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ABSTRACT Outlier detection is an important topic in the community of data mining and machine learning.
In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice
the number of samples in the training set. Thus, training two-class supervised outlier detection model is time
consuming. In this paper, we show that the result of the two-class supervised outlier detection is determined
by minor critical samples which are with nonzero Lagrange multipliers and the critical samples must be
located near the boundary of each class. It is much faster to train the two-class supervised outlier detection
on the subset which consists of critical samples. We compare three methods which could find boundary
samples. The experimental results show that the nearest neighbors distribution is more suitable for finding
critical samples for the two-class supervised outlier detection. The two-class supervised novelty detection
could become much faster and the performance does not degrade when only critical samples are retained by
nearest neighbors’ distribution information.

INDEX TERMS Supervised outlier detection, critical sample, nearest neighbors’ distribution.

I. INTRODUCTION
In many real applications, minor abnormal samples are more
important than normal ones. The abnormal sample is called
outlier and the process to find abnormal sample is called
outlier detection. In outlier detection, we need to find minor
outliers in massive normal samples. Outlier detection has
been used in many fields, such as intrusion detection [1], [2],
fraud detection [3], medical diagnosis [4], [36], and industrial
damage detection [1], [5].

Generally, the outlier is the sample which is not consistent
with the majority distribution. Outlier detection research con-
tains two cases: supervised outlier detection and unsupervised
outlier detection [6]. In supervised outlier detection, we need
to collect many labelled samples. Different from classifi-
cation problem, most of the labelled samples are normal
since it is expensive to collect abnormal samples. When nor-
mal samples follow the same distribution, supervised outlier
detection is a one-class classification problemwhich has been
researched for several decades. However, it may not hold that
all normal samples are consistent with the same distribution
in some scenarios. For instance, we need to monitor more
than one sensor in industrial fault detection. The signals

from each sensor follow an independent distribution. Then,
normal samples follow a mixture of two or more independent
distributions. It is a two-class ormulti-class supervised outlier
detection problem. A simple scenario is that there are two
normal classes. Each normal class follows an independent
distribution. Vilen Jumutc and Suykens extended one-class
support vector machine (OC-SVM) [7] for two-class super-
vised outlier detection [9]. The two-class supervised out-
lier detection can be converted as a quadratic programming
whose size is the twice of the number of training samples.
Thus, it costs much more time than OC-SVM.

It is urgent to speed up two-class supervised outlier
detection. Fortunately, we find that the result of two-class
supervised outlier detection is determined by minor criti-
cal samples which are with nonzero Lagrange multipliers.
Merely retaining the critical samples, the performance of
two-class supervised outlier detection does not degrade. The
critical samples must be located near the boundary of each
class. Then, we only need to retain a subset consisting of
the ones which would be located near the boundary of each
class. Therefore, it only needs to solve a smaller optimization
programming which is much faster.
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The rest of this paper is organized as follows: the related
work is reviewed in Section II; a brief review of the two-class
supervised outlier detection is summarized in Section III;
the method to retain critical samples is introduced in
Section IV; the experimental results are reported in Section V;
the discussion and conclusions are provided in the last
Section.

II. RELATED WORK
According to the existence of the label information, outlier
detection can be categorized into two cases: unsupervised
outlier detection and supervised outlier detection. In unsuper-
vised outlier detection, each sample is assigned with a score
to represent the probability that this sample is an outlier. Then
all samples are sorted according to the scores. The outliers are
the ones located at the top positions [23]–[25].We do not have
any label information in the unsupervised outlier detection.
In supervised outlier detection, the outliers are determined
by a model which is learnt from massive labelled samples.
When the labelled samples follow the same distribution, it is
a one-class classification problem, such as one-class support
vector machine (OC-SVM) [7], support vector data descrip-
tion (SVDD) [8], one-class Gaussian Processing [40]. Jumutc
and Suykens extended OC-SVM for the normal samples
following a mixture of distribution, which means the normal
samples could belong to two or more classes [9]. In their
method, it needs to solve a big quadratic optimization (QP)
which is time-consuming. For instance, when the normal
samples belong to two classes, the number of variables in
QP is twice of the number of training samples. It is urgent
to speed up supervised outlier detection.

In support vector machine (SVM) related works, the result
is determined by minor critical samples (called support vec-
tors) which are with nonzero Lagrange multipliers. Train-
ing process could become much faster merely retaining
the samples would become support vectors. The previ-
ous work mainly focuses on support vector classification
(SVC) [10]–[14], support vector regression (SVR) [15], [16],
and OC-SVM [17]–[19]. The critical samples are located
near the decision plane and the boundary of ε-tube in SVC
and SVR, respectively. It does not hold in supervised outlier
detection. In OC-SVM, the critical samples are located near
the boundary of the data distribution. Li [18] found boundary
samples via extreme points. Zhu et al. [17] found bound-
ary samples via neighbors’ distribution information. In [19],
the relative density degree is used to find useful samples
for one-class support vector machine. However, all normal
samples must follow the same distribution. In this paper,
we try to find critical samples for supervised outlier detection.
The research about two-class problem always is the basement
of multi-class problem. In this paper, we only consider two-
class situation. We trust that our work also can be used in
multi-class situation in the future.

III. TWO-CLASS SUPERVISED OUTLIER DETECTION
The symbols used in the whole paper are listed in Table 1.

TABLE 1. Some notations used in our paper.

A. PROBLEM DESCRIPTION
In some real applications, it needs to identify whether an
unknown sample is abnormal according to many labelled
samples. If all labelled samples follow the same distribu-
tion, it is a one-class classification problem. Sometimes,
the labeled samples may follow a mixture of distributions.
When it is a mixture of two distributions, the problem
becomes a two-class supervised outlier detection problem.
The aim of two-class supervised outlier detection is to build
a data description that can describe all or most of the normal
samples and tell us whether an unknown sample is an out-
lier or which normal class this unknown sample belongs to.
In two-class classification, it can only return which class an
unknown sample belongs to even it is an outlier. An illustra-
tion is shown in Fig. 1.

In Fig. 1 (a), the samples outside of the description are
outliers. In Fig. 1 (b), the decision plane cannot distinguish
whether an unknown sample is outlier. If we want to detect
outliers via two-class classification, we need to learn two
models at least. One is to distinguish whether an unknown
sample is an outlier. The other is to distinguish which class
an unknown sample belongs to if it is not an outlier.

B. A BASIC REVIEW OF TWO-CLASS SUPERVISED
OUTLIER DETECTION
The two-class supervised outlier detection needs to find two
hyperplanes. Each hyperplane separates the samples in one
class from their mappings in the feature space with maximum
margin. The angle between two hyperplanes should be as
large as possible. A graphical illustration is shown in Fig. 2.

Let f c1 = 〈w1,8(x)〉 − ρ and f c2 = 〈w2,8(x)〉 − ρ
represent the two hyperplanes, then the two-class supervised
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FIGURE 1. An illustration of the two-class supervised outlier detection
and the two-class classification. The x-marks and pluses belong to class
1 and class 2, respectively. In (a), the circles are outliers and the solid line
is the description of two-class supervised outlier detection. In (b),
the solid line is the decision plane of the two class classification.

outlier detection can be written as follows:

min
w1,w2,ρ1ρ2

γ

2
(‖w1‖

2
+ ‖w2‖

2)+ C
l∑
i=1

(ξi + ξ∗i )− ρ1 − ρ2

s.t. yi(〈w1,8(xi)〉 − ρ1)+ ξi ≥ 0, i ∈ [1, l]

yi(〈w2,8(xi)〉 − ρ2)+ ξ∗i ≤ 0, i ∈ [1, l]

ξi ≥ 0, ξ∗i ≥ 0, i ∈ [1, l]. (1)

The decision function c(x) is defined as follows:

c(x) =

{
argmax

ci
fci(x), if max fci(x) > 0

outlier, otherwise
(2)

where, ci is the index of the ci-th hyperplane. If ci = c1, x
belongs to class 1; if ci = c2, x belongs to class 2.
Introducing αi ≥ 0, λi ≥ 0, βi ≥ 0, and β∗i ≥ 0 as

the Lagrange multipliers for the constraints, the Lagrangian

function of Eq. (1) can be written as follows:

L(w1,w2, ρ1, ρ2, ξ , ξ
∗,α,λ,β,β∗)

=
γ

2
(‖w1‖

2
+ ‖w2‖

2)+ C
l∑
i=1

(ξi + ξ∗i )− ρ1 − ρ2

−

l∑
i=1

αi(yi(〈w1,8(xi)〉 − ρ1)+ ξi)

+

l∑
i=1

λi(yi(〈w2,8(xi)〉 − ρ2)+ ξ∗i )

−

l∑
i=1

βiξi −

l∑
i=1

β∗i ξ
∗
i (3)

where ξ ,ξ∗ and α,λ,β,β∗ are the vectors form of slack
variables and Lagrange multipliers, respectively. Setting the
derivatives of Eq. (3) with respect to w1,w2,ξ ,ξ∗,ρ1,ρ2 to
zeros, then

w1 =
γ

∑l
i=1 αiyi8(xi)+

∑l
i=1 λiyi8(xi)

γ 2 − 1
(4)

w2 =
γ

∑l
i=1 λiyi8(xi)+

∑l
i=1 αiyi8(xi)

1− γ 2 (5)

C − βi − αi = 0 (6)

C − β∗i − λi = 0 (7)
l∑
i=1

αiyi = 1 (8)

l∑
i=1

λiyi = −1 (9)

Substituting Eqs. (4-9) into Eq. (3), the dual form of Eq. (1)
can be written as follows:

min
w1,w2,ρ1ρ2

µ1

2
(αTGα + λTGλ)+ µ2α

TGλ

s.t. 0 ≤ αi ≤ C, i ∈ [1, l]

0 ≤ λi ≤ C, i ∈ [1, l]

yTα = 1, yTλ = 1. (10)

where µ1 =
γ

1−γ 2
, µ2 =

1
γ 2−1

, y is the vector form of

labels, G is a l × l matrix and G = K ◦ yyT where K is
the kernel matrix and K(i, j) = K (xi, xj), ◦ is component-
wise multiplication. The fc1(x) and fc2(x) can be represented
as follows:

fc1=
γ

∑l
i=1 αiyiK (xi, x)+

∑l
i=1 λiyiK (xi, x)

γ 2 − 1
−ρ1. (11)

fc2=
γ

∑l
i=1 λiyiK (xi, x)+

∑l
i=1 αiyiK (xi, x)

1− γ 2 −ρ2. (12)

IV. SELECTING CRITICAL SAMPLES FOR TWO-CLASS
SUPERVISED OUTLIER DETECTION
Obviously, only the sample with nonzero Lagrange
multipliers are critical to the hyperplanes, fc1(x) and
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FIGURE 2. An explanation of the two-class supervised outlier detection. Left: the samples in the original space; right: the samples in the feature space.

fc2(x) (αi 6= 0 or λi 6= 0). The learning result of two-
class supervised outlier detection would not change merely
retaining the samples which would be with nonzero Lagrange
multipliers. The scale of Eq. (10) would become much
smaller if we can find those critical samples. Thus, it can train
two-class supervised outlier detection on a small retained
subset, which is much faster. Then, speeding up two-class
supervised outlier detection is converted as finding critical
samples before learning. The following proposition illustrates
how to find critical samples.
Proposition 1: The critical samples in two-class super-

vised outlier detection must be located near the boundary of
each class.

Proof: Let xi be a sample in the training set. In the
feature space, the distances between xi and the hyperplanes,
fc1(x) and fc2(x), are |(〈w1,8(xi)〉−ρ1|

‖w1‖2
and |(〈w2,8(xi)〉−ρ2|

‖w2‖2
,

respectively. The constraints yi(〈w1,8(xi)〉 − ρ1) + ξi and
yi(〈w2,8(xi)〉 − ρ2)+ ξ∗i can be rewritten as

yi(〈w1,8(xi)〉 − ρ1)
‖w1‖2

+
ξi

‖w1‖2

yi(〈w2,8(xi)〉 − ρ2)
‖w2‖2

+
ξ∗i

‖w2‖2

The critical samples in two-class supervised outlier detec-
tion contain two cases: the sample with nonzero αi in class
1 and the sample with nonzero λi in class 2.
Case 1:
In class 1, yi = 1, yi(〈w1,8(xi)〉−ρ1)

‖w1‖2
+

ξi
‖w1‖2

≥ 0,
and the corresponding KTT condition can be rewritten as
αi(

yi(〈w1,8(xi)〉−ρ1)
‖w1‖2

+
ξi
‖w1‖2

) = 0. If αi 6= 0, it must hold that
yi(〈w1,8(xi)〉−ρ1)

‖w1‖2
+

ξi
‖w1‖2

= 0. Since ξi ≥ 0, the (〈w1,8(xi)〉−ρ1)
‖w1‖2

must be as small as possible. When ξi = 0, the xi is just on the
hyperplane fc1(x); when ξi > 0, the xi is in the opposite side
of the hyperplane fc1(x). When (〈w1,8(xi)〉−ρ1)

‖w1‖2
≥ 0, it is just

the distance to hyperplane fc1(x); otherwise, its absolute value
is the distance. Therefore, xi must locate near the boundary
of class 1. That is to say, the critical samples with nonzero αi
in class 1 are located near the boundary of the distribution of
class 1.
Case 2:
In class 2, yi = −1,

yi(〈w2,8(xi)〉−ρ2)
‖w2‖2

+
ξ∗i
‖w2‖2

≥ 0,
and the corresponding to KTT condition can be rewritten as
λi(

yi(〈w2,8(xi)〉−ρ2)
‖w2‖2

+
ξ∗i
‖w2‖2

) = 0. Then, similar to the analysis
of class 1, the critical samples with nonzero λi in class 2 are
located near the boundary of the distribution of class 2.

From case 1 and case 2, the Proposition 1 holds. �
Now, we need to find the samples which are located near

the boundary of each class. We choose nearest neighbors’
distribution [17], relative density degree [18], [38], and local
geometry information [19] to find boundary samples for two-
class supervised outlier detection. In these finding boundary
samples methods, every sample is assigned a score. Then, all
samples are sorted by the scores. The boundary samples are
located at the top positions.We need to retain those samples at
the top positions. The procedure for finding critical samples
is described in the following algorithm.

In Steps 1-3 of the Algorithm 1, we find the samples near
the boundary of class 1, and in Steps 4-6, we find the samples
near the boundary of class 2, respectively. In the last Step,
we output a subset of the original training set, which is much
smaller than the original set. It would become much faster
to learn a two-class supervised outlier detection model on
{X ′,Y ′}.
In Step 2 and Step 5, the scores could be calculated by

a boundary detection method, such as nearest neighbors’
distribution [17], relative density degree [19], local geom-
etry information [18]. In order to ensure the integrity of
this paper, we recap nearest neighbors’ distribution, relative
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Algorithm 1 Procedure for Finding Critical Samples
Input:

training set {X,Y};
the number of nearest neighbours k;

Output:
a subset {X ′,Y ′};

1: find the set X1;
2: calculate the scores of all samples in X1 via a bound-

ary detection method and sort the scores in descending
(ascending) order;

3: retain the top τ ∗ l1 (0 < τ < 1) samples to construct X ′1.
The corresponding label, Y ′1, is e with length τ ∗ l1;

4: find the set X2;
5: calculate the scores of all samples in X2 via a bound-

ary detection method and sort the scores in descending
(ascending) order;

6: retain the top τ ∗ l2 samples to construct X ′2. The corre-
sponding label, Y ′2, is −1 ∗ e with length τ ∗ l2;

7: return {X ′,Y ′}where X ′ = X ′1∪X
′

2 and Y
′
= Y ′1∪Y

′

2;

density degree, and local geometry information as follows.
Zhu et al. [17] pointed out that a sample’s location (xi) in
the dataset is related to the nearest neighbors’ distribution
(kNN (xi)). The k-nearest neighbors is enclosed by a hyper-
sphere with center which is itself and radius which is the dis-
tance between the k-th nearest neighbor and itself (d(xi, xki )).
Then, the hypersphere is divided by a hyperplane which is
perpendicular to the difference between this sample and the
mean of k-nearest neighbors (x̄i). Then, the distribution of the
nearest neighbors has the following properties.
Property 1: The number of nearest neighbors in the part

which x̄i is located must be more than that in the other
one. The difference of the numbers is related to the sample’s
location. The closer to the boundary the sample is, the larger
the difference is.
Property 2: The sum of the cosine of the sample-neighbor

angles majorly ranges in [0,k].
Here the sample-neighbor angle is defined as follows.
Definition 1 (Sample-Neighbor Angle [17]): Let θ ji be the

sample-neighbor angle. The θ ji is the angle between xi − x̄i
and xi − x

j
i.

From Property 1 and Property 2, it is obtained that the
location of a sample can be reflected by the cosine sum of the
sample-neighbor angles. The cosine sum can be represented
as follows.

csum(xi) =
k∑
j=1

cos θ ji =
k∑
j=1

〈xi − x̄i, xi − x
j
i〉

‖xi − x̄k‖‖xi − x
j
i‖
. (13)

By introducing kernel trick, Eq. (13) can be rewritten as
the following Eq. (14), as shown at the bottom of this page.

The larger the cosine sum is, the closer to the boundary
the samples is. For Algorithm 1, we only need to retain the
samples with large cosine sum.

The relative density degree is used to reflect how dense
around a sample. Generally, the relative density degree of a
sample near the boundary is smaller than that of a sample
within the distribution. The relative density degree can be
estimated by k-nearest neighbor [38] or Parzen window [39].
Let ρi represent the relative density degree of the sample xi.
Then, ρi could be estimated via the following equation.

ρi = exp{w′ ×
MeankkNN
d(xi, xki )

} (15)

where w′ is a weight factor (0 ≤ w′ ≤ 1) and MeankkNN is
the mean distances between the sample and its k-th nearest
neighbor s (MeankkNN =

1
N

∑N
i=1 d(xi, x

k
i ). For Algorithm 1,

we only need to retain the samples with small relative density
degree.

Li [18] pointed out that the boundary sample is related to
its local geometrical statistical information. Let all samples
be enclosed by a or some surface(s) and the tangent plane is
drawn at a tangent to the surface. Then, the boundary sample
should be crossed the surface and its tangent plane be located
at the edge of the surface. When the surface is convex, all
nearest neighbors are located on the opposite side of the
tangent plane, as shown in Fig. 3 (a); when the surface is
concave, most of nearest neighbors are located on one side
of the tangent plane, as shown in Fig. 3 (b) and (c). The ratio
is determined by the curvature of the surface.

FIGURE 3. The illustration of edge sample. The solid circles are edge
samples. The solid curve is the class surface. The straight line is the
tangent plane. The region formed by nearest neighbors are circled by a
dashed line.

Let vi,j (j = 1, . . . k) represent the difference between xi
and xi,j (vi,j = xji−xi), v

n
i,j represent the normalization of vi,j,

and vni represent the sum of vni,j (v
n
i =

∑k
j=1 v

n
i,j). Then, if the

nearest neighbor is located at the sidewhich the normal vector
points, the angle between xi,j and vni is in the range [0, π/2];
otherwise, the angle is the range [0, π]. The boundary sample

csum(xi) =
k∑
j=1

K (xi, xi)− K (xi, x
j
i)−

1
k

∑k
p=1 K (xi, x

p
i )+

1
k

∑k
p=1 K (xji, x

p
i )√

K (xi, xi) − 2
k

∑k
p=1 K (xi, x

p
i )+

1
k2

∑k
p,q=1 K (xpi , x

q
i )

√
K (xi, xi)− 2K (xi, x

j
i)+ K (xji, x

j
i)
. (14)
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FIGURE 4. The pluses and x-marks belong to class 1 and class 2, respectively. The circles are outliers. The solid lines are the description to represent
normal samples. (a) the description is learnt on whole set; (b) the description is learnt on selected subset.

could be found by the following equation.

Li =
1
k

k∑
j=1

(vTi,jv
n
i ≥ 0). (16)

For Fig. 3 (a), all nearest neighbors are with vTi,jv
n
i ≥ 0,

Eq. (16) is equal to 1; for Fig. 3 (b) and (c), most of nearest
neighbors are with vTi,jv

n
i ≥ 0, Eq. (16) is close to 1. Then,

we only need to retain the samples with large values of
Eq. (16) in Algorithm 1.

In Fig. 4 (a) and (b), the solid lines are the descrip-
tions learnt on the original training set and reserved subset,
respectively. The subset is selected by nearest neighbors’
distribution.

From Fig. 4, it can be found that most of the retained
samples locate near the boundary of the data distribution and
the classifier learnt on selected subset is very close to that
learnt on original set.

V. EXPERIMENTS AND SIMULATIONS
In this section, we verify the proposed method for two-class
supervised outlier detection. We implement the proposed
method via mex interface in matlab environment. The two-
class supervised outlier detection is implemented via the
Ipopt package (refer to [20]). All experiments are run on a
laptop with Ubuntu 14.04 system, 8GB memory, and Intel R©
CoreTM i5-6200U CPU. The radial basis function (RBF) is
used as the kernel function. We compare the two-class super-
vised outlier detection learnt on the original training set and
retained subsets in terms of running time, misclassification
error, and outlier detection rate. The ‘whole set’ means that

the two-class supervised outlier detection is learnt on the
original training set, whilst the ‘retained subset’ means that
the two-class supervised outlier detection is learnt on the
subset retained by the proposed method. We compare three
boundary detection method in our method, nearest neighbors’
distribution (short for NND),relative density degree (short for
NND), and local geometrical information (short for LGI).

First, we evaluate the performance on 5 benchmark
datasets from the University of California at Irvine (UCI)
machine learning repository [21]. Second, we evaluate the
performance on 2 artificial synthetic datasets. The artificial
synthetic datasets are generated by prtools [22]. Each one
contains two dimensions, thus the description can be easily
visualized.

A. EXPERIMENTS ON BENCHMARK DATASETS
In this subsection, we select 5 benchmark datasets which are
from the University of California at Irvine (UCI) machine
learning repository [21] to verify the proposed method. The
detailed description of these datasets is listed in Table 2.
The second column represents the number of dimensions. The
third column represents the size of whole set. The numbers in
parentheses are the sizes of each class. The dimensions are in
the range 4-180 and the number of samples is in the range
391-5000. Since the two-class supervised outlier detection
code is implemented by Ipopt which needs to store the whole
kernel matrix, it is difficult to store whole kernel matrix on a
personal computer when the training set contains more than
5000 samples.

The datasets are reorganized to suit for evaluating the two-
class supervised outlier detection. In svmguide 2 and balance,
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TABLE 2. The details of the benchmark datasets.

the samples in class 1 and class 2 are used as normal samples
and the samples in class 3 are used as abnormal samples.
In segment, the samples in class 1 and class 2 are used as
normal samples and others are used as abnormal samples.
The abalone and waveform are converted as three two-class
supervised outlier detection. Two classes are regarded as
normal ones and the rest one is used as anormal, denoted as
Abalone (12VS3), Abalone (13VS2), and Abalone (23VS1)
for Abalone, Waveform (12VS3), Waveform (13VS2), and
Waveform (13VS2) for Waveform. The classes before ‘VS’
are used as the normal class.

The normal samples are equally divided into two parts.
One part is used as training samples, the other part and the
abnormal samples are used as test samples. The parameter k
is set to 20 in NND, RDD, and LGI. The parameter τ is set
to 0.2 which means 20% of the whole set is retained. The
RBF is used as the kernel function and the width is chosen
among {2-5,2-4,2-3,2-2,2-1,20,21,22,23,24,25}. Both parame-
ters γ and C in two-class supervised outlier detection are
chosen among {2-1,20,21,22,23, 24,25,26,27,28,29,210}. The
parameters are tuned to obtain the least misclassification error
via grid search.

The running time comparison is listed in Table 3. For the
proposed method, the running time contains two parts: the
preprocessing time and training time. The preprocessing time
is the one to retain critical samples. The training time is the
one to learn two-class supervised novelty detection model on
the retained subset. The boundary detection methods include
NND, RDD and LGI. Even summing the preprocessing time
and training time on the retained subset, it is still much faster
than training two-class supervised outlier detection on the

TABLE 3. The time comparison of the benchmark datasets.

TABLE 4. The misclassification error comparison of the benchmark datasets.
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FIGURE 5. The description learnt on artificial synthetic datasets. (a) is learnt on whole set of banana shaped distribution; (b) is learnt on the selected
subset of banana shaped distribution; (c) is learnt on whole set of Highleyman shaped distribution; (d) is learnt on the selected subset of Highleyman
shaped distribution.

whole set directly. For instance, in svmguide 2, it costs 0.113,
0.112, and 0.117 seconds in all for subset retained by NND,
RDD, and LGI respectively, and costs 0.4516 seconds for the
whole set. It is nearly 4 times faster than training on whole set
for svmguide 2. In waveform, it is nearly 11 times faster than
whole set. The consumption time of NND, RDD, and LGI is
very close.

It only makes sense to increase speed if the performance is
not degraded. In Table 4 and Table 5, we list the misclassifi-
cation error and outlier detection respectively. It can be found
that when we use LGI to retain critical samples the difference
to the whole set is the largest and NND is the closest one
in three methods. For instance, the average outlier detection
rate is 85.2%, 84.86%, and 82.78% when the retained subset

is selected by NND, RDD, and LGI respectively. The outlier
detection rate of the whole set is 85.34%. The difference is
0.14%, 0.48%, and 2.56% for NND, RDD and LGI. In LGI,
the value of Eq. (16) ranges in [0, 1] step by 1

k . It may
exist that many samples have the same value, therefore some
boundary samples cannot be found. In RDD, MeankkNN is
the global information which may be influenced by noise.
Obviously, NND is more suitable than RDD and LGI in
Algorithm 1.

B. EXPERIMENTS ON ARTIFICIAL SYNTHETIC DATASETS
In this subsection, we evaluate 2 artificial synthetic datasets
which are generated by prtools [22]. The first one is the
banana shaped distribution and the second one is Highleyman
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TABLE 5. The outlier detection rate comparison of the benchmark datasets.

TABLE 6. The performance comparison OF artificial synthetic datasets.

shaped distribution. In the training set, each dataset con-
tains 2 classes and each class contains 400 samples. Both
classes in the training set are used as normal ones. In the
test set, we generate 1000 samples for each class and
1000 abnormal samples. In order to eliminate the random-
ness, the experiment is repeated 30 times. The parame-
ter k and parameter τ are the same in the experiment 1.
We use RBF as the kernel function and the width is chosen
among {2-5,2-4,2-3,2-2,2-1,20,21,22,23,24,25}. Both parame-
ters γ and C in two-class supervised outlier detection are
chosen among {2-1,20,21,22,23,24,25,26,27,28,29,210}. The
parameters are tuned to obtain the least misclassification error
via grid search.

The misclassification error and outlier detection rate are
reported in Table 6. It can also be obtained that the perfor-
mance of the retained subset is very close to that of the whole
set and the performance of the retained subset selected by
NND is better than others.

The visualization of one trail result is illustrated in Fig. 5.
We only visualize the retained subset of NND. It can be found
that the retained samples are located near the boundary of
each class and the descriptions of retained subsets can still
represent the normal samples even only 20% critical samples
are retained in both toy datasets.

VI. DISCUSSION AND CONCLUSIONS
In this paper, we retain the critical samples to speed up the
two-class supervised outlier detection which needs to solve

a bigger quadratic program than one-class support vector
machine. The critical samples are the ones with nonzero
Lagrange multipliers. Since the sample whose Lagrange mul-
tiplier is equal to zero has no influence on the decision func-
tion, removing the samples with zero Lagrange multipliers
would not change the learning result. Thus, we can only retain
the samples which would be with nonzero Lagrange multipli-
ers and dispose of others before training two-class supervised
outlier detection. We prove that the samples with nonzero
Lagrange multipliers must be located near the boundary of
each class. We compare three boundary detection methods
to retain critical samples for two-class supervised outlier
detection, including nearest neighbors’ distribution, relative
density degree, and local geometrical information. The exper-
imental results demonstrate the effectiveness of our strategy.
In three boundary detection methods, we find that the nearest
neighbors’ distribution is more suitable than others. Although
our strategy is used in two-class supervised outlier detection,
it can be also migrated to multi-class supervised outlier detec-
tion in the future work.
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