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ABSTRACT We develop a novel mathematical tool known as complex multi-fuzzy soft set (CMFSS)
which has the ability to handle uncertainties, imprecision, and vagueness of information that are inherent
in the data by considering the amplitude and phase terms of the complex numbers simultaneously. This
CMFSS constitutes of a hybrid structure of multi-fuzzy set and soft set which are defined in a complex
setting. The structure is flexible as it allows for a greater range of values for the membership function by
extending them to the unit circle in a complex plane through modification of the multi-fuzzy soft set by the
inclusion of an additional term called the phase term in order to take into account of the periodic nature
of the data. Accordingly, the novelty of this paper lies in the complex multi-membership functions which
consider more range of values while handling the uncertainty of the periodic data. In this paper, the concept
of complex multi-fuzzy soft set is introduced. We then define its basic operations of complement, union and
intersection and study some related properties, with supporting proofs. Subsequently, by means of level soft
sets, we present an algorithm to solve a CMFSSs decision making problem, to illustrate the effectiveness and
practicality of the proposed concept. Finally, we introduce axiomatic definitions of entropy and similarity
measure for CMFSSs, and some formulas have also been put forward to calculate them. Numerical examples
are given to demonstrate that the proposed entropy measure for CMFSSs is an important concept for
measuring uncertainty in the information/data. Furthermore, some theorems are proposed showing how the
entropy of CMFSS can be found from the similarity measure of CMFSS.

INDEX TERMS Complex multi-fuzzy set, decision making, fuzzy set, multi-fuzzy set, soft set, uncertain
information.

I. INTRODUCTION
Many problems in the areas such as economics, manage-
ment, engineering, environmental science and social science
involve datawhich have the properties of fuzzy, imprecise and
uncertain. The classical methods are not always successful
in solving these problems since the properties may be quite
complex. In recent times, a number of theories have been
proposed for handling the uncertainties and vagueness in
an effective way. Some of these theories are fuzzy set [1],
intuitionistic fuzzy sets [2], rough sets [3] and multi-fuzzy
sets [4], [5]. The concept of the multi-fuzzy sets theory
was proposed by Sebastian and Ramakrishnan which is a
more general fuzzy set using ordinary fuzzy sets as building
blocks, and its membership function is an ordered sequence
of ordinary fuzzymembership functions. The notion of multi-
fuzzy sets provides a newmethod to represent some problems
which are difficult to explain in other extensions of fuzzy

set theory, such as color of pixels. Moreover, these above
mentioned theories have their own difficulties due to the
inadequacy of the parameterization tool. Aiming to overcome
these difficulties, Molodtsov [6] suggested the concept of soft
set which involves dealing with uncertainties. Soft set is free
from the inadequacy of the parameterization tools, therefore,
it can be applied into practice easily. At the same time, there
had been some practical applications in soft set theory that are
used in decision making [7]–[9]. Maji et al. [10] extended
the soft set to the notion of fuzzy soft set, by combining
the theories of soft set and fuzzy set. Due to the capability
of dealing with uncertain and fuzzy parameters, fuzzy soft
set theory was quite versatile and extensively applied in the
decision making problems. Maji and Roy [11] described a
new approach of object recognition from an uncertain multi-
observer data in order to handle decision making based on
fuzzy soft sets. Feng et al. [12] applied level soft sets to
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describe an adjustable decision making approach for fuzzy
soft set. The works in [13] and [14] described the essentials of
fuzzy soft set as a basis for decision-making. Yang et al. [15]
introduced the concept of multi-fuzzy soft set by combining
the multi-fuzzy set and soft set models, and applied it to
decision making, while Dey and Pal [16] generalized the
notion of multi-fuzzy soft set. Zhanga and Shu [17] extended
the idea of multi-fuzzy soft set and introduced the notion of
possibility multi-fuzzy soft set and applied it to a decision
making problem.

Entropy and similarity measures are measures that are
important in the study of fuzzy set and its hybrid structures
as these two components play an important role in measuring
uncertain information which is available in the data. The
degree of fuzziness in fuzzy set and other extended higher
order fuzzy sets was first mentioned by Zadeh [18]. Then,
De Luca and Termini [19] suggested a certain set of axioms
for fuzzy entropy. On the other hand, similarity measure
which is an important tool for determining the degree of sim-
ilarity between two objects has received much more attention
than entropy, as shown by an extensive number of literatures
on the subject. Pappis and his collaborators have issued a
series of papers [20], [21] which took an axiomatic view
of similarity measures. The entropy and similarity measures
for many other sets such as interval-valued fuzzy set [22],
fuzzy soft set [23] and intuitionistic fuzzy soft set [24] have
been widely applied in solving problems related to decision
making, image processing and pattern recognition.

The fuzzy set model can be combined with other mathe-
matical models to extend the range of the membership func-
tion from the real field to the complex field. For example,
Ramot et al. [25] extended this range from the interval [0,1]
to the unit circle in the complex plane and called it complex
fuzzy set, an area which had been progressing rapidly, and is
now known as complex fuzzy logic [26]. The complex fuzzy
sets were used to represent information which involve uncer-
tainty and periodicity. Since its inception, a lot of extensions
of complex fuzzy set models have been developed, such as
complex intuitionistic fuzzy set [27], complex neutrosophic
set [28], complex fuzzy soft set [29], complex fuzzy soft
multisets [30] and complex intuitionistic fuzzy soft set [31].
These models have been used to represent the uncertainty and
periodicity aspects of an object together, in a single set.

Recently, Al-Qudah and Hassan [32] developed a hybrid
model of complex fuzzy sets and multi-fuzzy sets, called the
complex multi-fuzzy set. This model is useful for handling
problems with the properties of multidimensional characteri-
zation. Tomake this model more functional for the purpose of
attaining an improved new decision making results, we will
develop it into complex multi-fuzzy soft set (CMFSS) in
order to incorporate the advantages of soft set and apply them
to the complex multi-fuzzy set models. Our proposed model
will have the ability to handle uncertainties, imprecision and
vagueness of two-dimensional multi-fuzzy information by
capturing the amplitude terms and phase terms of the complex
numbers simultaneously.

The main contributions of our research are as follows.
Firstly, we introduce the concept of CMFSS, which combines
the advantages of both the complex multi-fuzzy set and soft
set. Secondly, we define some concepts related to the notion
of CMFSS as well as some basic operations namely the
complement, union, intersection, AND and OR. The basic
properties and relevant laws pertaining to this concept such
as the DeMorgan’s laws are also verified. Thirdly, in terms of
the application, the CMFSS will be used together with a gen-
eralized algorithm to determine the degree and the total time
of the influence of the economic factors on the sectors that
promotes the Malaysian economy and then deduced results
that help in making decision to determine the most important
factor from these factors. Lastly, we present the axiomatic
definition of entropy and similarity measures of CMFSSs and
study the basic relations between them. Moreover, numerical
example is given to demonstrate that the proposed entropy
measure for CMFSSs is an important concept for measuring
uncertain information.

The paper is organized in the following way. Fundamentals
of multi- fuzzy set theory, soft set theory, multi-fuzzy soft
sets and complex multi-fuzzy sets are presented in Section 2.
In Section 3, the concept of complex multi-fuzzy soft set with
its operation rules are introduced. In Section 4, the basic set
theoretic operations of complex multi-fuzzy soft set such as
complement, union and intersection alongwith some proposi-
tions are presented. In Section 5, we discuss an application of
this concept in the area of economics. In Section 6, we intro-
duce the axiomatic definition of entropy for CMFSS, along
with an illustrative example. In Section 7, the similarity mea-
sure between CMFSSs and the relations between the entropy
and similarity measures are studied. Finally, conclusions are
presented in Section 8.

II. PRELIMINARIES
In this section, we summarize some of the important concepts
pertaining to multi- fuzzy sets, soft sets, multi-fuzzy soft sets
and complex multi-fuzzy sets that are relevant to this paper.
These concepts are stated below.

A. SOFT SETS AND FUZZY SOFT SETS
Molodtsov [6] defined soft set in the following way.
Let U be an initial universe, E be a set of parameters under
consideration and A ⊆ E . Let P(U ) denote the power set
of U .
Definition 1 (See [6]): A pair (F̃,A) is called a soft set

over U, where F̃ is a mapping given by F̃ : A→ P(U ).
Maji et al. [10] applied the concept of fuzzy sets to soft set

theory to introduce the hybrid structure called fuzzy soft sets,
which can be seen as a fuzzy generalization of crisp soft set.
They defined the concept of fuzzy soft sets as follows.
Definition 2 (See [10]): Let U be an initial universal and

E be a set of parameters. Let P(U ) denote the power set
of all fuzzy subsets of U and A ⊆ E. A pair (F̂,A) is
called a fuzzy soft set over U, where F̂ is a mapping given
by F̂ : A→ P(U ).
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Liu et al. [23] presented the axioms that entropy and
similarity measures of fuzzy soft set must satisfy. Similarity
measure and entropy are important tools for dealing with
uncertain data.
Definition 3 (See [23]): A real function S : FS(U ,E) ×

FS(U ,E) → [0, 1] is called a similarity measure for fuzzy
soft set, if it satisfies the following properties.

(S1) S((UA, φA) = 0 for any A ∈ E, and S((F,A),
(F,A)) = 1 for any (F,A) ∈ FS(U ,E).

(S2) S((F,A), (G,B)) = S((G,B), (F,A)) for any (F,A),
(G,B) ∈ FS(U ,E).

(S3) For any (F,A), (G,B), (H ,C) ∈ FS(U ,E), if (F,A) ⊆
(G,B) ⊆ (H ,C), then S((H ,C), (F,A)) ≤

min(S((H ,C), (G,B)), S((G,B), (F,A))).

Definition 4 (See [23]): A real function E : FS(U ,E) →
[0,+∞) is called an entropy on FS(U ,E), if E has the
following properties.

(E1) E(F,A) = 0 if (F,A) is a soft set.
(E2) E(F,A) = 1 if F(e) = [0.5] for any e ∈ A,

where [0.5] is the fuzzy set with the membership
function [0.5](x) = 0.5 for each x ∈ U .

(E3) Let (F,A) be crisper set than (G,B); that is, for
any e ∈ A and x ∈ U , F(e)(x) ≤ G(e)(x) if
G(e)(x) ≤ 0.5 and F(e)(x) ≥ G(e)(x) if G(e)
(x) ≥ 0.5. Than E(F,A) ≤ E(G,B).

(E4) E(F,A) = E(Fc,A), where (Fc,A) is the complement
of fuzzy soft set (F,A) given by Fc(e) = (F(e))c for
each e ∈ A.

B. MULTI-FUZZY SETS AND MULTI-FUZZY SOFT SETS
The notion of fuzzy sets [1] was generalized to multi-fuzzy
sets by Sebastian and Ramakrishnan [4] in 2011. Sebastian
and Ramakrishnan introduced multi-fuzzy sets theory as a
mathematical tool to deal with life problems that have mul-
tidimensional characterization properties. The definition of
soft sets is given as follows:
Definition 5 (See [4]): Let k be a positive integer and

U be a non-empty set. A multi-fuzzy set A in U is a set of
ordered sequences A = {〈x, µ1 (x) , . . . , µk (x)〉 : x ∈ U},
where µi : U −→ Li = [0, 1], i = 1, 2, . . . , k.
The function µA(x) = (µ1 (x) , . . . , µk (x)) is called the

multi-membership function of multi-fuzzy sets A, k is called a
dimension ofA. The set of all multi-fuzzy sets of dimension k
in U is denoted by M kFS(U ).
Combining multi-fuzzy sets and soft sets, Yang et al. [15]

proposed the following hybrid model called multi-fuzzy soft
set, which can be seen as an extension of both multi-fuzzy set
and crisp soft set. Some of the basic concepts pertaining to
multi-fuzzy sets are as follows.
Definition 6 (See [15]): Let U be an initial universal and

E be a set of parameters. A pair (F,A) is called a multi-fuzzy
soft set of dimension k over U, where F is a mapping given
by F : A → M kFS(U ). A multi-fuzzy soft set is a mapping
from parameters to M kFS(U ). It is a parameterized family of
multi-fuzzy subsets of U. For e ∈ A, F(e) may be considered

as the set of e-approximate elements of the multi-fuzzy soft
set (F,A).
Definition 7 (See [15]): Let A,B ⊆ E . Let (F,A) and

(G,B) be two multi-fuzzy soft sets of dimension k over U,
(F,A) is said to be a multi-fuzzy soft subset of (G,B)
if

1) A ⊆ B and
2) ∀e ∈ B,F(e) v G(e).

Here, we write (F,A) v (G,B).

C. COMPLEX MULTI FUZZY SETS
The novelty of the complex multi fuzzy sets introduced by
Al-Qudah and Hassan [32] lies in the ability of complex
multi-membership functions to allow for more range of val-
ues of the membership functions while handling uncertainty
in the data that is periodic in nature. Some of the basic
concepts pertaining to complex multi- fuzzy sets are as
follows.
Definition 8 (See [32]): Let k be a positive integer and

U be a non-empty set. A complex multi-fuzzy set (CMFS)
A, defined on a universe of discourse U, is characterised
by a multi-membership function µA(x) = (µjA(x) )j∈k , that
assigns to any element x ∈ U a complex-valued grade of
multi- membership functions in A. µA(x) may all lie within
the unit circle in the complex plane, and are thus of the
form µA(x) = (r jA(x).eiω

j
A(x) )j∈k , (i =

√
−1), (r jA(x) )j∈k

are real-valued functions and (r jA(x) )j∈k ∈ [0, 1]. The CMFS
A may be represented as the set of ordered sequence

A = { (x
(
µjA(x) = aj

)
j∈k

) : x ∈ U }

= {x, ( (r jA(x).eiω
j
A(x) )j∈k ) : x ∈ U }.

where µjA : U → Lj = {aj : aj ∈ C, |aj| ≤ 1} for
j = 1, 2, . . . , k.
The function (µA(x) = r jA(x).eiω

j
A(x))j∈k is called the

complex multi-membership function of complex multi-fuzzy
set A, k is called the dimension of A. The set of all
complex multi-fuzzy sets of dimension k in U is denoted
by CM kFS(U ).
We now present the theoretic operations of complex multi-

fuzzy sets.
Definition 9 (See [32]): LetA = {x, ( (r jA(x).eiω

j
A(x) )j∈k ) :

x ∈ U } and B = {x, ( (r jB(x).e
iωjB(x) )j∈k ) : x ∈ U } be two

complex multi-fuzzy sets of dimension k in X. We define the
following relations and operations. 1.

1) A ⊂ B if and only if r jA (x) ≤ r jB (x) and ω
j
A (x) ≤

ω
j
B (x) , for all x ∈ U and j = 1, 2, . . . , k.

2) A = B if and only if r jA (x) = r jB (x) and ω
j
A (x) =

ω
j
B (x) , for all x ∈ U and j = 1, 2, . . . , k.

3) A ∪ B = {〈x, r jA∪B (x) .e
iωjA∪B(x)

〉 : x ∈} =

{〈x, max(r jA (x) , r
j
B(x) ).e

imax[ωjA(x),ωjB(x)]
〉 : x ∈ U},

for all j = 1, 2, . . . , k.
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4) A ∩ B = {〈x, r jA∩B (x) .e
iωjA∩B(x)

〉 : x ∈} =

{〈x, min(r jA (x) , r
j
B(x) ).e

imin[ωjA(x),ωjB(x)]
〉 : x ∈ U},

for all j = 1, 2, . . . , k.
5) Ac

= {x, [r jAc (x).e
iωjAc (x) ]j∈k : x ∈ X } = {x,

([1− r jA(x)].ei[2π−ω
j
A(x)] )j∈k : x ∈ U}, for all

j = 1, 2, . . . , k.

III. COMPLEX MULTI-FUZZY SOFT SET
Theory of fuzzy sets [1] is the popular generalization of
classical set theory, whose membership grades are within the
real valued interval [0, 1]. Fuzzy set is used successfully in
modeling uncertainty in many fields of everyday life. How-
ever, there are many problems like complete colour charac-
terization of colour images, taste recognition of food items
and decision making problems with multi aspects which
cannot be characterized by a single membership function of
Zadeh’s fuzzy sets. In order to overcome these problems,
Sebastian and Ramakrishnan [4] proposed the concept of
multi-fuzzy sets theory as a mathematical tool to deal
life problems that have multidimensional characterization
properties. In fact, the multi-fuzzy set has an obsta-
cle to retrieve full information with correct meaning.
Al-Qudah and Hassan [32] gave a solution for this obstacle
by generalizing the range of membership function of multi-
fuzzy set from [0, 1] to the unit circle in the complex plane
by adding an additional term to represent phase. Complex
multi-fuzzy sets [32] theory consists of multi-membership
functions such that each membership function is composed
of amplitude term and phase term that handle the uncertainty
and periodicity, simultaneously. However, the complexmulti-
fuzzy set has one major drawback, which is the lack of an
adequate parameterization tool to facilitate the representation
of the parameters in a comprehensive manner. Our proposed
complexmulti-fuzzy soft set has the added advantage of com-
plex multi-fuzzy set. This model incorporates the advantages
of complex multi-fuzzy sets and the adequate parameteriza-
tion tool.

Now, we begin proposing the definition of complex
multi-fuzzy soft set, and give an illustrative example
of it.

Let U be a universe, E be a set of parameters and A ⊆ E .
Let CM k (U ) be a set of all complex multi-fuzzy subsets of
dimension k in U .
Definition 10: A pair (F,A) is called a complex multi-

fuzzy soft set of dimension k over U, where F is a mapping
given by

F : A→ CM k (U ).

A complex multi-fuzzy soft set of dimension k (CMkFSS) is
a mapping from parameters to CM k (U ). It is a parameterized
family of complex multi-fuzzy subsets of U, and it can be
written as:

(F ,A) = {〈e,F(e)〉 : e ∈ A,F(e) ∈ CM k (U )},

where

F(e) = {〈x, µjF (e)(x) = r jF (e)(x).e
iωjF (e)(x)〉 : e ∈ A,
x ∈ U , j = 1, 2, . . . , k}.

where (µjF (e)(x))j∈K is a complex-valued grade of multi-
membership function ∀x ∈ U. By definition, the values
of (µjF (e)(x))j∈K may all lie within the unit circle in the

complex plane, and are thus of the form [µjF (e)(x) =

r jF (e)(x).e
iωjF (e)(x)]j∈K , where (i =

√
−1), each of the ampli-

tude terms (r jF (e)(x))j∈K and the phase terms (ωjF (e)(x))j∈K
are both real-valued, and (r jF (e)(x))j∈K ∈ [0, 1]. The set of
all CMkFSSs in U is denoted by CMkFSS(U ).
To illustrate this notion, let us consider the following

example.
Example 11: Assume that a person wishes to buy a

travel ticket from one of the travel agencies. Suppose that
U = {x1, x2, x3} is the universe consisting of three travel
agencies. It is well known that a year has four seasons and
the prices of the travel ticket are different for each season.
Suppose the parameter set A = {e1, e2, e3}, where e1, e2
and e3 stand for economic class, business class and first class,
simultaneously. The price of the ticket in each of these classes
has three levels: high, medium and low. We define a complex
multi-fuzzy soft set of dimension three as follows:

F(e1) = {x1/(0.9ei2π (2/4), 0.2ei2π (4/4), 0.5ei2π (1/4)),

x2/(0.2ei2π (1/4), 0.7ei2π (3/4), 0.7ei2π (2/4)),

x3/(0.7ei2π (3/4), 0.5ei2π (4/4), 0.1ei2π (1/4))},

F(e2) = {x1/(0.6ei2π (3/4), 0.5ei2π (1/4), 0.1ei2π (4/4)),

x2/(0.2ei2π (1/4), 0.5ei2π (2/4), 0.3ei2π (4/4)),

x3/(0.6ei2π (2/4), 0.5ei2π (3/4), 0.3ei2π (4/4))},

F(e3) = {x1/(0.7ei2π (3/4), 0.3ei2π (2/4), 0.3ei2π (1/4)),

x2/(0.6ei2π (2/4), 0.6ei2π (2/4), 1ei2π (4/4)),

x3/(0.6ei2π (2/4), 1ei2π (3/4), 0.6ei2π (4/4))}.

In the context of this example, the amplitude terms repre-
sent the degrees of belongingness to the set of prices items
and the phase terms represent the degrees of belongingness
to the phase of seasons.

For example, let us consider the approximation F(e1).
In the complex multi-fuzzy value x1/(0.9ei2π (2/4),
0.2ei2π (4/4), 0.5ei2π (1/4)), the first membership value
(0.9ei2π (2/4)) indicates that the price of the ticket is very high
in the summer, since the amplitude term 0.9 is very close to
one and the phase term (2/4) represents the second season of
the year (the summer season). While the second membership
value 0.2ei2π (4/4) indicates that the price of the ticket is very
low in the winter, since the amplitude term 0.2 is very close
to zero and the phase term (4/4) represents the fourth season
of the year (the winter season). All the other expressions
in the rest of the example can be interpreted in a similar
manner.
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Now, we present the concept of the subset and
equality operations on two CMFSSs in the following
definition.
Definition 12: Let A,B ∈ E . Let (F ,A) and (G,B) be

two CMkFSSs over U. Now, (F ,A) is said to be a complex
multi-fuzzy soft subset of (G,B) if,

1) A ⊆ B and
2) ∀e ∈ A,F(e) v G(e).

In this case, we write (F ,A) v (G,B).
Definition 13: Let A,B ∈ E . Let (F ,A) and (G,B) be

two CMkFSSs over U . (F ,A) and (G,B) are said to be a
complex multi-fuzzy soft equal if (F ,A) is a complex multi-
fuzzy soft subset of (G,B) and (G,B) is a complex multi-fuzzy
soft subset of (F ,A).

In the following, we put forward the definition of a null
CMFSS and the definition of an absolute CMFSS.
Definition 14: A CMkFSSs (F ,A) over U is said to

be a null complex multi-fuzzy soft set, denoted by (F ,A)φ̃k ,

if F(e) = 0k , for all e ∈ A (i.e., r jF (e)(x) = 0 and

ω
j
F (e)(x) = 0π, for all e ∈ A, x ∈ U , j = 1, 2, . . . , k).
Definition 15: A CMkFSSs (F ,A) over U is said to be

absolute complex multi-fuzzy soft set, denoted by (F ,A)Ũk
,

if F(e) = 1k , for all e ∈ A (i.e., r jF (e)(x) = 1 and

ω
j
F (e)(x) = 2π, for all e ∈ A, x ∈ U , j = 1, 2, . . . , k).

IV. BASIC OPERATIONS ON COMPLEX MULTI-FUZZY
SOFT SETS
In this section, we introduce some basic theoretic oper-
ations on CMFSSs such as the complement, union and
intersection. We also give some properties on CMFSSs,
which are associative, De Morgan’s law and other pertaining
laws.

A. COMPLEMENT OF COMPLEX MULTI-FUZZY SOFT SETS
We define the complement operation for CMFSS, give an
illustrative example and a proof of a proposed proposition.
Definition 16: Let (F ,A) be a CMkFSSs over U . The

complement of (F ,A) is denoted by (F ,A)c and is defined
by (F ,A)c = (Fc,¬A), where Fc

: ¬A → CM k (U ) is a
mapping given by

Fc(e) = {〈x, µjF c(e)(x) = r jF c(e)(x).e
iωjFc(e)(x)〉 :

e ∈ ¬A, x ∈ U , j = 1, 2, . . . , k}.

where the complement of the amplitude term is r jF c(e)(x) =

1 − r jF (e)(x) and the complement of the phase term is

ω
j
F c(e)(x) = 2π − iωjF (e)(x).
Example 17: Consider the approximation given in

Example 11, where

F(e1) = {x1/(0.9ei2π (2/4), 0.2ei2π (4/4), 0.5ei2π (1/4)),

x2/(0.2ei2π (1/4), 0.7ei2π (3/4), 0.7ei2π (2/4))

x3/(0.7ei2π (3/4), 0.5ei2π (4/4), 0.1ei2π (1/4))}.

By using the complex multi-fuzzy complement, we
obtain the complement of the approximation given by

Fc(e1) = {x1/(0.1ei2π (2/4), 0.8ei2π (0/4), 0.5ei2π (3/4)),

x2/(0.8ei2π (3/4), 0.3ei2π (1/4), 0.3ei2π (2/4)),

x3/(0.3ei2π (3/4), 0.5ei2π (0), 0.9ei2π (3/4))}.

Proposition 18: If (F ,A) is a CMkFSSs over U , then
1) ((F ,A)c)c = (F ,A),
2) ((F ,A)φ̃k )

c
= (F ,A)Ũk

, where (F̃,A)φ̃k and
(F ,A)Ũk

are the null and the absolute complex multi-
fuzzy soft sets, respectively.

3) ((F ,A)Ũk
)c = (F ,A)φ̃k .

Proof: We will provide the proof of assertion 1 since
the proof of assertions 2 and 3 are straightforward from
Definitions 14, 15 and 16. Suppose that (F ,A) is a complex
multi-fuzzy soft set of dimension k over U . The complement
(F ,A), denoted by (F ,A)c = (Fc,¬A) is defined as:

(F ,A)c = {〈e, r jF c(e)(x).e
iωjFc(e)(x)〉 : e ∈ ¬A,

x ∈ U , j = 1, 2, . . . , k},

= {〈e, [1− r jF (e)(x)].e
i[2π−ωjF (e)(x)]〉 :

e ∈ ¬A, x ∈ U , j = 1, 2, . . . , k},

Now let (F ,A)c = (G,B) = (Fc,¬A). Then we obtain
the following:

(G,B)c = {〈e, [1− r jF c(e)(x)].e
i[2π−ωjFc(e)(x)]〉 :

e ∈ ¬(¬A), x ∈ U , j = 1, 2, . . . , k},

= {〈e, [1− (1− r jF (e)(x))].e
i[2π−(2π−ωjF (e)(x))]〉 :

e ∈ ¬(¬A), x ∈ U , j = 1, 2, . . . , k},

= {〈e, r jF (e)(x).e
iωjF (e)(x)〉 : e ∈ A, x ∈ U ,

j = 1, 2, . . . , k},

= (F ,A).

B. UNION AND INTERSECTION OF COMPLEX
MULTI-FUZZY SOFT SETS
In this part, we will now introduce the definitions of union
and intersection operations of two CMFSSs.
Definition 19: The union of two CMkFSSs (F ,A) and

(G,B) over U, denoted by (F ,A)∪̃(G,B), is a complex multi-
fuzzy soft set (H,C), where C = A ∪ B, ∀e ∈ C and x ∈ U,

H(e)

=


F(e) = [r jF (e)(x)e

iωjF (e)(x)]j∈k if e ∈ A− B,

G(e) = [r jG(e)(x)e
iωjG(e)(x)]j∈k if e ∈ B −A,

F(e) t G(e) = [(r jF (e)(x) ∨ r
j
G(e)(x))

· ei[ω
j
F (e)(x)∪ω

j
G(e)(x)]]j∈k if e ∈ A ∩ B.

We write (H, C) = (H,A)∪̃(H,B), where ∨ denotes the

max operator, whereas the phase term (eω
j
F (e)∪ G(e)(x))j∈k of

the functions lie in the interval [0, 2π ] and can be calculated
using any one of the following operators:
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1) Sum: ωjF (e)∪ G(e) (x) = ω
j
F (e)(x) + ω

j
G(e)(x), for all

j = 1, 2, . . . , k.
2) Max: ωjF (e)∪ G(e) (x) = max(ωjF (e)(x), ω

j
G(e)(x)), for

all j = 1, 2, . . . , k.
3) Min: ωjF (e)∪ G(e) (x) = min(ωjF (e)(x), ω

j
G(e)(x)), for all

j = 1, 2, . . . , k.
4) ‘‘Winner Takes All’’:

ω
j
F (e)∪ G(e) (x) =

{
ω
j
F (e)(x) r jF (e) > r jG(e)
ω
j
G(e)(x) r jF (e) < r jG(e)

for all j = 1, 2, . . . , k.
Definition 20: The intersection of two CMkFSSs (F ,A)

and (G,B) over U, denoted by (F ,A)∩̃(G,B), is a complex
multi-fuzzy soft set (H, C), where C = A ∪ B, ∀e ∈ C
and x ∈ U,
H(e) =

F(e) = [r jF (e)(x)e
iωjF (e)(x)]j∈k if e ∈ A− B,

G(e) = [r jG(e)(x)e
iωjG(e)(x)]j∈k if e ∈ B −A,

F(e) u G(e) = [(r jF (e)(x) ∧ r
j
G(e)(x))

· ei[ω
j
F (e)(x)∩ω

j
G(e)(x)]]j∈k if e ∈ A ∩ B.

We write (H, C) = (H,A)∩̃(H,B), where ∧ denotes the

max operator, whereas the phase term (eω
j
F (e)∩ G(e)(x))j∈k of the

function lie in the interval [0, 2π ] and can be calculated using
any one of the operators given in Deffinition 19.

We will now give some theorems on the union, intersection
and complement of CMFSSs. These theorems illustrate the
relationship between the set theoretic operations that have
been mentioned above.
Theorem 21: Let (F ,A) and (G,B) be two CMkFSSs

over U. Then the following properties hold true.
1) (F ,A)∪̃(F ,A)φ̃k = (F ,A).
2) (F ,A)∩̃(F ,A)φ̃k = (F ,A)φ̃k .
3) (F ,A)∪̃(F ,A)Ũk

= (F ,A)Ũk
,

4) (F ,A)∩̃(F ,A)Ũk
= (F ,A),

Proof: The proofs are straightforward by using
Definitions 19 and 20.
Theorem 22: Let (F ,A), (G,B) and (Q,D) be three

CMkFSSs over U of dimension k. Then the following asso-
ciative laws hold true.

1) (F ,A)∪̃((G,B)∪̃(Q,D)) = ((F ,A)∪̃((G,B)) ∪
((Q,D),

2) (F ,A)∩̃((G,B)∩̃(Q,D)) = ((F ,A)∩̃((G,B)) ∩
((Q,D),
Proof: 1. Assume that ((G,B)∪̃(Q,D)) = (M,N )

where N = B ∪ D. By Definition 4.2.1 we have
((G,B)∪̃(Q,D)) to be a CMkFSES (M,N ), where
N = B ∪D and ∀e ∈ N , such that

M(e) = G(e) tQ(e)

=

[
(r jG(e)(x) ∨ r jQ(e)(x)) · e

i[ωjG(e)(x)∨ ω
j
Q(e)(x)]

]
j∈k
,

Suppose that (Y,R) = ((F ,A)∪̃(M,N )) where Y =
A ∪ N . By Definition 19, then we have ((F ,A)∪̃(M,N ))
to be a CMkFSES (Y,R), whereR = A∪N and ∀e ∈ R,
such that

Y(e)

=


F(e) = [r jF (e)(x)e

iωjF (e)(x)]j∈k if e∈A−P,

M(e) = [r jM(e)(x)e
iωjM(e)(x)]j∈k if e∈P−A,

F(e)tM(e) = [(r jF (e)(x) ∨ r
j
M(e)(x))

· ei[ω
j
F (e)(x)∨ ω

j
M(e)(x)]]j∈k if e∈A∩P.

Now let (F ,A)∪̃((G,B)∩̃(Q,D)) = ((F ,A)∪̃(M,N )).
We consider the case when e ∈ A ∩N as the other cases are
trivial. Hence,

(F ,A)∪̃((G,B)∩̃(Q,D))

= (F ,A)∪̃(M,N )

= F(e) tM(e)

= F(e) t (G(e) tQ(e))

=

[(
r jF (e)(x) ∨ r jG(e)tQ(e)(x)

)
· ei
(
ω
j
F (e)(x)∨ ω

j
G(e)tQ(e)(x)

)]
j∈k

=

[(
r jF (e)(x) ∨ [r jG(e)(x) ∨ r

j
Q(e)(x)]

)
· ei
(
ω
j
F (e)(x)∨[ω

j
G(e)(x)∨ ω

j
Q(e)(x)]

)]
j∈k

=

[(
[r jF (e)(x) ∨ r

j
G(e)(x)] ∨ r

j
Q(e)(x)

)
· ei
(
[ωjF (e)(x)∨ ω

j
G(e)(x)]∨ω

j
F (e)(x)

)]
j∈k

=

[(
r jF (e)tG(e)(x) ∨ r

j
Q(e)(x)

)
· ei
(
ω
j
F (e)tG(e)(x),ω

j
F (e)tQ(e)(x)

)]
j∈k

= (F(e) t G(e)) tQ(e)

= ((F ,A)∪̃(G,B))∪̃(Q,D)

Therefore, we have

(F ,A)∪̃((G,B)∩̃(Q,D)) = ((F ,A)∪̃(G,B))∪̃(Q,D).

2. The proof is similar to that in part (1) and therefore is
omitted.
Theorem 23: Let (F ,A) and (G,B) be two CMkFSSs

over U. Then the following De Morgan’s law holds true.
1) ((F ,A)∪̃(G,B))c = (F ,A)c∩̃(G,B)c,
2) ((F,A)∩̃(G,B))c = (F ,A)c∪̃(G,B)c.
Proof: Suppose that (F ,A)∪̃(G,B) = (H, C), where

C = A ∪ B and ∀e ∈ C,

H(e)

=


F(e) = [r jF (e)(x)e

iωjF (e)(x)]j∈k if e ∈ A− B,

G(e) = [r jG(e)(x)e
iωjG(e)(x)]j∈k if e ∈ B −A,

F(e) t G(e) = [(r jF (e)(x) ∨ r
j
G(e)(x))

· ei[ω
j
F (e)(x)∪ω

j
G(e)(x)]]j∈k if e ∈ A ∩ B.

VOLUME 6, 2018 65007



Y. Al-Qudah, N. Hassan: CMFSS: Its Entropy and Similarity Measure

Since (F ,A)∪̃(G,B) = (H, C), then we have
((F ,A)∪̃(G,B))c = (H, C)c = (Hc,C). Hence ∀e ∈ C,

Hc(e)

=



Fc(e) = [r jF c(e)(x)e
iωjFc(e)(x)]j∈k if e∈A−B,

Gc(e) = [r jGc(e)(x)e
iωjGc(e)(x)]j∈k if e∈B−A,

Fc(e) u Gc(e) = [(r jF c(e)(x) ∧ r
j
Gc(e)(x))

· ei[ω
j
Fc(e)(x)∩ω

j
Gc(e)(x)]]j∈k if e∈A∩B.

Since (F ,A)c = (Fc,A) and (G,B)c = (Gc,B) then
we have (F ,A)c∩̃(G,B)c = (Fc,A)∩̃(Gc,B). Suppose
that (Fc,A)∩̃(Gc,B) = (T ,J ), where J = A ∪ B.
Hence ∀e ∈ J ,

T (e)

=



Fc(e) = [r jF c(e)(x)e
iωjFc(e)(x)]j∈k if e∈A−B,

Gc(e) = [r jGc(e)(x)e
iωjGc(e)(x)]j∈k if e∈B−A,

Fc(e) u Gc(e) = [(r jF c(e)(x) ∧ r
j
Gc(e)(x))

· ei[ω
j
Fc(e)(x)∩ω

j
Gc(e)(x)]]j∈k if e∈A∩B.

Therefore, (Hc, C) and (T ,J ) are the same operators,
for all e ∈ C(J ), which implies that ((F ,A)∪̃(G,B))c =
(F ,A)c∩̃(G,B)c and this completes the proof.

(2) The proof is similar to that in part (1) and therefore is
omitted.

V. AN APPLICATION OF COMPLEX MULTI-FUZZY SOFT
SET IN DECISION MAKING
Like most of the decision making problems, complex multi-
fuzzy soft set based decision making involves the evaluation
of all the objects which are decision alternatives. In general,
there actually does not exist a unique criterion for the eval-
uation of decision alternatives. Thus sometime it is not very
efficient to select the optimal object from the considered alter-
natives. In this section, we will further modify the algorithm
of [12] and [15] to solve a decision making problem which is
based on the concept of the CMFSS.

Let U = {x1, x2, . . . , xn} and (F ,A) be a CMkFSS

over U . For each e ∈ A, F(e) = {
(r jF (e)(x1).e

iωjF (x1)
(x1))j∈k

x1
, . . . ,

(r jF (e)(xn).e
iωjF (e)(xn))j∈k
xn

}. F(e) can be expressed in matrix form
as follows

F(e) =



r1F (e)(x1).e
iω1

F (e)(x1) . . . rkF (e)(x1).e
iωkF (e)(x1)

r1F (e)(x2).e
iω1

F (e)(x2) . . . rkF (e)(x2).e
iωkF (e)(x2)

...
...

...

r1F (e)(xn).e
iω1

F (e)(xn) . . . rkF (e)(xn).e
iωkF (e)(xn)



Then we convert the above CMkFSS (F ,A) into multi-
fuzzy soft set (F,A), where

F(e) =


µ1
F(e)(x1) . . . µkF(e)(x1)

µ1
F(e)(x2) . . . µkF(e)(x2)

...
...

...

µ1
F(e)(xn) . . . µkF(e)(xn)


Suppose $ = ($1,$2, . . . ,$k )T ,(

∑k
j=1$j = 1) is the

relative weight of parameter e. We define an induced fuzzy
set µF(e) with respect to e in U as follows.

µF (e) =


µ1
F(e)(x1) . . . µkF(e)(x1)

µ1
F(e)(x2) . . . µkF(e)(x2)

...
...

...

µ1
F(e)(xn) . . . µkF(e)(xn)


$1

...

$k



=



∑n

j=1
$jµ

j
F(e)(x1)∑n

j=1
$jµ

j
F(e)(x2)

...∑n

j=1
$jµ

j
F(e)(xn)


Thus, if $ (e) is given, we can change a multi-fuzzy soft
set F(e) into an induced fuzzy soft setµF (e). Hence, by using
this method, we can change a multi-fuzzy soft set to an
induced fuzzy soft set. Once the induced fuzzy soft set of a
multi-fuzzy soft set has been arrived at, it may be necessary
to choose the best alternative from the alternatives based on
Feng’s algorithm [12]. Henceforth, we present an algorithm
to select an optimal decision.
Algorithm
Step 1. Input the CMkFSS (F,A).
Step 2. Convert the CMkFSS (F ,A) to the multi-fuzzy

soft set (F,A) by obtaining the weighted aggre-
gation values of µjF(e)(x),∀e ∈ A,∀x ∈ U and
j = 1, 2, . . . , k as in the following equation.

µ
j
F(e)(x) = ν1r

j
F (e)(x)+ ν2(1/2π )ω

j
F (e)(x)

where r jF (e)(x) and ω
j
F (e)(x) (for j = 1, 2, . . . , k)

are the amplitude and phase terms in the CMkFSS
(F ,A), respectively. µ

j
F(e)(x) is the multi-

membership function in the multi-fuzzy soft set
(F,A) and ν1, ν2 are the weights for the amplitude
terms (degrees of influence) and the phase terms
(times of influence), respectively, where ν1 and
ν2 ∈ [0, 1] and ν1 + ν2 = 1.

Step 3. Change the multi-fuzzy soft set (F,A) into the
normalized multi-fuzzy soft set, that is, if there
exists some x ∈ U and e ∈ A such that∑k

j=1 µ
j
F(e)(x) = l > 1, then we change (µ1

F(e)(x),
µ2
F(e)(x), . . . , µ

k
F(e)(x)) as

1
l (µ

1
F(e)(x), µ

2
F(e)(x), . . . ,

µkF(e)(x)).
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Step 4. Input the relative weight $ (ej) of every parame-
ter ej ∈ E . Compute the induced fuzzy soft set
1F = (F̂,A).

Step 5. Input a threshold fuzzy sets λ −→ [0, 1] (or give two
threshold values t ∈ [0, 1]; or choose the mid-level
decision rule; or choose the top-level decision rule)
for decision making.

Step 6. Compute the level soft set L(1F ; λ) of 1F with
respect to the threshold fuzzy set λ (or the
t-level soft set L(1F ; t); or the mid-level soft set
L(1F ;mid); or the top-level soft set L(1F ;max)).

Step 7. Present the level soft set L(1F ; λ) (or L(1F ; t));
or L(1F ; mid); or L(1F ;max) in tabular forms and
compute the choice values cj of xj,∀j.

Step 8. The optimal decision is to select x` such that
c` = max

j
cj

Step 9. If ` has more than one value, then any one of x` may
be an optimal decision.

We illustrate the proposed algorithm by the following
example.
Example 24: The sectors that are influencing positively the

financial situation in Malaysia are tourism and industrial sec-
tors. Both sectors are affected by some economic factors. For
example, suppose that we are interested in understanding the
most important economic factors (indicators) that affect those
sectors. In this case, we will consider four factors represented
in the following universal set U = {x1, x2, x3, x4}, where
x1 = the role of promotion and advertising, x2 = goods and
services tax (GST), x3 = the plunge in commodity and oil
prices and x4 = the exchange rate variability. The problem
is to arrange these four factors in descending order from the
most significant to the least one. Suppose A = {e1, e2} is
a set of parameters that represents the major sectors of the
Malaysian economy, where e1 stands for ‘‘industry sector’’t,
which includes the following industries; automotive indus-
try, pharmaceutical industry, food industry and oil refining
industry; e2 stands for ‘‘tourism sector’’, which includes four
types of tourism: religious tourism, medical tourism, leisure
tourism and cultural tourism. Now the team of economic
analysts is requested to make a decision about the four
factors, through determining the degree and the overall time
of the impact of these factors on the both sectors, in order to
construct a complex multi-fuzzy soft set of dimension four as
follows:

(F ,A)
=

{
F(e1)

=

{ (0.9ei2π ( 3
12 ), 0.2ei2π (

8
12 ), 0.8ei2π (

2
12 ), 0.5ei2π (

5
12 ))

x1
,

(0.8ei2π (
2
12 ), 0.4ei2π (

6
12 ), 0.3ei2π (

1
12 ), 0.5ei2π (

5
12 ))

x2
,

(0.8ei2π (
4
12 ), 0.4ei2π (

3
12 ), 0.5ei2π (

1
12 ), 0.8ei2π (

4
12 ))

x3
,

(0.1ei2π (
6
12 ), 0.8ei2π (

3
12 ), 0.2ei2π (

10
12 ), 0.5ei2π (

9
12 ))

x4

}
,

F(e2)

=

{ (0.9ei2π ( 5
12 ), 0.6ei2π (

4
12 ), 0.2ei2π (

11
12 ), 0.2ei2π (

1
12 ))

x1
,

(0.6ei2π (
6
12 ), 0.5ei2π (

3
12 ), 0.3ei2π (

12
12 ), 0.8ei2π (

8
12 ))

x2
,

(0.9ei2π (
2
12 ), 0.4ei2π (

3
12 ), 0.1ei2π (

2
12 ), 0.7ei2π (

8
12 ))

x3
,

(0.4ei2π (
7
12 ), 0.3ei2π (

5
12 ), 0.2ei2π (

1
12 ), 0.5ei2π (

5
12 ))

x4

}}
.

In our example, the amplitude terms of the membership
values represent the degree of influence of the mentioned
factors on those sectors, whereas the phase term repre-
sents the phase of this influence or the period of this influ-
ence. Both of the amplitude and phase terms lie in [0, 1].
An amplitude term with value close to 0 (1) implies that the
above mentioned factors has a very little (strong) influence
on those sectors and a phase term with value close to 0 (1)
implies that the above mentioned factors take a very short
(long) time to influence.

In the following discussion, we will describe an
example of possible scenarios that might occur in
this context, instead of providing the complete set
for (F ,A). For example, let us consider the approxima-

tion F(e1) =
{
(0.9ei2π (

3
12 ),0.2ei2π (

8
12 ),0.8ei2π (

2
12 ),0.5ei2π (

5
12 ))

x1
, . . .

}
,

the term (0.9ei2π (
3
12 ),0.2ei2π (

8
12 ),0.8ei2π (

2
12 ),0.5ei2π (

5
12 ))

x1
under the

parameter (e1) for the first economic factor (x1) repre-
sents the influence of the role of advertising and promotion
on the industry sector, where the first membership value
0.9ei2π (

3
12 ) indicates that there is a high influence of the role

of advertising and promotion on automotive industry, since
the amplitude term 0.9 is very close to one and this influence
needs 3 months, which is considered as a short time. While
the second membership value 0.2ei2π (

8
12 ) indicates that there

is a low influence of the role of advertising and promotion on
pharmaceutical industry with degree 0.2. The time required
for this effect is about 11 months, which is very long time.
All the other expressions in the rest of the example can be
interpreted in a similar manner.

Now, convert the complex multi-fuzzy soft set (F ,A)
to multi-fuzzy soft set (F,A). To implement this step,
we assume that the weight for the amplitude term is ν1 = 0.4
and the weight for the phase term is ν2 = 0.6 to obtain the
weighted aggregation values ofµjF(e)(x), ∀e ∈ A,∀x ∈ U and

j = 1, 2, 3, 4. We calculate µjF(e)(x), when e = e1 and x = x1
as shown below.

µ1
F(e1)(x1) = ν1r

1
F (e1)

(x1)+ ν2(1/2π )ω1
F (e1)

(x1)

= (0.4)(0.9)+ (0.6)(1/2π )(2π )(3/12)

= 0.51

µ2
F(e1)(x1) = ν1r

2
F (e1)

(x1)+ ν2(1/2π )ω2
F (e1)

(x1)

= (0.4)(0.2)+ (0.6)(1/2π )(2π )(8/12)

= 0.48
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TABLE 1. Values of (F ,A).

TABLE 2. Tabular representation of the normalized multi-fuzzy soft set.

TABLE 3. Tabular representation of the induced fuzzy soft set
1F = (F̂ ,A).

µ3
F(e1)(x1) = ν1r

3
F (e1)

(x1)+ ν2(1/2π )ω3
F (e1)

(x1)

= (0.4)(0.8)+ (0.6)(1/2π )(2π )(2/12)

= 0.42

µ4
F(e1)(x1) = ν1r

44
F (e1)

(x1)+ ν2(1/2π )ω4
F (e1)

(x1)

= (0.4)(0.5)+ (0.6)(1/2π )(2π )(5/12)

= 0.45

Then, for e = e1 and x = x1, the multi-fuzzy soft value

(µ1
F(e1)(x1), µ

2
F(e1)(x1), µ

3
F(e1)(x1), µ

4
F(e1)(x1))

= (0.51, 0.48, 0.42, 0.45).

In the same way, we calculate the other multi-fuzzy soft
values, ∀e ∈ A and ∀x ∈ U and the results are displayed
in Table 1.

Then we convert (F,A) into the normalized multi-fuzzy
soft set with its tabular representation as in Table 2.

Suppose that experts in the economic field would like to
determine the most important factor from these factors that
affect the sectors. Assume that the weights for the parameters
in A are set as follows: for the parameter ‘‘industry sector’’,
$ (e1) = (0.3, 0.2, 0.3, 0.2), for the parameter ‘‘tourism
sector’’ht, $ (e2) = (0.4, 0.3, 0.2, 0.1). Thus we have an
induced fuzzy soft set 1F = (F̂,A) with its tabular repre-
sentation as in Table 3.

As an adjustable approach, one can use different rules
(or the thresholds) in decision making problem. For example,
if we deal with this problem by mid-level decision rule,
to obtain the mid-threshold values of 1F = (F̂,A), ∀e ∈ A
and j = 1, 2, 3, 4. We calculate mid1F(e)

, when e = e1 as

TABLE 4. Tabular representation of the mid-level soft set L(1F ; mid) with
choice values.

shown below.

mid1F(e1)

=

∑n
j=1 (F̂,A)(e1,xn)

n

=
(F̂,A)(e1,x1)+(F̂,A)(e1,x2)+(F̂,A)(e1,x3) + (F̂,A)(e1,x4)

4

=
0.251+ 0.24+ 0.254+ 245

4
= 0.248

Similarly, we can calculate mid1F(e2)
. The mid-threshold of

1F = (F̂,A) is a fuzzy set

mid1F = {(e1, 0.248), (e2, 0.249)}.

For n = 1, 2 and m = 1, 2, 3, if (F̂,A)(en,xm) ≥ mid1F (en),
then xm gets a ‘‘1’’t, otherwise, xm gets a ‘‘0’’. We can present
the mid-level soft set L(1F ; mid) of 1F with choice values
with tabular representation as in Table 4.

Clearly, the maximum choice value is 2 from Table 4 and
so the optimal decision is to select x1. Therefore, the expert
should select ‘‘the role of promotion and advertising’’ as
the most effective factor based on the specified weights for
different parameters, followed by ‘‘plunge in commodity and
oil prices’’, then ‘‘goods and services’’ and ‘‘exchange rate
variability’’.

To show the advantages of our proposed method using
CMFSS as compared to that of multi-fuzzy soft set as pro-
posed by Yang et al. [15], which is a generalization of fuzzy
soft set [10], let us consider Example 24 above. The multi-
fuzzy soft set can describe this problem as follows:

(F ,A) =
{
F(e1) =

{ (0.9, 0.2, 0.8, 0.5)
x1

}
, . . .

Note that the CMFSS is a generalization of the concept of
multi-fuzzy soft set by adding the phase term to the definition
of multi-fuzzy soft set. Thus as shown in the decision making
problem above, the CMFSS can the ability to handle uncer-
tainties, imprecise and vagueness information that is simul-
taneously captured by the amplitude terms and phase terms
of the complex numbers, whereas multi-fuzzy soft set cannot
handle problems that utilizes the time factor, as its structure
lacks the phase term, it is clear that it is not possible to apply
multi-fuzzy soft set to describe the effect of the economic
factors (indicators) on the sectors at a certain period of time,
since it is unable to represent variables in two dimensions.
In other words multi-fuzzy soft set cannot represent both the
degree and phase of the influence simultaneously. However,
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the structure of complex multi-fuzzy soft set provides the
ability to describe these two variables simultaneously.

Thus, our proposed model has ability to provide suc-
cinct, elegant and comprehensive representation of two-
dimensional multi-fuzzy information.

VI. ENTROPY ON COMPLEX MULTI-FUZZY SOFT SETS
Entropy is one of the fundamental properties of fuzzy sets
as its answers the most important question when dealing
with fuzzy sets: How fuzzy is a fuzzy set? The concept
of entropy answers this fundamental question as it pro-
vides a tool to measure the degree of fuzziness of a fuzzy
set. In this section, we introduce the concepts of entropy
of CMFSSs. Furthermore, we give some theorems and
examples.
Definition 25: A real valued function Ê : CMkFSS(U )
→ [0, 1] is called an entropy on CMkFSS , if Ê satisfies the
following axiomatic requirements:

(Ê1) Ê(F , E) = 0 ⇐⇒ r jF (e)(x) = 1 and ωjF (e)(x) =
2π, ∀e ∈ E, x ∈ U , j = 1, 2, . . . , k.

(Ê2) Ê(F , E) = 1 ⇐⇒ r jF (e)(x) = 0.5 and ωjF (e)(x) =
π, ∀e ∈ E, x ∈ U , j = 1, 2, . . . , k.

(Ê3) Ê(F , E) = Ê((F , E)c).
(Ê4) if (F , E) ⊆ (G, E), i.e., r jF (e)(x) ≤ r jG(e)(x) and

ω
j
F (e)(x) ≤ ω

j
G(e)(x), ∀e ∈ E, x ∈ U , j = 1, 2, . . . , k.,

then Ê(F , E) ≥ Ê(G, E).
Theorem 26: Let U = {x1, x2, . . . , xp} be the univer-

sal set of elements and E = {e1, e2, . . . , em} be the uni-
versal set of parameters. Hence (F , E) = {F(el) =

r jF (el )
(x).eiω

j
F (el )

(x)
|l = 1, 2, . . . ,m} is a family of CMkFSS .

Define Ê(F , E) as follows:

Ê(F , E) =
1
2m

m∑
l=1

[Êrl (F , E)+
Êωl (F , E)

2π
],

where

Êrl (F , E) =
1
nk

n∑
p=1

k∑
j=1

[1− |r jF (el )
(xp)− r

j
F c(el )

(xp)|]

and

Êωl (F , E) =
1
nk

n∑
p=1

k∑
j=1

[2π − |ωjF (el )
(xp)− ω

j
F c(el )

(xp)|],

then Ê(F , E) is an entropy of CMkFSS .
Proof:We show that the Ê(F , E) satisfies the all condi-

tions given in Definition 25.

(Ê1) Ê(F , E) = 0

⇐⇒

m∑
l=1

[Êrl (F , E)+
Êωl (F , E)

2π
] = 0

⇐⇒ Êrl (F , E) = 0 and Êωl (F , E) = 0

⇐⇒ ∀el ∈ E, xp ∈ U , j = 1, 2, . . . , k,

n∑
p=1

k∑
j=1

([1− |r jF (el )
(xp)− r

j
F c(el )

(xp)|]) = 0

and
n∑

p=1

k∑
j=1

([2π − |ωjF (el )
(xp)− ω

j
F c(el )

(xp)|]) = 0

⇐⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

|r jF (el )
(xp)− r

j
F c(el )

(xp)| = 1

and |ωjF (el )
(xp)− ω

j
F c(el )

(xp)| = 2π.

⇐⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

r jF (el )
(xp) = 1 and ωjF (el )

(xp) = 2π.

(Ê2) For (F , E) ∈ CMkFSS(U ), we have Ê(F , E) = 1

⇐⇒

m∑
l=1

[Êrl (F , E)+
Êωl (F , E)

2π
] = 2m

⇐⇒ Êrl (F , E) = 1 and Êωl (F , E) = 2π

⇐⇒ ∀el ∈ E, xp ∈ U , j = 1, 2, . . . , k,

1
nk

n∑
p=1

k∑
j=1

([1− |r jF c(el )
(xp)− r

j
F (el )

(xp)|]) = 1

and
1
nk

n∑
p=1

k∑
j=1

([2π−|ωjF c(el )
(xp)−ω

j
F (el )

(xp)|])=2π

⇐⇒ ∀el ∈ E, xp ∈ U , j = 1, 2, . . . , k,
n∑

p=1

k∑
j=1

([1− |r jF c(el )
(xp)− r

j
F (el )

(xp)|]) = nk

and
n∑

p=1

k∑
j=1

([2π − |ωjF c(el )
(xp)− ω

j
F (el )

(xp)|]) = 2π (nk)

⇐⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

[1− |r jF c(el )
(xp)− r

j
F (el )

(xp)|] = 1

and [2π−|ωjF c(el )
(xp)− ω

j
F (el )

(xp)|] = 2π

⇐⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

|r jF c(el )
(xp)− r

j
F (el )

(xp)| = 0

and |ωjF c(el )
(xp)− ω

j
F (el )

(xp)| = 0

⇐⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

r jF (el )
(xp) =

1
2
and ωjF (el )

(xp) = π.

(Ê3) For (F , E) ∈ CMkFSS(U ), we have

Êrl (F , E) =
1
nk

n∑
p=1

k∑
j=1

([1− |r jF (el )
(xp)− r

j
F c(el )

(xp)|])

=
1
nk

n∑
p=1

k∑
j=1

([1− |r jF c(el )
(xp)− r

j
F (el )

(xp)|])

= Êrl ((F , E)
c)

Similarly, we can prove Êωl (F , E) = Êωl ((F , E)c) it is clear
that Ê(F , E) = Ê((F , E)c).
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(Ê4) Let (F , E), (G, E) ∈ CMkFSS(U ). If (F , E) ⊆ (G, E)

H⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

r jF (el )
(xp) ≤ r

j
G(el )(xp) and ω

j
F (el )

(xp) ≤ ω
j
G(el )(xp),

H⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

|r jF (el )
(xp)− r

j
F c(el )

(xp)| ≤ |r
j
G(el )(xp)− r

j
Gc(el )(xp)|

and |ωjF (el )
(xp)−ω

j
F c(el )

(xp)|≤|ω
j
G(el )(xp)−ω

j
Gc(el )(xp)|

H⇒ ∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

1− |r jF (el )
(xp)− r

j
F c(el )

(xp)| ≥ 1

− |r jG(el )(xp)− r
j
Gc(el )(xp)|

and 2π − |ωjF (el )
(xp)− ω

j
F c(el )

(xp)| ≥ 2π

− |ω
j
G(el )(xp)− ω

j
Gc(el )(xp)|

H⇒
1
nk

n∑
p=1

k∑
j=1

([1− |r jF (el )
(xp)− r

j
F c(el )

(xp)|])

≥
1
nk

n∑
p=1

k∑
j=1

([1− |r jG(el )(xp)− r
j
Gc(el )(xp)|])

and
1
nk

n∑
p=1

k∑
j=1

([2π − |ωjF (el )
(xp)− ω

j
F c(el )

(xp)|])

≥
2
nk

n∑
p=1

k∑
j=1

([2π − |ωjG(el )(xp)− ω
j
Gc(el )(xp)|])

H⇒ Êrl (F , E) ≥ Ê
r
l (G, E) and Ê

ω
l (F , E) ≥ Ê

ω
l (G, E)

H⇒ Êrl (F , E)+ Ê
ω
l (F , E) ≥ Ê

r
l (G, E)+ Ê

ω
l (G, E)

H⇒
1
2m

m∑
l=1

[Êrl (F ,A)+
Êωl (F , E)

2π
]

≥
1
2m

m∑
l=1

[Êrl (G, E)+
Êωl (G, E)

2π
]

H⇒ Ê(F , E) ≥ Ê(G, E)

This completes the proof of Theorem 26.

A. APPLICATION USING ENTROPY MEASURE
Prediction of a bushfire danger rating in advance can reduce
costs of damage and save people’s lives. Fire-fighting man-
agement currently uses a three-level fire danger rating system
that is based on the fire danger index. The fire danger index
is determined using the data (observations and/or predic-
tions) of three primary meteorological indicators (factors),
that is, ‘‘maximum temperature’’, ‘‘wind speed’’ and ‘‘rel-
ative humidity’’. It is well-known that the three indicators
change seasonally. Hence, the same data for an indicator
mean different things at different times; for instance, a 20◦

temperature might mean a cool day in summer, a warm day
in winter or a fair day in spring. This phenomenon indicates
that data are of semantic uncertainty and periodicity.

Assume that there is a set of two experts {P1,P2}
to evaluate the three levels of fire danger index levels.
Let U = {x1, x2, x3} be the set of levels, E = {e1, e2, e3}

is a set of parameters that represents the meteorological indi-
cators where e1 stands for ‘‘maximum temperature’’ which
includes three levels: cool, warm and fair, e2 stands for ‘‘wind
speed’’ includes three speeds: light, moderate and strong, and
e3 stands for ‘‘relative humidity’’ which can be categorized as
high, medium and low.

The following CMkFSS(F , E) describes the evaluation
of expert P1.

(F , E)

=

{
F(e1)=

{ (0.8ei2π (6/12), 0.9ei2π (6/12), 0.7ei2π (7/12))
x1

,

(0.5ei2π (4/12), 0.4ei2π (3/12), 0.3ei2π (1/12))
x2

,

(0.1ei2π (10/12), 0.2ei2π (11/12), 0.2ei2π (10/12))
x3

}
,

F(e2) =
{ (0.3ei2π (5/12), 0.2ei2π (4/12), 0.2ei2π (6/12))

x1
,

(0.9ei2π (2/12), 0.8ei2π (2/12), 0.7ei2π (1/12))
x2

,

(0.4ei2π (7/12), 0.3ei2π (5/12), 0.4ei2π (5/12))
x3

}
,

F(e3) =
{ (0.2ei2π (4/12), 0.3ei2π (3/12), 0.3ei2π (4/12))

x1
,

(0.6i2π (5/12), 0.7ei2π (8/12), 0.4ei2π (9/12))
x2

,

(0.2ei2π (2/12), 0.3ei2π (6/12), 0.4ei2π (7/12))
x3

}}
.

The following CMkFSS(G, E) describes the evaluation of
expert P2.

(G, E)=
{
G(e1)

=

{ (0.3ei2π (7/12), 0.5ei2π (6/12), 0.4ei2π (7/12))
x1

,

(0.1ei2π (2/12), 0.2ei2π (3/12), 0.1ei2π (1/12))
x2

,

(0.8ei2π (8/12), 0.7ei2π (9/12), 0.2ei2π (10/12))
x3

}
,

G(e2)={
(0.9ei2π (9/12),0.6ei2π (10/12),0.2ei2π (11/12))

x1
,

(0.9ei2π (2/12), 0.4ei2π (3/12), 0.1ei2π (1/12))
x2

,

(0.4ei2π (7/12), 0.3ei2π (5/12), 0.2ei2π (6/12))
x3

},

G(e3)={
(0.6ei2π (6/12), 0.5ei2π (3/12), 0.3ei2π (12/12))

x1
,

(0.1i3π (5/12), 0.3ei2π (4/12), 0.4ei2π (3/12))
x2

,

(0.8ei2π (5/12), 0.9ei2π (7/12), 0.7ei2π (8/12))
x3

}

}
.
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Then we have

Êr1 (F , E) =
1
nk

n∑
p=1

k∑
j=1

[1− |r jF (e1)
(xp)− r

j
F c(e1)

(xp)|]

=
1

3× 3
[(0.4+ 0.2+ 0.6)+ (1+ 0.8+ 0.6)

+ (0.2+ 0.4+ 0.4)]

= 0.551

Êω1 (F , E) =
1
nk

n∑
p=1

k∑
j=1

[2π − |ωjF (e1)
(xp)− ω

j
F c(e1)

(xp)|]

=
1

3× 3
[(2π + 2π + 2π

10
12

)

+ (2π
8
12
+ 2π

6
12
+ 2π

2
12

)

+ (2π
4
12
+ 2π

2
12
+ 2π

4
12

)]

= 1.11π

Similarly,

Êr2 (F , E) = 0.555, Êω2 (F , E) = 1.29π,

Êr3 (F , E) = 0.644, Êω3 (F , E) = 1.33π,

Êr1 (G, E) = 0.511, Êω1 (G, E) = 1.148π,

Êr2 (G, E) = 0.488, Êω2 (G, E) = 1.037π,

Êr3 (G, E) = 0.577, Êω3 (G, E) = 1.296π,

Hence the entropy of the CMkFSSs (F , E) and (F , E) are
as given below:

Ê(F , E) =
1

2× 3

3∑
l=1

[Êrl (F , E)+
Êωl (F , E)

2π
] = 0.569

Ê(G, E) =
1

2× 3

3∑
l=1

[Êrl (G, E)+
Êωl (G, E)

2π
] = 0.553

Entropy is an important notion for measuring uncertain
information. The less uncertainty information has the larger
possibility to select the optimal. From the computation we
have Ê(G, E)) ≤ Ê(F , E). Therefore, the expert P2 has larger
possibility to make the decision on fire fighting management
than expert P1. For expert P2, the value Êr3 (G, E) = 0.577
has the largest entropy value between the fire danger index
levels. This points out that the parameters related with the
fire fighting namely, maximum temperature, wind speed and
relative humidity have to be given proper attention for fire-
fighting management system.

VII. SIMILARITY MEASURE BETWEEN COMPLEX
MULTI-FUZZY SOFT SETS
Similarity measures quantify the extent to which differ-
ent patterns, images, or sets are alike. Such measures are
used extensively in the application of fuzzy soft sets. Based
on the axioms for the entropy of fuzzy soft sets [23],
we give a definition of a similarity measure for CMFSS as
follows.

Definition 27: A real valued function Ŝ : CMkFSS(U )×
CMkFSS(U ) → [0, 1] is called a similarity measure
between two CMkFSSs (F , E) and (G, E), if Ŝ satisfies the
following axiomatic requirements:
(Ŝ1) Ŝ((F , E), (G, E)) = Ŝ((G, E), (F , E)),
(Ŝ2) Ŝ((F , E), (G, E)) = 1⇐⇒ (F , E) = (G, E),
(Ŝ3) Ŝ((F , E), (G, E)) = 0 ⇐⇒ ∀e ∈ E, x ∈ U , j =

1, 2, . . . ,K , the following conditions are satisfied:
r jF (e)(x) = 1, r jG(e)(x) = 0 õr

r jF (e)(x) = 0, r jG(e)(x) = 1
and
ω
j
F (e)(x) = 2π, ωjG(e)(x) = 0 õr

ω
j
F (e)(x) = 0, ωjG(e)(x) = 2π ,

(Ŝ4) ∀(F , E), (G, E) and (Q, E) ∈ CMkFSS(U ),
if (F , E) ⊆ (G, E) ⊆ (Q, E),
then Ŝ((F , E), (Q, E)) ≤ Ŝ((F , E), (G, E))
and Ŝ((F , E), (Q, E)) ≤ Ŝ((G, E), (Q, E)).

Now, we introduce the formula to calculate the similarity
between two CMkFSSs as follows:
Theorem 28: Let U = {x1, x2, . . . , xp} be the uni-

versal set of elements and E = {e1, e2, . . . , em} be
the universal set of parameters. (F , E) = {F(el) =

r jF (el )
(x).eiω

j
F (el )

(x)
|l = 1, 2, . . . ,m} and (G, E) = {G(el) =

r jG(el )(x).e
iωjG(el )

(x)
|l = 1, 2, . . . ,m} are two families of

CMkFSSs. Define Ŝ((F , E), (G, E)) as follows:

Ŝ((F , E), (G, E))

=
1
2m

m∑
l=1

[Ŝrl ((F , E), (G, E))+
Ŝωl ((F , E), (G, E))

2π
],

where

Ŝrl ((F , E), (G, E))
= 1−

1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k},

and

Ŝωl ((F , E), (G, E))

= 2π −
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k},

then Ŝ((F , E), (G, E)) is a similarity measure between two
CMkFSSs (F , E) and (G, E).

Proof: It is sufficient to show that Ŝ((F , E), (G, E)) sat-
isfies the requirements listed in Definition 27.
(Ŝ1) For

Ŝrl ((F , E), (G, E))

= 1−
1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k},

= 1−
1
n

n∑
p=1

max{(|r jG(el )(xp)− r
j
F (el )

(xp)|)j∈k}

= Ŝrl ((G, E), (F , E))
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and

Ŝωl ((F , E), (G, E))

= 2π −
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k},

= 2π −
1
n

n∑
p=1

max{(|ωjG(el )(xp)− ω
j
F (el )

(xp)|)j∈k}

= Ŝωl ((G, E), (F , E))

So we have

Ŝ((F , E), (G, E))

=
1
2m

m∑
l=1

[Ŝrl ((F , E), (G, E))+
Ŝωl ((F , E), (G, E))

2π
]

=
1
2m

m∑
l=1

[Ŝrl ((G, E), (F , E))+
Ŝωl ((G, E), (F , E))

2π
]

= Ŝ((G, E), (F , E)).

(Ŝ2) Ŝ((F , E), (G, E)) = 1

⇐⇒
1
2m

m∑
l=1

[Ŝrl ((F , E), (G, E))+
Ŝωl ((F , E), (G, E))

2π
] = 1

⇐⇒ Ŝrl ((F , E), (G, E)) = 1 and Ŝωl ((F , E), (G, E))) = 2π

⇐⇒ 1−
1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k} = 1

and

2π −
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k} = 2π,

∀el ∈ A, x ∈ U , j = 1, 2, . . . , k,

⇐⇒
1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k} = 0

and
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k} = 0,

∀e ∈ E, x ∈ U , j = 1, 2, . . . , k,

⇐⇒ max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k} = 0

and

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k} = 0,

∀e ∈ A, x ∈ U , j = 1, 2, . . . , k,

⇐⇒ r jF (el )
(xp) = r jG(el )(xp)

and

ω
j
F (el )

(xp) = ω
j
G(el )(xp),

∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

⇐⇒ (F , E) = (G, E).

(Ŝ3) Ŝ((F , E), (G, E)) = 0

⇐⇒
1
2m

m∑
l=1

[Ŝrl ((F , E), (G, E))+
Ŝωl ((F , E), (G, E))

2π
] = 0

⇐⇒ Ŝrl ((F , E), (G, E)) = 0 and Ŝωl ((F , E), (G, E))) = 0

⇐⇒ 1−
1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k} = 0

and

2π −
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k} = 0,

∀el ∈ E, x ∈ 7U , j = 1, 2, . . . , k,

⇐⇒
1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k} = 1

and
1
n

n∑
p=1

max{(|ωjF (e)(xp)− ω
j
G(e)(xp)|)j∈k} = 2π,

∀e ∈ A, x ∈ U , j = 1, 2, . . . , k,

⇐⇒ max{(|r jF (el )
(xp)− r

j
G(el )(xp)|)j∈k} = 1

and

max{(|ωjF (el )
(xp)− ω

j
G(e)(xp)|)j∈k} = 2π,

∀el ∈ E, x ∈ U , j = 1, 2, . . . , k,

⇐⇒ r jF (el )
(x) = 0, r jG(el )(x) = 1or

r jF (el )
(x) = 1, r jG(el )(x) = 0

and ωjF (el )
(x) = 0, ω

j
G(el )(x) = 2π or

ω
j
F (el )

(x) = 2π, ωjG(el )(x) = 0.

(Ŝ4) Since (F , E) ⊆ (G, E) ⊆ (Q, E),

H⇒ r jF (el )
(xp) ≤ r

j
G(el )(xp) ≤ r

j
Q(el )

(xp)

and

ω
j
F (el )

(xp) ≤ ω
j
G(el )(xp) ≤ ω

j
Q(el )

(xp),

∀el ∈ E, x ∈ U , j = 1, 2, . . . , k.

H⇒ |r jF (el )
(xp)− r

j
Q(el )

(xp)| ≤ |r
j
F (el )

(xp)− r
j
G(el )(xp)|

and

|ω
j
F (el )

(xp)− ω
j
Q(el )

(xp)| ≤ |ω
j
F (el )

(xp)− ω
j
G(el )(xp)|,

∀e ∈ E, x ∈ U , j = 1, 2, . . . , k.

H⇒ 1−
1
n

n∑
p=1

max{(|r jF (el )
(xp)− r

j
Q(el )

(xp)|)j∈k}

≤ 1−
1
n

n∑
p=1

max{(|r jF (e)(xp)− r
j
G(el )(xp)|)j∈k}

and

2π −
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
Q(el )

(xp)|)j∈k}

≤ 2π −
1
n

n∑
p=1

max{(|ωjF (el )
(xp)− ω

j
G(el )(xp)|)j∈k}

H⇒ Ŝrl ((F , E), (Q, E)) ≤ Ŝ
r
l ((F , E), (G, E))

and

Ŝωl ((F , E), (Q, E)) ≤ Ŝ
ω
l ((F , E), (G, E))
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H⇒ Ŝrl ((F , E), (Q, E))+ Ŝ
ω
l ((F , E), (Q, E)) ≤

Ŝrl ((F , E), (G, E))+ Ŝ
ω
l ((F , E), (G, E))

H⇒
1
2m

m∑
l=1

[Ŝrl ((F , E), (Q, E))+
Ŝωl ((F , E), (Q, E))

2π
]

≤
1
2m

m∑
l=1

[Ŝrl ((F , E), (G, E))+
Ŝωl ((F , E), (G, E))

2π
]

H⇒ Ŝ((F , E), (Q, E)) ≤ Ŝ((F , E), (G, E))

Similarly, it can be proven that

Ŝ((F , E), (Q, E)) ≤ Ŝ((G, E), (Q, E)).

This completes the proof of Theorem 7.2.
Example 29: Let U = {x1, x2}, E = {e1, e2}. Suppose that

(F , E) and (G, E) are two complex multi-fuzzy soft sets of
dimension three over U defined as follows.

F(e1) = {x1/(0.6ei(0.3π), 0.4ei(0.7π), 0.4ei(1.5π)),

x2/(0.1ei(π), 0.0ei(0.3π), 0.7ei(0.8π))},

F(e2) = {x1/(0.8ei(π), 0.4ei(0.6π), 0.8ei(0.5π)),

x2/(0.7ei(0.3π), 0.1ei(1.1π), 0.5ei(0.5π))},

and

G(e1) = {x1/(0.3ei(π), 0.5ei(0π), 0.2ei(1.0π)),
x2/(0.33ei(π), 0.3ei(π), 0.3ei(1.2π))},

G(e2) = {x1/(0.4ei(0.5π), 0.4ei(0.1π), 0.4ei(0.8π)),
x2/(0.7ei(0.3π), 0.3ei(1.1π), 0.6ei(0.5π))}.

Then we have

Ŝr1 ((F , E), (G, E))

= 1−
1
n

n∑
p=1

max{(|r jF (e1)
(xp)− r

j
G(e1)(xp)|)j∈k},

= 1−
1
2

[
max(|0.6− 0.3|, |0.4− 0.5|, |0.4− 0.2|)
+max(|0.1− 0.33|, |0− 0.3|, |0.7− 0.3|)

]
= 0.65.

Similarly Ŝr2 ((F , E), (G, E)) = 0.7.
Then, we calculate Ŝω1 ((F , E), (G, E)),

Ŝω1 ((F , E), (G, E))

= 2π −
1
n

n∑
p=1

max{(|ωjF (e1)
(xp)− ω

j
G(e1)(xp)|)j∈k},

= 2π −
1
2

[
max(|0.3π−π |, |0.7π−0π |, |1.5π−1.0π |)
+max(|π−π |, |0.3π−0.7π |, |0.8π−1.2π |)

]
= 1.3π.

Similarly Ŝr2 ((F , E), (G, E)) = 1.75π .
Hence the degree of similarity between (F , E) and (F , E) is
given by:

Ŝ((F , E), (G, E))

=
1
2m

m∑
l=1

[Ŝrl ((F , E), (G, E))+
Ŝωl ((F , E), (G, E))

2π
],

=
1

2× 2
[(0.65+

1.3π
2π

)+ (0.7+
1.75π
2π

)]

= 0.719.

Theorem 30: Let Ŝ be a similarity measure of CMkFSSs
as defined in Definition 25. Define

Ê(F , E) = Ŝ((F , E), (F , E)c)

Then Ê(F , E) is an entropy of CMkFSSs.
Proof: It is sufficient to show that Ê(F , E) satisfies the four
axioms given in Definition 25.
(Ê1) For any (F , E) ∈ CMkFSS(U ), we have Ê(F , E) = 0

⇐⇒ Ŝ((F , E), (F , E)c) = 0

⇐⇒ r jF (el )
(x) = 1, r jF c(el )

(x) = 0

and ωjF (el )
(x) = 2π, ω

j
F c(el )

(x) = 0,

∀el ∈ E, x ∈ U , j = 1, 2, . . . , k.

⇐⇒ r jF (el )
(x) = 1 and ωjF (el )

(x) = 2π,

∀el ∈ E, x ∈ U , j = 1, 2, . . . , k.

(Ê2) For any (F , E) ∈ CMkFSS(U ), we have Ê(F , E) = 1

⇐⇒ Ŝ((F , E), (F , E)c) = 1

⇐⇒ (F , E) = (F , E)c,
⇐⇒ r jF (el )

(x) = r jF c(el )
(x) and ωjF (el )

(x) = ωjF c(el )
(x),

∀e ∈ E, x ∈ U , j = 1, 2, . . . , k.

⇐⇒ r jF (el )
(x) = 1− r jF (el )

(x) and

ω
j
F (el )

(x) = 2π − ωjF (el )
(x),

∀e ∈ E, x ∈ U , j = 1, 2, . . . , k.

⇐⇒ r jF (el )
(x) = 0.5 and ωjF (el )

(x) = π,

∀el ∈ E, x ∈ U , j = 1, 2, . . . , k.

(Ê3) For any (F , E) ∈ CMkFSS(U ),

Ê((F , E)c) = Ŝ((F , E)c, ((F , E)c)c)
= Ŝ((F , E)c, (F , E))
= Ŝ((F , E), (F , E)c)
= Ê(F , E).

(Ê4) ∀e ∈ A, x ∈ U , j = 1, 2, . . . , k. when (F , E) ⊆ (G, E)
and r jF (el )

(x) ≤ r jG(el )(x), ω
j
F (el )

(x) ≤ ωjG(el )(x),

H⇒ 1− r jF (el )
(x) ≥ 1− r jG(el )(x),

and 2π − ωjF (el )
(x) ≥ 2π − ωjG(el )(x),

H⇒ |r jF (el )
(x)− [1− r jF (el )

(x)]|

≤ |r jG(el )(x)− [1− r jG(el )(x)]|

and |ωjF (el )
(x)− [2π − ωjF (el )

(x)]|

≤ |ω
j
G(el )(x)− [2π − ωjG(el )(x)]|,

H⇒ |r jF (el )
(x)− r jF c(el )

(x)| ≤ |r jG(el )(x)− r
j
Gc(el )(x)|

and

|ω
j
F (el )

(x)− ωjF c(el )
(x)| ≤ |ωjG(el )(x)− ω

j
Gc(el )(x)|,
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H⇒ 1− |r jF (el )
(x)− r jF c(el )

(x)| ≥ 1

−|r jG(el )(x)− r
j
Gc(el )(x)|

and

2π − |ωjF (el )
(x)− ωjF c(el )

(x)| ≥ 2π

−|ω
j
G(el )(x)− ω

j
Gc(el )(x)|,

Thuse, Ŝ((F , E), (F , E)c) ≥ Ŝ((G, E), (G, E)c).
So we have Ê(F, E) ≥ Ê(G, E).
This completes the proof of Theorem 30.
Theorem 31: Let Ŝ be a similarity measure of CMkFSSs

as defined in Definition 25. Define

Ê(F , E) =
Ŝ((F , E), (F , E)c)

2− Ŝ((F , E), (F , E)c)

then Ê(F , E) is an entropy of CMkFSSs.
Proof: It is similar to the proof of Theorem 30.

VIII. CONCLUSION
A new mathematical tool to model the information or data
which is observed repeatedly over a period of time is devel-
oped. The complex multi-fuzzy soft set is established by
incorporating the features of both complex fuzzy set and
multi-fuzzy soft set. In addition, the complex multi-fuzzy soft
set theory also extended the complex fuzzy soft set theory
and complex intuitionistic fuzzy soft set theory. We then
defined some fundamental operations on the CMFSS such
as union and intersection. The basic properties and other
relevant laws pertaining to the concept of CMFSSs were also
discussed. A new general framework of CMFSS for dealing
with uncertainty in decision making has thus been proposed
and its associated algorithm constructed. This algorithm is
then applied to determine the degree and the total time of the
influence of the economic factors on the sectors that promotes
the Malaysian economy and then deduced results that could
help in making the decision in determining the most impor-
tant factor. This new tool will provide a significant addition to
existing theories for handling uncertainties, imprecision and
vagueness of information by adding a crucial aspect, which is
the time factor to measure not only the degree of influence on
the economic factors but also the time of this influence, where
time plays a vital role in the process of decision making.
The structure of the CMFSS is also rehabilitated to describe
the periodic data/information that have uncertain data where
the amplitude terms represent the uncertainty and the phase
terms represent the periodicity semantic. Thus, the CMFSS
may provide a theoretical framework to represent problems
with uncertainty and periodicity simultaneously in the field
of engineering, medical, physics, automobiles, defense and
security, and other fields. This new interpretation of the phase
terms opens avenue for many applications in the field of
physics and other natural sciences where phase terms may
also represent the distance, temperature, pressure or any vari-
able that affects and interacts with its corresponding ampli-
tude terms in the decision process. Finally, beginning from

our belief on the importance of the concepts of entropy and
similarity measure, we have introduced axiomatic definitions
of entropy and similarity measure of CMFSSs. Moreover,
we proposed new formulas to calculate the entropy and the
similarity measure of CMFSS, and proved some theorems
that the similarity measure and the entropy of CMFSS can
be transformed into each other based on their axiomatic
definitions. These measures will be useful to handle several
realistic uncertainty problems such as problems in social,
economic system, approximate reasoning, image processing,
game theory, and others.
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