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ABSTRACT In this paper, a novel melanoma classification method based on convolutional neural networks
is proposed for dermoscopy images. First a region average pooling (RAPooling) method is introduced
which makes feature extraction can focus on the region of interest. Then an end-to-end classification
framework combining with segmentation information is designed, which uses the segmented lesion region
to guide the classification by RAPooling. Finally, a linear classifier RankOpt based on the area under the
ROC curve is used to optimize and obtain the final classification result. The proposed method integrates
segmentation information into the classification task, and in addition, by the optimization of RankOpt,
a better classification performance for imbalanced dermoscopy image dataset is obtained. Experiments
are conducted on ISBI 2017 skin lesion analysis towards melanoma detection challenge dataset, and
comparisons with the other state-of-the-art methods demonstrate the effectiveness of our method.

INDEX TERMS Convolutional neural networks, dermoscopy images, melanoma detection, region average
pooling.

I. INTRODUCTION
Melanoma, a type of skin cancer that mostly starts in pigment
cells, is one of the deadliest forms of cancer. [27]. Accord-
ing to American Cancer Society [28], about 87110 new
cases of melanoma are estimated to be diagnosed and about
9730 fatalities are estimated in United States in 2017. The
most important way to increase the survival rate is to detect
melanoma in its early stages and treat it properly [5].

The development of dermoscopy technique can signifi-
cantly contribute to improving the diagnostic accuracy of
melanoma, and thus improving the survival rate of patients.
Dermoscopy [3] is a noninvasive skin imaging technique,
which uses polarized light to make the contact area translu-
cent, and can reveal the subsurface skin structure. However,
manual interpretation of the dermoscopy image is usu-
ally time-consuming, experiential, and subjective. Therefore,
computer-aided diagnosis (CAD) has been developed to pro-
vide fast, quantitative, and objective evaluation for derma-
tologists. According to [26], when skilled dermatologists use
CAD systems to evaluate skin lesions, the diagnostic accu-
racy of melanoma can be increased from 75% to 92%.

FIGURE 1. Examples of challenging dermoscopy image.

However, automated melanoma classification for der-
moscopy images is quite a challenging task. First, there is
no unified manifestation of melanoma. Usually, melanomas
have huge variations in terms of color, texture and shape,
which makes it difficult to extract robust features. Sec-
ond, many dermoscopy images have hairs, veins, bubbles,
as shown in Fig. 1. These noisy artifacts heavily interfere
with the recognition of melanoma. Finally, the problems
of data insufficiency and class imbalance in public der-
moscopy image datasets also greatly limit the performance
of algorithms.

Melanoma classification has been studied for many years,
which can be found in the literature as early as 1987 [4].
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Traditional methods for melanoma classification usually
include two stages: feature extraction and classifier design.
For example, in [22], Kusumoputro and Ariyantor extracted
shape and color features from dermoscopy images, with
which an artificial neural network was trained to sep-
arate malignant melanomas from benign lesions. In [5],
Celebi et al. extracted 437 color and texture features, from
which 18 optimal features were selected to train a support
vector machine (SVM) classifier. In [33], Xie et al. extracted
color, texture and border features to train a neural network
ensemble model to classify skin lesions into benign nevi or
melanomas. Considering dermoscopy imagesmay not always
capture entire lesions, Situ et al. [30] and Barata et al. [2]
extracted local features in a patch and used bag-of-features
(BoF) models to classify lesions. Because the extracted fea-
tures are low-level and hand-crafted, these traditional clas-
sification methods are usually not robust for complex skin
lesions.

Recently, deep-learning methods [14], especially convo-
lutional neural networks (CNNs), have shown outstand-
ing performance and powerful generalization ability in
many medical image analysis tasks, including but not lim-
ited to segmentation [16], [25], classification [1], [20] and
detection [10], [11]. Deep learning is able to learn multi-
ple levels of representation from raw image data, and the
extracted features aremore high-level andmore robust. In [9],
Deng et al. developed a two-branch CNN to extract global
and local features to obtain the lesion border. In [35], Yuan
et al. designed a novel loss function based on Jaccard dis-
tance for their CNN model to improve its performance on
dermoscopy image segmentation. Codella et al. [6] utilized a
pre-trained CNN as the feature extractor to obtain high-level
features, and then provided them to a SVM classifier after
sparse coding. In [34], Yu et al. constructed a fully con-
volutional residual network (FCRN) for skin lesion seg-
mentation, and then cropped the lesion image patches with
which a new deep residual network for classification was
trained.

Generally, there are three main differences between
deep-learning methods and traditional machine-learning
methods for melanoma classification. First, deep-learning
methods do not need to design hand-crated features, which
have the capability of learning hierarchical features from
raw dermoscopy images. Second, deep-learning models are
usually trained end to end, and directly predict the type of
skin lesion without segmentation, although segmentation is a
key step before classification in the traditional classification
framework. Finally, deep-learningmodels usually have a very
large amount of parameters, which means they have a higher
requirement for the amount of training data.

Inspired by the latest advance in deep learning research
and melanoma classification, we propose a novel framework
based on CNN to automatically discriminate melanomas
from non-melanomas.

The main contributions of our work can be summarized as
follows:

1) We propose a weighted global average pooling oper-
ation, namely region average pooling, which can help
classifier put the focus on the region of interest.

2) We design a CNN based classifier for the dermoscopy
image which has two branches: segmentation branch
and classification branch. The segmentation branch can
obtain the location information of skin lesions, and
through the proposed region average pooling, the lesion
location information can be provided to the classifica-
tion branch to facilitate the lesion classification.

3) We utilize an AUC-based classifier RankOpt as the
post-processing of the CNNmodel, which improves the
robustness to class imbalance.

The remainder of this paper is organized as follows.
In Section II, we introduce the details of the proposed region
average pooling method, the designed CNN framework, and
the AUC-based classifier RankOpt. Experiments and discus-
sion are presented in Section III and IV, respectively. Finally,
we conclude our work in Section V.

II. METHOD
A. REGION AVERAGE POOLING
It is well-known that feature maps in CNNs can capture
rich spatial information, especially for those models using
global average pooling [23], such as GoogLeNet [32] and
ResNet [17]. The work by Zhou et al. [36] has shown that
CNN models using global average pooling for object clas-
sification task can retain its remarkable localization ability,
and the convolutional layer can behave as object detector,
although no object location information is provided for super-
vised learning. In [37], Zhou et al. proposed a general tech-
nique called class activation mapping (CAM). The CAM can
visualize layer activations and highlight the discriminative
image region used by the CNN to identify the category.

FIGURE 2. Examples of dermoscopy image and their CAMs corresponding
to their true classes by using the regular ResNet50. (b) (c) are melanomas,
and (a) (d) are non-melanomas. The classification results of (a) (b) (d) are
correct, and (c) is wrong.

We trained a regular ResNet50 model [17] with the
global average pooling for melanoma classification on ISBI
2017 dataset [7]. Fig. 2 shows four dermoscopy images
and their CAMs corresponding to their true classes. Images
in Fig. 2(a) and 2(b) are correctly classified and it is obvious
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that the classification model has correctly focused on the
lesion regions. However, in Fig. 2(c), the model fails to
locate the lesion region, which leads to misclassification.
In Fig. 2(d), although the classification result is correct,
the model focuses on the blue disc instead of the lesion
region. In the training data, there are several images with
color discs, and all of them are non-melanoma images, which
might lead the model to learn that the color disc repre-
sents non-melanoma. In other words, the classification result
in Fig. 2(d) is actually unreliable.

FIGURE 3. Illustration of the proposed region average pooling.

From the analysis above, we can see that the melanoma
classification network is implicitly learning skin lesion
segmentation. Therefore, by introducing segmentation infor-
mation, we propose a new pooling operation named region
average pooling to improve the classification performance.
Being different from the global average pooling [17], [32]
which calculates the mean of all the activation of a feature
map in the last convolutional layer, the proposed region
average pooling is limited in a region of interest, as shown
in Fig. 3, and it is defined as:

Piregion =
1
WH

W∑
x=1

H∑
y=1

fi(x, y) · S(x, y), (1)

whereW and H denote the width and height of feature maps,
respectively, and fi(x, y) represents the activation of the ith

feature map at spatial location (x, y), and S(x, y) represents
the weight map which measures the importance at different
spatial locations. Because we focus on the features in the
lesion region, S(x, y) is actually the score map of lesion
regions obtained from the segmentation task in this paper.

B. DESIGNED CLASSIFICATION FRAMEWORK BASED
ON THE REGION AVERAGE POOLING
Based on the region average pooling, our proposed CNN
framework for melanoma classification is shown in Fig. 4,
which includes a ResNet50 [17] structure, and followed by
two branches: segmentation branch and classification branch.

In ResNet50, the residual structure is designed for improv-
ing the learning ability of the network. A typical residual
structure is illustrated in Fig. 4(a), in which the rectified linear
unit (ReLU) and batch normalization (BN) layers are hidden

for simplicity, and only convolutional layers are presented.
The ReLU layer [21] gives the network the ability to fit a
nonlinear mapping, and can also alleviate the gradient van-
ishing problem to some extent. The BN layer [19] normalizes
the data distribution in convolutional layers in order to reduce
the internal covariate shift. In the residual structure, both BN
and ReLU layers are used after each convolutional layer. The
ResNet50 structure includes a convolution layer, a max pool-
ing layer and then four residual blocks. To reduce overfitting,
dropout is added in four residual blocks. In our framework,
the dermoscopy image is fed into the ResNet50 structure to
extract high-level features, and then these features are input to
the classification branch as well as the segmentation branch.

In the segmentation branch, feature maps with two chan-
nels are obtained by the 1 × 1 convolution layer. Because of
striding and max pooling in ResNet50 structure, the spatial
resolution of the feature maps has been reduced to 1/32. Then
upsampling is performed through a transposed convolution
with a stride of 32 to recover the spatial size of the feature
maps to compute pixel-wise cross entropy loss.

Before upsampling, the two-channel feature maps are also
input to a softmax function to obtain the score map of lesion
regions, which is actually the weight map in the region aver-
age pooling in (1). Let h1 and h0 denote the two channels
of the feature maps, respectively, and h1(x, y) represents the
score of being lesion at spatial location (x, y), and h0(x, y)
represents the score of being non-lesion. Then the normalized
score map S(x, y) of being lesion can be given by:

S(x, y) =
exp(h1(x, y))

exp(h1(x, y))+ exp(h0(x, y))
. (2)

The score map S(x, y) describes the location information of
skin lesions. Ideally, it is close to 1 in the lesion region and 0 in
the background region.

In the classification branch, S(x, y) is input to the region
average pooling to weight the features, and more discrim-
inative features can be extracted. After the pooling, a two-
way fully connected layer is used to predict the scores of
melanoma and non-melanoma, as shown in Fig. 4.

The proposed classification framework looks like a classic
multi-task model, which improves the discrimination of fea-
tures, and ultimately improves the accuracies of the two tasks
by introducing the segmentation and classification informa-
tion at the same time. But there are two main differences
between our model and the classic multi-task model. Because
of the region average pooling, the segmentation task and the
classification task in our model are not independent of each
other, which makes it difficult to jointly train the two tasks
from scratch. The other difference is that the prime goal of
our model is to improve the classification performance, and
segmentation is used to serve classification, therefore we will
put more focus on the classification task in joint training.

Based on the analysis above, we train the designed frame-
work in four steps:

1) Step1. Fine-tuning: The size of the public der-
moscopy dataset is usually small, which makes a
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FIGURE 4. The flowchart of the proposed framework. (a) The diagram of a residual structure. The ReLU and BN layers are hidden for
simplicity. (b) Architecture of our designed classification network with a segmentation branch based on the region average pooling.

deep neural network initialized with random weights
have long training time, difficult convergence and
low robustness. Therefore, we utilize a ResNet50 pre-
trained on ImageNet [8] to fine-tune our model. The
weights of layers are all initialized with the weights
in the pre-trained network. As for the top fully con-
nected layer, the output classes are changed to binary
(melanoma and non-melanoma), and the weights are
initialized randomly.

2) Step2. Training classification task: To make the net-
work easier to converge, we only train the classifica-
tion task with the global average pooling at beginning.
In this way, the network can be able to retain its remark-
able localization ability in convolutional layers.

3) Step3. Training segmentation task:When the loss
value on validation data is very low and the validation
accuracy does not tend to increase, we begin to train
the segmentation task. In order to reduce the influence
of segmentation training on the classification perfor-
mance, we only train the weights of the convolutional
layer in the segmentation branch, and other weights are
frozen.

4) Step4. Joint training: In joint training, the global
average pooling is replaced with the region average
pooling which combines the classification task with the
segmentation task. The loss in joint training Ljoint is
formulated as:

Ljoint = Lclass + λLseg, (3)

where Lclass and Lseg represent the cross entropy
losses in the classification branch and the segmentation
branch, respectively, and λ is a hyper-parameter to
control the balance between the two losses.

C. CLASSIFICATION USING RANKOPT
Due to the difference in morbidity, there are often seri-
ous problems of class imbalance in the dermoscopy image

dataset, which may cause the classifier to perform sub-
optimally, and the trained classifier is inclined to clas-
sify samples into non-melanomas to improve the overall
accuracy [24]. In our proposed framework, we use the soft-
max classifier and the cross entropy loss function to train
the network. Actually, most of CNNs are trained using the
accuracy based loss function, for example the mean square
error loss [13] and the cross entropy loss [17]. This kind
of loss function can only use part of samples during each
iteration in training, and thus is suitable for deep learning
with a big and balanced dataset. However, on an imbalanced
dataset, because the ratio of size of the majority class to the
minority class is not taken into account, the classifier which
is trained by this kind of loss usually has poor performance.

For a binary classification task, the AUC stands for the area
under the ROC curve, which considers the ordering relations
between positive samples and negative samples, and is not
sensitive to sample distribution. In this paper, we take the
proposed CNN as a feature extractor, and input the extracted
features (the output of the region average pooling in Fig. 4) to
a linear classifier RankOpt [18] based on AUC to optimize,
and obtain the final classification result.

The linear classifier RankOpt adopts the AUC statistic as
its objective function and optimizes it directly using gradient
descent. Taking melanoma images as positive samples and
non-melanoma images as negative samples. P andQ represent
the numbers of positive and negative samples, respectively,
and P < Q for most dermoscopy image datasets. And for a
linear classifier with the weight vector βββ, its AUC statistic is
defined as:

AUC(βββ) =
1
PQ

P∑
i=1

Q∑
j=1

g(βββ · (x+i − x
−

j )), (4)

g(x) =


0, x < 0
0.5, x = 0
1, x > 0

(5)
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where x+i and x−j denote the feature vectors of the ith positive
sample and the jth negative sample, respectively.
Since g(x) in (4) is undifferentiable, it is replaced by the

sigmoid function s(x) = 1/(1+e(−x)). Then, the rank statistic
R(βββ) is defined as:

R(βββ) =
1
PQ

P∑
i=1

Q∑
j=1

s(βββ · (x+i − x
−

j )). (6)

Because lim|x|→∞s(x) = g(x), the R(βββ) will be a good
approximation to the AUC statistic in (4) when ‖βββ‖ is large.
According to (4) and (6), the AUC value actually depends on
the direction ofβββ and not on its magnitude. Therefore, we can
constrain βββ to a hypersphere ‖βββ‖ = B (B is fixed as a large
number) and optimize its iteration. In this way, the optimal
weight vector βββopt of the linear classifier can be defined as:

βββopt = argmax
βββ

R(βββ) s.t. ‖βββ‖ = B. (7)

The partial derivative of (6) for the k th weight ofβββ is given by:

∂R(βββ)
∂βββk

=
1
PQ

P∑
i=1

Q∑
j=1

s(βββ · (x+i − x
−

j ))

·(1− s(βββ · (x+i − x
−

j ))) · (x
+

ik − x
−

jk ). (8)

Then the βββopt can be obtained by gradient descent
optimization.

Note that the computational complexity of R(βββ) is O(n2)
in the number of samples. In [18], Herschtal and Raskutti
showedmore details about RankOpt and reduced its computa-
tional complexity toO(n). However, it is still time-consuming
and memory-consuming to integrate the RankOpt classifier
into our proposed CNN framework for end-to-end training.
Therefore, we use the proposed CNN in section II-B as a
feature extractor to extract high-level features, with which to
train the RankOpt classifier. And the final classification result
is obtained.

III. EXPERIMENT RESULTS AND ANALYSIS
Experiments were implemented with PyTorch library on a
computer equipped with a NVIDIA GTX1080 GPU with
8GB of memory. The proposed network was trained by
stochastic gradient descent (SGD) optimization method with
momentum 0.9 and weight decay 0.0005. We set batch size
as 10, the initial learning rate as 0.001 and reduced it by a fac-
tor of 10 every 2000 iterations. The weights were initialized
from the ResNet50 pre-trained on ImageNet dataset.

Experimental images are from ISBI 2017 Skin Lesion
Analysis TowardsMelanomaDetectionChallenge dataset [7],
which is provided by the International Skin Imaging Col-
laboration (ISIC). This dataset consists of 2000 dermoscopy
images (374 melanomas) as training data, 150 images
(30 melanomas) as validation data, and 600 images
(117 melanomas) as test data. The sizes of these images range
from 542×718 to 2848×4288. And the segmentation ground
truth is also available from the challenge, which is based on
the manual delineation by clinical experts.

Considering the small size of the pubic dataset, we arti-
ficially transformed the original images to increase the size
and diversity of training data, including rotation, flipping and
cropping. For each iteration in training, input images were
resized to 256×256 and then randomly cropped to 224×224.
At the same time, the segmentation ground truth masks were
also resized and cropped.

To evaluate the performance of our proposed method
quantitatively, four evaluation metrics are used for com-
parison, including sensitivity (Sen), specificity (Spe) and
accuracy (Acc). They are defined as follows:

Sen =
TP

TP+ FN
, (9)

Spe =
TN

TN + FP
, (10)

Acc =
TP+ TN

TP+ FP+ TN + FN
, (11)

where TP, FP, TN and FN represent the numbers of true
positives, false positives, true negatives and false negatives,
respectively. Besides, the AUC metric is also calculated for
further comparison.

In thesemetrics, the sensitivity represents the percentage of
melanomas that are correctly classified, which is more clin-
ically relevant. While in ISBI 2017 Challenge, participants
were ranked according to the AUC, although other metrics
were also computed for scientific completeness. Therefore,
we also chose the AUC as the primary metric for evaluation
in this paper.

A. PARAMETER DETERMINATION
In the joint training step, the joint loss consists of the
classification loss and the segmentation loss, in which a
hyper-parameter λ is used to balance the importance between
the two losses.

TABLE 1. Statistical results of JA and AUC using different λ on validation
data.

We used grid search over a discrete range of λ={0.01, 0.1,
1, 5, 7.5, 10, 12.5, 15, 20} to determine the optimal λ.
We calculated Jaccard index (JA) and AUC metrics for dif-
ferent λ on validation data, and Table 1 shows the results.
JA is the metric of segmentation accuracy [35], and a high JA
indicates a good segmentation result. It can be seen that, with
λ becomes bigger, the joint loss puts more focus on segmen-
tation, and the segmentation accuracy gradually increases.
When λ ≥ 5, the segmentation performance becomes stable.
AUC measures the classification accuracy. It can be seen
that the classification accuracy increases as the segmenta-
tion accuracy increases. When the segmentation performance
becomes stable, continually increasing λ will neglect the
importance of classification, and the classification accuracy
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decreases. Considering the AUC is the highest when λ= 7.5,
it is determined as the optimal λ.

B. EFFECTIVENESS OF THE REGION AVERAGE
POOLING IN CLASSIFICATION
In this paper, a region average pooling operation is proposed
to integrate the segmentation information into the classifica-
tion task to obtain better classification performance. In order
to verify the effectiveness of the proposed region average
pooling in classification, we compared the performances of
different deep learning networks on ISBI 2017 test data
when combined with the region average pooling, including
VGG [29], GoogLeNet [12], [32] and ResNet50 [17], [34].
Table 2 shows the results of the three widely used networks.
It can be seen that the AUC metrics of the three networks are
all improvedwhen combinedwith the region average pooling.

TABLE 2. Statistical results of sensitivity, specificity, accuracy and AUC
using different networks combined with/without the region average
pooling on ISBI 2017 test data.

FromFig. 2, it can be known that the regular ResNet50with
global average pooling sometimes cannot put the focus
on the lesion region. Fig. 5 shows the same dermoscopy
images presented in Fig. 2 and their CAMs obtained by
the ResNet50 with the region average pooling. It can be
seen that our proposed network can put its focus on the
lesion region very well. The region average pooling based
classification framework combines classification with seg-
mentation, and through joint training, the classification task
is guided by the object region obtained from the segmen-
tation branch, and thus better classification performance is
obtained. In Table 2, the ResNet50 with the region average
pooling (ResNet50+RAPooling) obtained the highest AUC,
which was used in our final classification framework.

FIGURE 5. Examples of dermoscopy image and their CAMs corresponding
to their true classes by using our proposed ResNet50+RAPooling
framework. The classification results of (a) (b) (c) and (d) are all correct.

C. EFFECTIVENESS OF CLASSIFICATION USING RANKOPT
Usually, the melanoma samples are much less than the
non-melanoma samples in a dermoscopy image dataset due
to the difference in morbidity, and in order to improve the
overall accuracy, the trained classifier is inclined to pre-
dict samples into non-melanomas. In this paper, we used
the ResNet50+RAPooling model as the feature extractor,
and used the linear classifier RankOpt [18] to optimize and
obtain the final classification result, which alleviated the class
imbalance problem to an extent.

TABLE 3. Statistical results of sensitivity, specificity, accuracy and AUC
using ResNet50+RAPooling and ResNet50+RAPooling+RankOpt on
ISBI 2017 test data.

Table 3 shows the results of ResNet50+RAPooling and
our final framework (ResNet50+RAPooling+RankOpt).
It can be seen that the AUC metric is improved. Besides,
the ResNet50+RAPooling only yields sensitivity of 44.4%
because of the imbalanced samples in training data
(374 melanomas vs. 1626 non-melanomas). While our final
framework used the RankOpt classifier to optimize the
result of ResNet50+RAPooling, and the sensitivity is greatly
improved by 16.3% with a still high specificity of 88.4%.
Therefore, by using RankOpt, a better balance between sen-
sitivity and specificity can be obtained, which is clinically
significant.

D. COMPARISON WITH OTHER
CLASSIFICATION METHODS
We compared our final classification method with the top
8 methods in ISBI 2017 challenge, and four other methods
including Harangi’s [15], Sultana et al.’s [31], Wiselin’s and
Xie et al.’s [33] methods. Harangi’s and Sultana’s methods
are based on deep learning. Wiselin’s method is based on
SVM, which is the only traditional machine learning method
in ISBI 2017 challenge, and Xie’s method is our early work.
Table 4 shows the classification results of these methods
on ISBI 2017 test data, where the first 8 methods are the
top 8 of the leaderboard. Xie’s method is based on neural
network ensemble, and it used voting method to obtain the
final prediction from neural network individuals, therefore its
AUC metric cannot be given in Table 4.

Wiselin’s and Xie’s methods are two traditional methods,
which extracted low-level features, and their classification
performances are obviously lower than the 11 deep-learning
methods.

In Table 4, the first five methods are the top five in the
challenge, and they used hundreds or thousands additional
images, but our method did not used. It can be seen that
our method has better AUC than the fifth method TD. And
although the fourth methodMonty has a higher AUC than our
method, it has the lowest sensitivity of 10.3% among all the
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TABLE 4. Statistical results of sensitivity, specificity, accuracy and AUC
using our proposed method and other methods on ISBI 2017 test data.

13 methods. Sensitivity is more important than other metrics
in the clinic, and low sensitivity will easily cause missed
detection, and it is dangerous for the patient with malignant
melanoma. Therefore, with a higher sensitivity, our method
is actually better than the Monty.

The other five compared methods, including Xueleiyang,
rafael and finalv_L2C1_trir, Harangi and Sultana, did not use
additional data. It can be seen that our method has better
performance on AUC and sensitivity, and only Harangi’s
method achieved a higher AUC than us, but the increase
is only 0.9%, while its sensitivity and specificity are lower
at least 16.5% than our method. Besides, Harangi’s method
ensembled the GoogLeNet, AlexNet, ResNet and VGGNet
with a carefully weighted fusion mechanism, which was very
complicated.

Therefore, although no additional data was used, our
method is better than two methods which used additional
data. And at the same time, our method is actually better than
other compared methods which used no additional data.

IV. DISCUSS
For deep-learning methods in melanoma classification, it is
common to use a single end to end network which directly
takes input the whole dermoscopy image without considering
the lesion region [15], or use two networks which segment
skin lesion patches before inputting these patches into the
classification network [34]. Although the latter takes the skin
lesion region into consideration, the segmentation and the
classification are actually two separate stages. And it will
be difficult to extract discriminative features for classifica-
tion if the former segmentation network outputs a wrong
lesion mask. In this paper, the designed network contains
two branches, the classification branch and the segmenta-
tion branch. They share the high-level features in the sin-
gle network, and by the proposed region average pooling,
the lesion location information in the segmentation branch
can be directly provided to the classification branch. And
more discriminative features are extracted in this way, which
improves the classification performance.

In medical image analysis, class imbalance caused by
different morbidity is an issue that cannot be ignored.

Although the dermoscopy images in ISBI challenge are man-
ually selected, the melanoma samples are still significantly
less than non-melanomas, which can cause quite low sensitiv-
itymetric. Herewe utilize theAUC-basedRankOpt algorithm
to further optimize the classifier, which can alleviate the
class imbalance problem to an extent. And high sensitivity
at high specificity can be achieved, which is more clinically
significant.

In our proposed framework, the classification branch has
used the location information of skin lesions to extract more
discriminative lesion features, and the lesion location infor-
mation is provided by the segmentation branch. Theoretically,
more accurate location information can achieve more clas-
sification performance gains. However, obtaining the lesion
location information is conducted on the feature maps which
spatial sizes are 1/32 of the input image, and it is actually dif-
ficult to obtain very accurate lesion borders on these feature
maps. Besides, the classification task and the segmentation
task share most of weights in the framework, and in joint
training, putting too much focus on segmentation will cause
the classification performance degradation, therefore it needs
to carefully control the balance between the two tasks.

V. CONCLUSION
Automated melanoma classification for dermoscopy images
is quite a challenging task. In this paper, a novel frame-
work based on CNN to automatically discriminate melanoma
images from non-melanoma images is proposed. Regular
CNNs with the global average pooling learn implicitly skin
lesion segmentation to extract lesion features for melanoma
classification. However, without direct supervision from the
location information of lesions, the CNN sometimes cannot
put the focus on lesion regions very well, which causes
unreliable prediction. We propose a region average pooling
method, which limits feature extraction in the lesion region.
Based on the region average pooling, a CNN framework is
proposed, which combines the classification task with the
segmentation task through joint training, and can directly
provide the lesion location information for classification,
and thus a good classification result is obtained. Due to the
difference in morbidity, there are often serious problems of
class imbalance in the dermoscopy image dataset, which may
cause the classifier to perform sub-optimally, and the trained
classifier is inclined to classify samples into non-melanomas
to improve the overall accuracy. We propose to use a linear
classifier RankOpt based on the AUC to optimize the clas-
sification, and better performance is obtained. Experiments
were conducted on ISBI 2017 dataset, and the results verified
the effectiveness of our proposed method. Further investiga-
tions include exploringmore efficient network structures, and
combining with the region average pooling to extract more
discriminative features for melanoma classification.
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