill Herd (KH) [41], Water
Cycle Algorithm(WCA) [42], and Grey Wolf Optimizer
(GWO) [43].

If chaos variables are used in the search, more advan-
tage is gained over random search. The basic idea of chaos
optimization is 1) to introduce chaos state into optimization
variables by using a similar carrier method, 2) to magnify the
traversal range of chaoticmotions to the range of optimization
variables, and 3) to use the chaos variables to search to make
the search more effective.

The proposed method generates a chaotic sequence using
logistic mapping as shown in equation (2):

chi+1 = µchi+1 ∗ (1− chi) i = 1, . . . , S − 1 (2)

Where µ is the control parameter, take µ = 4. Set
0 < ch1 < 1, and ch1 6= 0.25, 0.5, 0.75, 1. Not difficult
to prove that when µ = 4, the system is completely in chaos.
S is the number of individuals.
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FIGURE 3. Histogram distribution graphs of (a) the logistic map and
(b) the random map.

Figure 3 shows the histogram distribution graphs of
(a) the logistic map (we set µ = 4 and the initial value
ch1 = 0.4501) and (b) the random map (as the iteration
increases, the data generate a random value between 0 and 1
with uniform distribution) with 104 iterations. As shown
in Figure 3, the two maps are located in the interval (0, 1).
From these figures, it can be seen that the logistic map and
the random map give different distributions. Specifically,
the logistic map has much higher possibility to generate
values near 0 and 1, whereas the probability that the random
map generates different random values between 0 and 1 is
almost the same. This means the logistic map provides a
different search range from the random map in local search
and explains why the logistic map makes local search faster
than the random map.

Chaotic search usually works well in local optimization
for its ergodicity and randomicity [44], [45]. However, its
performance decreases when it explores a large search space.
To overcome this shortcoming, chaotic local search was
introduced. Due to the randomicity of chaotic local search,
the search process can avoid premature convergence and
local optima stagnation. In [46], chaotic local search was
incorporated into PSO to construct a chaotic PSO (CPSO),
where the parallel population-based evolutionary searching
ability of PSO and chaotic searching behavior are reason-
ably combined. Jia et al. [47] proposed an effective memetic
DE algorithm called DECLS, which utilizes a chaotic local
search with a ‘shrinking’ strategy. In [48], a chaotic local
search was integrated into the reduced Symbiotic Organisms
Search (SOS) to form chaotic SOS (CSOS) for improving
solution accuracy and convergence mobility.

IV. PROPOSED METHOD
Our proposed algorithm ChaoticBFO combines two chaotic
strategies. First, a chaotic initialization strategy is incorpo-
rated into BFO for bacterial population initialization. Then,
a chaotic local search with a ‘shrinking’ strategy is introduced
into the chemotaxis step. This proposed ‘shrinking’ strategy
is a modified version of the method described in [47].

A. CHAOTIC INITIALIZATION
Step 1: Through the chaos mechanism, the chaotic

sequence is generated by using the logistic map generated

FIGURE 4. Overall procedure of ChaoticBFO.

by the Eq. (2), and the position P of the initial bacterial
population is mapped into the chaotic sequence to gener-
ate the position PCh of the corresponding chaotic initial
bacterial population. As shown in Eq. (3):

PCh = chi ∗ P i = 1, . . . , S (3)

Step 2: From the initial position P of the bacterial popula-
tion and its corresponding position PCh of the chaotic initial
bacterial population, S superior individuals are selected as
the initial solutions of bacterial populations. Loop execution
(S − 1) times.
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B. CHAOTIC LOCAL SEARCH WITH A ‘SHRINKING’
STRATEGY
Step 1: Before the chemotaxis operation of the

ith bacterium, place the ith bacterium at the position
of jth chemotaxis, kth reproductive, and lth elimination-
dispersal as the optimal positiongbest in the current bacterial
population.
Step 2: The chaotic variable chi generated in Eq. (2) is

mapped into the chaotic vector CHi in the domain of defi-
nition [lb, ub], as shown in Eq. (4):

CHi = lb+ chi ∗ (ub− lb) i = 1, . . . , S (4)

Where lb and ub represent the lower and upper bounds of the
initial solution, respectively.

Step 3: The chaotic vector CHi is linearly combined with
the optimal position gbest to generate the candidate bacterial
position sol, as shown in Eq. (5):

sol = (1− setCan) ∗ gbest + setCan ∗ CHi i = 1, . . . , S

(5)

Where setCan is the contraction factor, which is deter-
mined by Eq. (6):

setCan = exp
(
−Intertime

/
Max_iteration

)
(6)

Where Max_iteration represents the maximum number of
iterations of the algorithm and Intertime represents the cur-
rent iteration number of the algorithm.

From Eq. (6), it can be seen that the contraction fac-
tor setCan decreases as the number of iterations increases.
As shown in Eq. (5), the smaller the value of setCan is,
the smaller the range of chaos search is. In the early iteration,
setCan is larger, which helps to expand the search range and
increase the diversity of the population. At the later stage of
iteration, setCan is smaller, which helps to converge to the
global optimal solution.
Step 4: If the candidate bacterial position sol is better than

Gbest (Gbest represents the current optimal fitness function
of the bacterial population), the fitness of sol is recorded
as Gbest and gbest (gbest described in Step 1 represents
the optimal position in the current bacterial population) is
updated as sol. If the chaotic sequence length reaches S,
local search ends; otherwise skip to Step 2 to continue
execution.

The main steps of ChaoticBFO are described in detail as
follows:

The flowchart of ChaoticBFO is shown in Figure 4.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. BENCHMARK FUNCTION VALIDATION
In order to test the performance of ChaoticBFO, 23 clas-
sical benchmark functions were used in this experiment.
These benchmark functions are unimodal, multimodal, or
fixed-dimension multimodal, as listed in Tables 1–3 where
Dim indicates the dimension of the function, Range the
boundary of the function’s search space, and fmin the optimum
value.

The Main Steps of ChaoticBFO
Begin
Step 1: Parameter Initialization. Initialize the number
of dimensions in the search space p, the swarm size of
the population S, the number of chemotaxis steps Nc,
the swimming length Ns, the number of reproduction
steps Nre, the number of elimination-dispersal events Ned,
the elimination-dispersal probability Ped, the size of the
step C(i) taken in the random direction specified by the
tumble.
Step 2: Population Initialization. As described in above
Chaotic strategy, position P of the initial bacterial popula-
tion is mapped into the chaotic sequence generated by the
Eq. (2) to calculate the position PCh of the corresponding
chaotic initial bacterial population according to Eq. (3).
From the initial position P of the bacterial population and
its corresponding position PCh of the chaotic initial bacte-
rial population, S superior individuals are selected as the
initial solutions of bacterial populations. Loop execution
(S-1) times.
Step 3: For ell=1:Ned /∗Elimination and dispersal loop∗/
For K=1:Nre /∗Reproduction loop∗/
For j=1:Nc /∗ chemotaxis loop∗/

Intertime=Intertime+1;
For i=1:s
J(i,j,K,ell)=fobj(P(:,i,j,K,ell));
Jlast=J(i,j,K,ell);
gbest(1,:)= P(:,i,j,K,ell);
Perform chaotic local search described in 4.2
Tumble according to Eq.(1)
/∗Swim∗/
m=0;
While m<Ns
m=m+1;
If J(i,j+1,K,ell)<Jlast

Jlast=J(i,j+1,K,ell);
Tumble according to Eq.(1)

Else
m=Ns ;

End
End

End /∗Go to next bacterium∗/
End /∗Go to next chemotaxis∗/
/∗Reproduction∗/
Jhealth=sum(J(:,:,K,ell),2);
[Jhealth, sortind]=sort(Jhealth);
/∗ Rearrange the bacterial population∗/
P(:,:,1,K+1,ell)=P(:,sortind,Nc+1,K,ell);
/∗Split the bacterium (reproduction)∗/

For i=1:Sr
P(:,i+Sr,1,K+1,ell)=P(:,i,1,K+1,ell);

End
End /∗Go to next reproduction∗/
/∗Elimination-Dispersal∗/
For m=1:s
If Ped>rand
Reinitialize bacterium m

End
End

End /∗ Go to next Elimination-Dispersal∗/
End
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TABLE 1. Unimodal benchmark functions.

TABLE 2. Multimodal benchmark functions.

B. SCALABILITY TEST
Through scalability testing, we can further explore the impact
of changes in dimension on the quality of solutions and the
efficacy of optimizers. For this purpose, 4 dimensions of
F1-F23 functions were measured here: 10, 30, 100, and 200.

TABLE 3. Fixed-dimension multimodal benchmark functions.

All conditions were the same, and the population size and
maximum number of iterations were set to 50 and 500,
respectively. Table 4 presents the average error (Avg) and
standard deviation (Stdv) values of the two algorithms in
dealing with F1-F23 functions in 4 dimensions. In Table 4,
each average error (Avg) which is smaller than another is
marked in bold face, indicating the algorithm has better
performance.

As can be seen from Table 4, ChaoticBFO performs better
than BFO onmost functions in all dimensions and still returns
the results with obvious advantage at higher dimensions.
Since it is more difficult to deal with F1-F23 functions in
higher dimensions, the average error (Avg) also increases as
the dimension increases. In the four different dimensions,
ChaoticBFO obtains more accurate results than BFO on all
functions from F1 to F15.

C. COMPARATIVE STUDY
To verify its effectiveness, ChaoticBFO was compared with
four well-known algorithms: PSO[3], Bat Algorithm (BA)
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TABLE 4. Scalability results.

[49], FA [50], and Flower Pollination Algorithm (FPA) [51].
In addition, to verify its efficiency, ChaoticBFO was also
compared with the original BFO [9] and five other meta-
heuristic algorithms: MFO [52], Dragonfly Algorithm (DA)
[53], Sine Cosine Algorithm (SCA) [54], Grasshopper

TABLE 5. Parameter settings for the algorithms used.

Optimization Algorithm (GOA) [55], Salp Swarm Algo-
rithm (SSA) [56]. Parameter values for the above algorithms
were set according to their original articles. Table 5 shows the
parameter values for each algorithm. Moreover, to achieve
unbiased results, 30 independent runs were performed on
each benchmark function. In all the experiments, the pop-
ulation size and maximum number of iterations were set to
50 and 500, respectively.

The average results (Avg), standard deviation (Stdv), and
overall rank of different algorithms in dealing with F1-F23
problems are presented in Table 6, Table 7, and Table 8.
It should be noted that the ranking was based on the average
results (Avg) of 30 independent runs. The convergence behav-
ior of the algorithms in solving all the problemswas also com-
pared based on the logarithmic scale diagram in Figures 5-7.
The results on the unimodal F1-F7 are listed in Table 6.
It can be seen from Table 6 that ChaoticBFO outper-
forms all the other algorithms in dealing with all the
cases (F1-F7). In addition, the ranking results also show
that ChaoticBFO generates the best solution among all the
algorithms.

According to the convergence curves shown in Figure 5,
it can be seen that the convergence speed of ChaoticBFO is
faster than that of the other algorithms in all cases. In dealing
with F1, F2, F4, F6 and F7, ChaoticBFO converges very fast
throughout early steps, whereas BA, DA, FA, FPA, GOA,
SCA, SSA and PSO fail to improve the quality of solutions
in solving F3 despite more explorative steps. For F2,
although the other algorithms have the effect of convergence,
ChaoticBFO has the fastest convergence speed. Moreover,
although SSA converges fast in the later stages in tackling F6,
ChaoticBFO obtains the optimal value.
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TABLE 6. Results on unimodal benchmark functions (F1-F7).

TABLE 7. Results on multimodal benchmark functions (F8-F13).

The statistical results on multimodal F7-F13 are listed
in Table 7. From Table 7, it can be seen that ChaoticBFO
generates very competitive solutions compared to other algo-
rithms. According to the overall rank, it can be seen that

ChaoticBFO ranks first. The corresponding convergence
plots shown in Figure 6 also demonstrates the relative superi-
ority of ChaoticBFO in dealing with all test problems. It out-
performs all its competitors in tackling F11 and F13 only
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TABLE 8. Results on fixed-dimension multimodal benchmark functions (F14-F23).

through 10 iterations. For F8, F9, and F10, it can be seen
that ChaoticBFO converges fast during few searching steps
compared with other methods. For F10, FA has a bet-
ter result until 500 iterations, whereas ChaoticBFO outper-
forms FA and it found the good solution during the initial
steps.

The results on F14 to F23 are listed in Table 8. The results
in Table 8 show that ChaoticBFO generates the optimal
solutions for problems F14, F15, and F21 in all 30 runs. The
algorithms have the same exploration capabilities in tackling
problems F16, F17, F18, and F19. In particular, the FPA
algorithm outperforms other optimizers in tackling the
problem F20. Moreover, in dealing with F22, ChaoticBFO,
BFO and FA algorithms are more competitive than other
algorithms. However, based on overall rank, ChaoticBFO is
the best technique.

As shown in Figure 7, it can be seen that ChaoticBFO
converges very fast and outperforms all other methods in
dealing with F15, with BFO being the second-best. For F14,
it can be seen that ChaoticBFO converges faster during few

searching steps and generates better results than GOA and
SSA. In tackling F17, F18 and F19, DA converges very fast
throughout early steps, whereas ChaoticBFO is the second-
best. For F21, F22 and F23, there is a close rivalry between
DA and ChaoticBFO.

As can be seen from Figs.6-7, in dealing with the F9,
F10 and F16 problems, the convergence curve of ChaoticBFO
is incomplete. It is because ChaoticBFO has converged to the
global optimal value at the initial stage. Therefore, the cor-
responding convergence curve is represented as a red dot
on the F9 and F10 problems. Similarly, for the F9 prob-
lem, the convergence curve of BFO suddenly disappears at
about 150 iterations because it has obtained the optimal solu-
tion. Especially when solving F16 (Fig.7-c), all convergence
curves are missing except that there are three different color
points representing FA, FPA and MFO from top to bottom.
It is because all the algorithms used have been able to find
the global optimal value at a very fast speed at the beginning
of iteration, with these three methods converging relatively
slowly compared with other algorithms.

VOLUME 6, 2018 64913



Q. Zhang et al.: Chaos-Enhanced BFO for Global Optimization

FIGURE 5. Convergence curves on unimodal functions (F1-F7).

As can be seen from the results, ChaoticBFO can achieve
acceleration throughout early steps, because it utilizes chaos
initialization strategy in the initialization step. Moreover,
the adoption of chaotic local search with a ‘shrinking’
strategy enables ChaoticBFO to escape from local optimum
with much better chance.

The Wilcoxon rank-sum test [57] at 5% significance is
also utilized to judge whether the improvements achieved
by ChaoticBFO are meaningful over the other optimizers.
When p-values are less than 0.05, it can be determined that
ChaoticBFO is significantly superior to the other approaches.
If not, the improvements are not statistically significant.

The p-values are presented in Tables 9-11. In each table,
p-values greater than 0.05 are shown in bold face, indicat-
ing that the differences are not significant. It can be seen
in Table 9 that all p-values are less than 0.05, demonstrating

FIGURE 6. Convergence curves on multimodal functions (F8-F13).

that the performance of ChaoticBFO is statistically improved
compared to other optimizers on functions F1-F7. The
p-values of ChaoticBFO and other algorithms for F8-F13 are
provided in Table 10. With all p-values less than 0.05,
the results show that ChaoticBFO significantly outperforms
the other competitors. The advantage of ChaoticBFO in deal-
ing with F8-F13 can verify that it has a reasonable exploration
capacity.

From Table 11, it can be noted that ChaoticBFO statisti-
cally prevails in over half of the test functions compared to
other methods. Based on p-values for all 23 functions, it can
be concluded that ChaoticBFO is significantly better than the
original BFO on all functions except for F16, F17, F18, F19,
F22 and F23. This is because the former takes advantage
of the chaos initialization strategy and chaotic local search
with a ‘shrinking’ strategy to achieve a more suitable balance
between exploration and exploitation.

D. WALL-CLOCK TIME COST
The wall-clock time consumed by ChaoticBFO and BFO
on F1-F23 is shown in Table 12. It should be noted that
wall-clock time cost is shown in seconds. It can be seen
from Table 12 that ChaoticBFO consumes more wall-clock
time than BFO in tackling all the test functions. The main
reason for the greater time cost of ChaoticBFO is that two
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FIGURE 7. Convergence curves on fixed-dimension multimodal
functions (F14-F23).

chaotic strategies (chaotic initialization strategy and chaotic
local search with a ‘shrinking’ strategy) are introduced in
the original BFO to improve performance and achieve a bet-
ter balance between exploitation and exploration. Although
the wall-clock time cost of ChaoticBFO is greater than that
of BFO, it can be found from the above experimental results
that ChaoticBFO is superior to BFO in most cases. Therefore,

TABLE 9. The calculated p-values from the functions (F1-F7) for
ChaoticBFO versus other optimizers.

TABLE 10. The calculated p-values from the functions (F8-F13) for
ChaoticBFO versus other optimizers.

it is of great value to introduce the two chaotic strategies
into BFO.

VI. COMPARATIVE STUDY ON TWO REAL-WORLD
BENCHMARKS FROM IEEE CEC 2011
In this section, ChaoticBFO was applied to two real-world
engineering problems from IEEE CEC 2011 benchmark
set [58]. Detailed information on these problems is shown
in Table 13. One of the problems is Parameter Estimation for
Frequency-Modulated (FM) Sound Waves, and the other is
Static Economic Load Dispatch (ELD) Problem Instance 1.
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TABLE 11. The calculated p-values from the functions (F14-F23) for
ChaoticBFO versus other optimizers.

These problems can be used to evaluate the performance of
stochastic optimization algorithms. For more details about
these problems, refer to [58].

In order to verify the efficiency of ChaoticBFO on
CEC2011 R01 and R02 test problems, ChaoticBFOwas com-
pared against the original BFO [9], four well-known algo-
rithms: PSO [3], BA [49], FA [50], and FPA [51] as well as
four recently developed metaheuristic algorithms: MFO [52],
SCA [54], GOA [55], and SSA [56]. The parameter values
for the above algorithms were set according to their original
articles. Table 5 shows the best recommended parameter
values for each algorithm. Moreover, in order to achieve
unbiased results, all experiments were conducted under the
same conditions and followed the recommendations provided
in CEC 2011 IEEE congress [58]. In all the experiments,
the population size and maximum number of iterations were
set to 50 and 1000, respectively, and the results were recorded
based on 30 independent runs for each approach.

Tables 14 and 15 show the comparison of ChaoticBFO
versus other optimizers in dealing with the R01 problem
and the R02 problem, respectively. The rank of each method
based on the average results of 30 independent runs and the p-
values of the Wilcoxon rank-sum test [57] at 5% significance
are also provided in Tables 14 and 15. In each table, each

TABLE 12. Wall-clock time costs on test functions (F1-F23).

TABLE 13. Description of real-world optimization problems.

p-value greater than 0.05 is shown in bold face, indicating
the differences are not significant.

From Table 14, it can be seen that ChaoticBFO is the best
optimizer in dealing with the R01 problem. According to the
average results, it can reduce the optimum cost of BFO by
up to 23.50%. Regarding the ranking results, ChaoticBFO is
followed successively by the FA, PSO, MFO, GOA, FPA,
SSA, SCA, BA and BFO methods. Moreover, the results
show that ChaoticBFO significantly outperforms the BFO,
BA, SCA algorithms according to the p-values.

The results in Table 15 show that ChaoticBFO also
ranks first in dealing with the R02 problem, whereas BFO,
PSO and SCA perform poorly. The results demonstrate
that ChaoticBFO, which utilizes chaotic initialization and
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TABLE 14. Comparison of ChaoticBFO versus other optimizers in dealing
with R01 problem.

TABLE 15. Comparison of ChaoticBFO versus other optimizers in dealing
with R02 problem.

chaotic local search with a ‘shrinking’ strategy, can effec-
tively improve the performance of the algorithm in dealing
with R01 and R02 test problems. In addition, the combination
of the two chaotic strategies can achieve a better balance
between exploration and exploitation.

VII. CONCLUSIONS AND FUTURE WORK
For BFO to solve complex optimization problems effi-
ciently and effectively, we propose an improved BFO called
ChaoticBFO in this paper. First, a chaotic initialization strat-
egy is applied to the bacterial population initialization to
increase the population of initial solutions for the selection
of the best initial population, making the algorithm con-
verge faster in the initial stage. Then, in the chemotaxis
step, the chaotic local search with a ‘shrinking’ strategy is
used to avoid the algorithm getting into the local optimal
solution, thus obtaining the global optimal solution during
the search process. To sum up, the combination of the two
chaotic strategies can achieve a reasonable balance between
exploration and exploitation.

In future research, there aremany aspects worth expanding.
For example, in order to achieve better performance, the origi-
nal BFO can hybridize with other state-of-the-art metaheuris-
tic algorithms.Moreover, it is necessary to apply ChaoticBFO
to more practical problems in real-world scenarios. Further-
more, extending ChaoticBFO to the binary version and multi-
objective [59], [60] version is also an interesting direction.
In addition, in view of the high time-complexity of the pro-
posed algorithm in dealing with relatively complex problems,
it would be helpful to adopt parallel processing technologies
based on GPU and multi-threading to further improve the
computational capacity and speed of the algorithm.
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