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ABSTRACT The performance of traditional sparse representation-based direction-of-arrival (DOA) estima-
tion algorithm is substantially degraded in the presence of non-uniform noise and off-grid gap caused by
the discretization processes. In this paper, a robust sparse Bayesian learning method is proposed for off-grid
DOA estimation with non-uniform noise. In the proposed method, the covariance matrix of non-uniform
noise is reconstructed by a modified inverse iteration method. Then, the discrete sampling grid points in the
spatial domain are treated as dynamic parameters, and the expectation–maximization algorithm is used to
iteratively refine the position of the discretization grid points. This refinement procedure is implemented by
solving a polynomial. The simulation results indicate that the proposed method can maintain excellent DOA
estimation performance with uniform or non-uniform noise. Furthermore, it can also achieve satisfactory
performance under a coarse grid condition.

INDEX TERMS Array signal processing, direction-of-arrival estimation, non-uniform noise, off-grid, sparse
Bayesian learning.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation of impinging signals
has always played an important role in the field of array signal
processing, and it has attracted a considerable attention for
its widely application in mobile communication, radar and
sonar, etc. [1]. Moreover, the application of DOA estimation
for target location and tracking [2]–[4] has also attracted
particular research attention. A large number of methods, for
example, the subspace-based method [5], [6] and maximum
likelihood (ML) method [7]–[9], have been proposed in the
past few decades to provide solutions for DOA estimation.
The subspace-based algorithms, such as multiple signal clas-
sification (MUSIC) [5] and estimation of signal parame-
ters via rotational invariance techniques (ESPRIT) [6], are
the most mature classic algorithms. But the performance
of these subspace-based algorithms is usually limited by
snapshot number and signal-to-noise ratio (SNR) due to
its dependence on eigenvalue decomposition of covariance

matrix. To deal with these issues, a large number of sparse
signal reconstruction (SSR) based DOA estimation meth-
ods [10]–[14] have been proposed, including sparse Bayesian
learning (SBL) [10], l1-norm based singular value decompo-
sition (l1-SVD) [11] and the variants of l1-SVD [12]–[14].
Because these SSR-based methods are less sensitive to SNR
and snapshot number, their performance is superior to that
of subspace-based methods with lower SNR or/and limited
number of snapshots. This merit results in the SSR-based
method widely used in DOA estimation for MIMO radar
[15]–[17]. In these SSR-based methods, the performance of
l1-SVD method is limited due to its use of l1-norm optimiza-
tion. However, the SBL method, which has less error and
higher estimation precision [18], has become one of the most
concerned SSR-based DOA estimation method.

But it cannot be ignored that the satisfactory perfor-
mance of all these methods mentioned above is based on the
assumption that the noise is uniform white Gaussian noise.
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However, in practice, this assumption is hard to accomplish
due to the existing of the non-uniform sensor response and
the non-ideality receiving channel [19], [20]. Therefore,
the actual noise is usually non-uniform white Gaussian noise.
In order to cope with the DOA estimation in the presence of
non-uniform noise, many ML-based methods [21]–[23] have
been proposed. On the other hand, a new stochastic ML algo-
rithm is proposed in [24] to achieve high precision DOA esti-
mation where the covariance matrix of non-uniform noise is
estimated by amodified inverse iteration algorithm. Although
these ML-based methods can effectively deal with non-
uniform noise, the requirement of joint search on all possible
directions results in high computation complexity, whichmay
significantly restrict their practical application. By taking the
advantages of SSR technique into consideration, many SSR-
based methods [25]–[28] have been introduced to deal with
non-uniform noise. An improved SBL method [25], which
adopts the modified inverse iteration algorithm [24] to recon-
struct noise covariance matrix, is reported to achieve high
precision DOA estimation in the presence of non-uniform
noise. In addition, some DOA estimation algorithms based on
array covariance matrix are proposed [26], [27] to eliminate
the influence of non-uniform noise by utilizing the second-
order statistical characteristics of the received data. High
DOA estimation accuracy can also be achieved in [27] by
using an adaptive procedure [11]. However, its performance
is restricted by l1-norm optimization and array aperture loss.
In order to remove this restriction, a SBL method [28] with
the variance of non-uniform noise is estimated by using the
least squares (LS) criterion is proposed.

On the other hand, it should be noted that the spatial
sparsity of signal is obtained by the discretization grid. SBL
based methods can achieve high-precision DOA estimation
only when sampling grid is dense enough and all true DOAs
are located exactly at the grid points [11], [29]. Unfortu-
nately, it is unrealistic to achieve that all true DOAs fall
on the grid points, and there must exist an off-grid error
between the true DOA and the grid point closest to it.
To deal with the off-grid error problem, some algorithms
are proposed [30]–[33] to effectively improve performance.
In [31], a sparse Bayesian inference (SBI) method is pro-
posed, in which the off-grid problem is dealt with linear
approximation, to achieve high estimation accuracy with
the coarse sampling grid. By considering the influence of
noise covariance matrix, an improved SBL based DOA esti-
mation method [32] is proposed based on the covariance
matrix of received signals. These two methods reported in
[31] and [32] achieve high estimation accuracy with high
computational complexity. Hence, a root SBL algorithm for
off-grid DOA estimation is proposed in [33] to achieve high
estimation accuracy with much lower computational com-
plexity. Although the method in [33] balances the compu-
tational complexity and estimation accuracy, it ignores the
influence of the non-uniform noise. In summary, almost all
SSR-based methods consider either the problems of off-
grid or nonuniform noise. The DOA estimation method with

the coexistence of off-grid error and non-uniform noise is
rare. Thus, we focus on solving the DOA estimation problem
with the coexistence of off-grid error and non-uniform noise.

In this paper, a robust sparse Bayesian learning method for
off-grid DOA estimation with non-uniform noise is proposed
to minimize both the off-grid error and the influence of non-
uniform noise. Firstly, the signal power of source signal is
estimated according to the SBL strategy. Then the modified
inverse iteration [24] is adopted to reconstruct the covariance
matrix of unknown non-uniform noise. The grid points are
refined by solving a polynomial to treat the grid points as the
dynamic parameters. Thus, the proposed method can achieve
high accuracy off-grid DOA estimation in the presence of
unknown non-uniform noise.
Notation: The capital and lowercase italic bold letters

denote matrices and column vectors, respectively. (·)−1, (·)H ,
(·)∗ and (·)T denote inverse, conjugate transpose, conjugate
and transpose operations, respectively. diag{·} denotes the
diagonalization operation. tr(·) represents the trace of matrix
andCM×N denotes aM×N complex matrix set. |·|, ‖·‖2 and
‖ ·‖F stand for the determinant of a square matrix or absolute
value, l2 norm and Frobenius norm, respectively. E{·} stands
for the mathematical expectation operator.

II. SPARSE SIGNAL MODEL
Consider a uniform linear array (ULA) consisting ofM anten-
nas. The distance between adjacent antennas is d = λ/2,
where λ represents the wavelength of signal source. There
are K far-field narrow-band signals impinging on the ULA
from the direction of θθθ = [θ1, θ2, . . . , θK ], where θk (k =
1, 2, . . . ,K ) represents the DOA of the kth signal. Then
the signal received by the array at the tth snapshot can be
expressed as [34]

x(t) = As(t)+ n(t), (1)

where x(t) = [x1(t), x2(t), . . . , xM (t)]T ∈ CM×1, and
xm(t) represents the signal received by the mth antennas.
A = [a(θ1), a(θ2), . . . , a(θK )] ∈ CM×K is steering matrix
with a(θk ) = [1, e−j2πd/λ sin θk , . . . , e−j2π (M−1)d/λ sin θk ]T ∈
CM×1. s(t) = [s1(t), s2(t), . . . , sK (t)]T ∈ CK×1 and n(t) =
[n1(t), n2(t), . . . , nM (t)]T ∈ CM×1 denote the signal source
vector and unknown Gaussian white noise vector, respec-
tively. The covariance matrix of n(t) is denoted as

Q = E{n(t)n(t)H } = diag{σ 2
1 , σ

2
2 , . . . , σ

2
M }, (2)

where σ 2
m represents the power of the noise received on the

mth antenna. It should be noticed that if n(t) is unknown non-
uniform noise, then σ 2

m satisfies σ 2
1 6= σ

2
2 6= · · · 6= σ

2
M and

otherwise, σ 2
1 = σ

2
2 = · · · = σ

2
M .

In order to achieve the DOA estimation by using sparse
representation, the sparse signal model should be constructed
firstly. The spacial domain of a range [−π/2, π/2] can be
sampled uniformly to obtain a complete direction vector θ̄θθ =
[θ̄1, θ̄2, . . . , θ̄K̄ ], where K̄ , K̄ � M > K , is the number of
samples. If the sampling grid is dense enough and all the true
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DOAs are on the grid points, the signal model in Eq. (1) can
be transformed into a sparse signal model as

x(t) = Ās̄(t)+ n(t), (3)

where Ā = [a(θ̄1), a(θ̄2), . . . , a(θ̄K̄ )] is a M × K̄
matrix, known as an overcomplete dictionary and a(θ̄k̄ ) =
[1, e−j2πd/λ sin θ̄k̄ , . . . , e−j2π (M−1)d/λ sin θ̄k̄ ]T with k̄ =

1, 2, . . . , K̄ . s̄(t) = [s̄1(t), s̄2(t), . . . , s̄K̄ (t)]
T is a K̄ × 1

dimensional K sparse vector. n(t) is an unknown Gaussian
white noise. Collect T snapshots of received signal, the sparse
signal model can be expressed in a matrix form

X = ĀS̄+ N, (4)

where X = [x(1), x(2), . . . , x(T )], S̄ = [s̄(1), s̄(2), . . . , s̄(T )]
and N = [n(1),n(2), . . . ,n(T )]. By estimating the parame-
ters of each row of S̄, the DOA of the target signal can be
obtained.

In practice, it is unrealistic that all true DOAs are located
exactly on the grid points. The gap between the grid points
and the true DOAs inevitably leads to estimation error,
as shown in Fig. 1. In addition, the non-uniform noise N
further degrades the estimation performance.

FIGURE 1. Schematic diagram of the off-grid sparse model.

III. DOA ESTIMATION WITH NON-UNIFORM NOISE
In this section, a robust SBL based DOA estimationmethod is
proposed to effectively reduce the effect of off-grid and non-
uniform noise. Firstly, a modified inverse iteration method is
adopted to reconstruct the noise covariance matrix to elimi-
nate the influence of non-uniform noise. Then by regarding
the sampling grid points as the dynamic parameters, an EM
algorithm with polynomial root is proposed to refine the grid
points.

A. SPARSE BAYESIAN DERIVATION
According to the SBL strategy, we suppose that s(t) follows
a complex Gaussian distribution

s̄(t) ∼ CN (0,111), (5)

where t = 1, 2, . . . ,T and CN (0,111) denotes a complex
Gaussian distribution with zero mean and its variance is111 =
diag(δδδ) where δδδ = [δ1, δ2, . . . , δK̄ ]

T is a hyper-parameters

set, and δk̄ represents the power of signal source from θ̄k̄
(k̄ = 1, 2, . . . , K̄ ). δk̄ is non-zero only if there is a signal
source on θ̄k̄ . The prior probability density function of s̄(t) is

p(s̄(t)|δδδ) =
K̄∏
k̄=1

(πδk̄ )
−1exp

{
−
(s̄k̄ (t))

2

δk̄

}
. (6)

Hence, we have

p(S̄|δδδ) =
T∏
t=1

CN (s̄(t)|0,111). (7)

However, the sparsity of s̄(t) cannot be shown since Eq. (7)
contains the unknown hyper-parameter δδδ. In order to obtain
a hierarchical structure, we further assume that δδδ obeys the
independent Gamma distribution as

p(δδδ) =
K̄∏
k̄=1

Gamma(δk̄ |a, b), (8)

where

Gamma(z|a, b) = 0(z)−1baza−1e−bz, (9)

and 0(z) =
∫
∞

0 tz−1e−tdt . In order to obtain a broad hyper-
prior, a, b is usually set to be the number close to zero,
i.e., a, b→ 0 [10].

Based on the above assumption and the sparse signal model
of Eq. (4), the probability density distribution of the received
signal X can be expressed as

p(X|S̄,Q) = CN (X|ĀS̄,Q) =
T∏
t=1

CN (x(t)|Ās̄(t),Q)

= |πQ|−T exp{−tr[(X− ĀS̄)HQ−1(X− ĀS̄)]}.

(10)

By utilizing the Bayesian theory, the posterior probability
density distribution of S̄ with respect to X can be derivated as

p(S̄|X;δδδ,Q) =
p(X|S̄;Q)p(S̄|δδδ)∫
p(X|S̄;Q)p(S̄|δδδ)d S̄

= |π666|−T exp{−tr[(S̄−µµµ)H666−1(S̄−µµµ)]},

(11)

where

µµµ = 111Ā
H
666−1X X, (12)

666 = 111−111Ā
H
666−1X Ā111, (13)

666X = Q+ Ā111Ā
H
. (14)

Since the parameters111 and Q can be determined, the pos-
terior estimated value of signal amplitude can be achieved
based on Eq. (12). Then the posterior probability density
distribution of X with respect to δδδ can be expressed as

p(X|δδδ,Q) =
∫
p(X|S̄,Q)p(S̄|δδδ)d S̄

= |π666X|
−T exp{−tr(XH666−1X X)}. (15)
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Ignoring the constant term and take the logarithm of
Eq. (15), the objective function for optimizing δδδ can be
expressed as

L(δδδ,Q) = g(R̂,666X) = −T (ln|666X| + tr(666−1X R)), (16)

where R = E[x(t)xH (t)]. Since R is an ideal value that is
unrealistic to be obtained, it is approximated by R̂ = 1

T XX
H .

By removing the minus sign, the objective function can be
rewritten as

L(δδδ,Q) = ln|666X| + tr(666−1X R̂). (17)

The hyperparameter δδδ can be estimated by maximizing
Eq. (16) or minimizing the objective function Eq. (17), and
the power of the incident signal on the spatial discrete angle
set can also be determined. On the other hand, the noise
covariance matrix Q can also be determined by optimizing
Eq. (17). The following subsection will focus on the estima-
tion of δδδ and Q. When δδδ and Q are estimated, a 1-D search is
performed on the power spectrum based on the relationship
between δδδ and θ̄θθ to find the K maximum values, which can
be used for DOA estimation.

B. SIGNAL POWER AND NOISE COVARIANCE
MATRIX ESTIMATION
In this subsection, the signal power δδδ is firstly estimated. Take
the partial derivative of the objective function in Eq. (17) with
respect to δδδ and set it to be zero, we have

∂L(δδδ,Q)
∂δδδ

= 0. (18)

After some mathematical manipulation, the iterative for-
mula of δδδ is obtained as

δ
(p)
k̄
=

1
T
‖(µµµ(p))k̄·‖

2
2 + (666(p))k̄,k̄ , (19)

where k̄ = 1, 2 . . . , K̄ , (·)(p) represents the pth iteration
and δ(p)

k̄
denotes the estimated value of δk̄ in the pth iter-

ation. µµµ(p) and 666(p) are the estimated value of µµµ and 666
in the pth iteration, respectively, which can be calculated
from Eq. (12) and Eq. (13). (µµµ(p))k̄· denotes the k̄ row of
µµµ(p), and (666(p))k̄,k̄ denotes the (k̄, k̄)th element of 666(p). The
calculation of Eq. (19) may be abnormal if most elements
of δδδ are zero during the convergence process. To avoid this
situation, Eq. (19) is revised as

δ
(p)
k̄
=

1
T
‖(µµµ(p))k̄·‖

2
2/

1− (666(p))k̄,k̄

δ
(p)
k̄

+ τ, (20)

where τ is a very small positive number and is set as
τ = 10−10 in this paper [18].
The above estimation of δδδ is based on the assumption

that the variance of noise (i.e. Q) is known. For estimating
the variance of non-uniform noise Q, it is impossible to
optimize the objective function by taking the partial deriva-
tive of Eq. (17) directly [18]. Therefore, an inverse iteration
procedure [24] is adopted to optimize the objective function
Eq. (17) to achieve the estimation of Q.

According to the similar operation in [24], we can maxi-
mize Eq. (16) to obtain an initial estimate of Q and initialize
θθθ and δδδ. Then the gradient vector of L(δδδ,Q) in Eq. (16) can
be calculated as

[∇qL(δδδ,Q)]m = −T
{
∂ln|666X|

∂qm
+
∂tr(666−1X R̂)
∂qm

}
= −T {tr(666−1X Em,m)− tr(666−1X R̂666−1X Em,m)}

= −T tr{[666−1X −666
−1
X R̂666−1X ]Em,m}

= −T [666−1X −666
−1
X R̂666−1X ]m,m, (21)

where [∇qL(δδδ,Q)]m denotes the mth entry of the gradient
vector∇qL(δδδ,Q). qm represents themth entry of q = diag{Q}
andEi,j is aM ×M matrix with all entries are zero except that
the (i, j)th entry is 1. Then let ∇qL(δδδ,Q) be 0, we have

tr{[666−1X −666
−1
X R̂666−1X ]Em,m} = 0, (22)

or

[666−1X −666
−1
X R̂666−1X ]m,m = 0, (23)

where m = 1, 2, . . . ,M . Similar to the procedure of [24], we
assume aM×M diagonal matrix Q̂, and (R̂−Q̂, 6̂66X) satisfies
Eq. (23). Then we have

[6̂66
−1
X (6̂66X − (R̂− Q̂))6̂66

−1
X ]m,m = 0, (24)

where 6̂66X is the initial estimated value of 666X from Eq. (14)
whenQ and111 are initialized. Similarly, (R̂−Q̂, 6̂66X) also sat-
isfies Eq. (22). Hence, substituting (R̂− Q̂, 6̂66X) into Eq. (22)
and after some mathematical manipulation, we have

tr{[6̂66
−1
X R̂6̂66

−1
X − 6̂66

−1
X (6̂66X + Q̂)6̂66

−1
X ]Em,m} = 0. (25)

Obviously, Eq. (25) can be rewritten as a matrix form,
which is shown as

Uq̂ = v, (26)

where q̂ is denoted by q̂ = diag(Q̂), and

[U]i,j = tr{Ej,j6̂66
−1
X Ei,i6̂66

−1
X }, (27)

vi = tr{[6̂66
−1
X R̂6̂66

−1
X − 6̂66

−1
X ]Ei,i}, (28)

where i, j = 1, 2, . . . ,M . Then, the improving direction q̂,
which has been proved in [24], can be obtained by solving
the linear equation Eq. (26).

The signal power δδδ and the covariance matrix of non-
uniform noise Q are estimated from the above derivations
according to the existing sparse signal model in Eq. (3), then
the DOA estimation has already been obtainted. Although the
DOA estimation can be realized from the above derivations,
the gap between the true DOAs and grid points limits the per-
formance of the DOA estimation. In the following subsection,
the problem of off-grid will be dealt with by finding the root
of a polynomial.
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C. REFINEMENT OF SAMPLED GRID POINTS
In this subsection, the expectation maximization (EM) algo-
rithm is adopted to refine the grid points. Each iteration of EM
algorithm contains E-step and M-step. In E-step, the math-
ematical expectation operation of the likelihood function is
performed, and the M-step is to maximize this expectation.
Let us consider the spatial discrete angle set θ̄θθ as a param-
eter. According to the EM algorithm, we first perform the
mathematical expectation operation to the likelihood function
in Eq. (10). Then the objective function can be obtained by
ignoring the independent constant terms, which is shown as

Ep(S̄|X;δδδ,Q){ln(p(X|S̄,Q))}

= −

T∑
t=1

‖Q−
1
2 (xt − Āµµµt )‖22 − T tr

(
(Q−

1
2 Ā)666(Q−

1
2 Ā)H

)
,

(29)

where xt = x(t) and µµµt is the tth column of µµµ. To refine θ̄θθ ,
we maximize the objective function in Eq. (29). Define υk̄ =
e−j2πd/λ sin θ̄k̄ (k̄ = 1, 2, . . . , K̄ ) and consider the following
equations

∂
∑

t ‖Q
−

1
2 (xt − Āµµµt )‖22
∂υk̄

= (Q−
1
2 ā′k̄ )

H

(
(Q−

1
2 āk̄ )

T∑
t=1

|µµµt,k̄ |
2
−

T∑
t=1

µµµ∗t,k̄ (Q
−

1
2 x)t−k̄

)
,

(30)

∂tr((Q−
1
2 Ā)666(Q−

1
2 Ā

H
))

∂υk̄

= (Q−
1
2 ā′k̄ )

H (Q−
1
2 Ā)εεεk̄

= (Q−
1
2 ā′k̄ )

H

εk̄,k̄ (Q− 1
2 āk̄ )+

∑
i 6=k̄

εi,k̄ (Q
−

1
2 āi)

. (31)

Let the derivative of Eq. (29) with respect to υk̄ be 0

(ä′k̄ )
H
(
äk̄

T∑
t=1

(|µµµt,k̄ |
2
+ εk̄,k̄ )

+T
∑
i 6=k̄

εi,k̄ äi −
T∑
t=1

µµµ∗t,k̄ ẍt−k̄

)
= 0, (32)

where äk̄ = Q−
1
2 āk̄ , āk̄ is the k̄th column of Ā, ä′

k̄
=

d äk̄/dυk̄ , ẍt−k̄ = ẍt −
∑

i 6=k̄ µµµt,k̄ äi and ẍt = Q−
1
2 xt . µµµt,k̄

and εi,k̄ represent the k̄th element and the (i, k̄)th element of
µµµt and666, respectively.

In order to convert Eq. (32) into a polynomial form,
we have the following definition

8(k̄)
=

T∑
t=1

(|µµµt,k̄ |
2
+ εk̄,k̄ ), (33)

9(k̄)
= T

∑
i 6=k̄

εi,k̄ äi −
T∑
t=1

µµµ∗t,k̄ ẍt−k̄ . (34)

Then Eq. (32) is rewritten as

[υk̄ , 1, υ
−1
k̄
, . . . , υ

−(M−2)
k̄

]



M (M−1)
2 8(k̄)

9
(k̄)
2

29(k̄)
3
...

(M − 1)9(k̄)
M


= 0, (35)

where 9(k̄)
m is the mth element of 9(k̄). Obviously, after solv-

ing Eq. (35), we need to select only one root out of theM −1
roots to refine the grid point. According to the characteristics
of υk̄ , the root with the absolute value closest to 1 is selected
to refine the grid point. With υk̄∗ representing the selected
root, the refined grid point is expressed as

θ̄REFk̄∗ = arcsin
(
−

λ

2πd
· angle(υk̄∗ )

)
. (36)

In addition, it should be noticed that if the estimated DOA
is almost lie on the original grid, the refined operation will
inevitably increase the estimation error. To avoid this phe-
nomenon, a further condition is set to determine whether the
point needs to be refined. For example, we can use (θ̄k̄∗−1 +
θ̄k̄∗ )/2 ≤ θ̄

REF
k̄∗
≤ (θ̄k̄∗ + θ̄k̄∗+1)/2 to determine whether the

grid refinement needs to be performed.
Until now, a robust SBL method for off-grid DOA estima-

tion with non-uniform noise has been proposed. The algo-
rithm can be implemented by the iteration procedure as given
in algorithm 1.

Algorithm 1Robust SBL for Off-Grid DOAEstimationWith
Non-Uniform Noise
1: Input: The received signal X ;
2: Initialization: Q, δδδ;
3: while ∼ Converge do
4: Calculateµµµ and666 by Eq. (12) and Eq. (13);
5: Update δδδ according to Eq. (19);
6: Calculate improving direction q̂ according to Eq. (26);

7: while g(R̂, 6̂66X + tQ̂) < g(R̂, 6̂66X) +
αt∇qg(R̂, 6̂66X)T q̂ or Q+ tQ̂ < 0 do

8: t = βt;
9: end while
10: Q← Q+ tQ̂;
11: Update θ̄θθ according to Eq. (35) and Eq. (36).
12: end while
13: Output:µµµ and θ̄θθ ;
14: Perform a 1-D spectrum search on new θ̄θθ to find the K

maximum values to achieve DOA estimation.

Remark 1: In this article,Q is initialized asQ = (σ 2)(0)IM ,
where (σ 2)(0) = tr{(IM−ĀĀ

H
)R̂}/(M−K ), and IM is anM×

M identity matrix. δδδ is initialized as (δk̄ )
(0)
=

1
T ‖(µµµ

(0))k̄·‖
2
2,

whereµµµ(0)
= Ā

H
(ĀĀ

H
)−1X. And in algorithm 1, α and β are

two constants which satisfy 0 < α < 0.5 and 0 < β < 1,
respectively [24].
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Remark 2: The main problems solved in this article are in
step 6 and step 11. In order to achieve DOA estimation with
the coexistence of non-uniform noise and off-grid, the prob-
lem of non-uniform noise and off-grid are handled iteratively
in the proposed method. Firstly, in step 6, based on the spec-
ified structure of covariance matrix of non-uniform noise Q,
the modified inverse iteration algorithm [24] is utilized to
accurately reconstruct the diagonal matrixQ. In each iteration
of this modified inverse iteration algorithm, the estimated
Q becomes closer to the actual Q. Then the sample grid
point is treated as a parameter which is refined by solving
a polynomial. The non-uniform noise covariance matrix can
be accurately reconstructed, and the discrete grid points are
iteratively refined, which enable our algorithm to achieve
satisfactory performance with the coexisting of non-uniform
noise and off-grid.
Remark 3: Our proposed method is mainly to solve the

DOA estimation problem with the coexistence of off-grid
error and non-uniform noise.When the noise is uniformwhite
Gaussian noise, our method still works, but its performance
may not be better than that of the OGSBI and root SBL, which
has been proved in the subsequent section.

IV. SIMULATION RESULTS
A number of simulations under different conditions are car-
ried out in this section to verify the robustness of the pro-
posed method for off-grid and non-uniform noise. The sparse
iterative covariance-based estimation (SPICE) method [26],
covariance sparse-aware DOA estimation method in [27],
OGSBI [31] and the root SBL method [33] are adopted to be
compared with our proposed method. In addition, Cramér-
Rao Lower Bound (CRLB) [27] is also utilized to measure
the performance of these algorithms. In order to improve
the estimation accuracy, an adaptive process [11] is intro-
duced for root mean square error analysis in [27], while we
do not use this adaptive process for comparison in order
to prove the effectiveness of our method more clearly. All
simulations are based on a ULA consisting of M = 10
antennas and the distance between adjacent antennas is half-
wavelength. Suppose that there are two far-field narrow-band
signal sources impinging on the ULA from θ1 = −11.3◦

and θ2 = 15.6◦, respectively. Without special instructions,
the covariance matrix of non-uniform noise is modeled as
Q = diag{20, 2, 1.5, 0.5, 8, 0.7, 1.1, 3, 6, 3}, and the spatial
domain range [−90◦, 90◦] is discretized by 1◦. For more
intuitive analysis of performance, root mean square error
(RMSE) is introduced as

RMSE =
1
K

K∑
k=1

√√√√1
ξ

ξ∑
i=1

(
θ̂i,k − θk

)2
, (37)

where ξ = 100 is the total number of Monte Carlo trials
and θ̂i,k is the estimated result of θk in the ith Monte Carlo
simulation.

First of all, the spatial spectrum of five methods under
non-uniform noise condition are compared with each other as

shown in Fig. 2, and the estimation results of 50 independent
simulations of the root SBL and the proposed method are also
compared as shown in Fig. 3, where SNR = 0dB and the
snapshot number T = 400. The estimated results of Fig. 2 is
given in Table 1. As seen from Fig. 2, the proposed method
can realize DOA estimation effectively in the coexistence of
non-uniform noise and off-grid case. It can be seen from
Fig. 3 that the estimated result of the proposed method is
closer to the true DOA and more stable than the root SBL

FIGURE 2. Comparison of spatial spectrum of five methods.

FIGURE 3. Comparison of estimated results of 50 independent
simulations.

TABLE 1. Comparison of estimation results of five methods.
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method which only considers off-grid with uniform noise.
Thus, the proposed method can effectively mitigate the influ-
ence of non-uniform noise on DOA estimation.

Then, the performance of the proposed method is tested
in uniform noise case, i.e., σ 2

1 = σ 2
2 = · · · = σ 2

M , where
snapshot number is set as T = 400. Fig. 4 shows the result
of the probability of successful detection (PSD) versus SNR
in the uniform noise case. If both of the two estimated results
are satisfied |θ̂i,k − θk | ≤ 0.5◦, the detection is successful,
and the subsequent non-uniform noise scenario is identical
as well. It can be seen from Fig. 4 that, although the PSD of
the proposed method is not as high as the OGSBI and root
SBL, it still works normally in the uniform noise case. On
the other hand, it can be seen that the PSD of the proposed
method reaches 100% much sooner than the SPICE and the
method in [27]. The relationship between RMSE and SNR is
given in Fig. 5, in which the RMSE of the proposed method,
OGSBI and root SBL is decreasing with the increasing of
SNR. While the other two methods decline slowly with the
increasing of SNR. The main reason for these results of Fig. 4
and Fig. 5 is that the proposed method, OGSBI and root SBL
can effectively reduce the off-grid error. Thus, the proposed
method can not only accurately reconstruct the covariance
matrix of the uniform noise, but also effectively reduce the
off-grid error.

FIGURE 4. Probability of successful detection versus SNR in the uniform
noise case.

Now, we consider the non-uniform noise scenario Q =
diag{20, 2, 1.5, 0.5, 8, 0.7, 1.1, 3, 6, 3}. The PSD versus
SNR is shown in Fig. 6 with the snapshot number T = 800. It
can be seen that, when the SNR is relatively low, the PSD of
OGSBI and root SBL is lower than that of the other methods,
This is because that when the SNR is low, the non-uniform
noise ignored by OGSBI and root SBL seriously affects their
estimation performance. On the other hand, since the SPICE
and the method in [27] only consider non-uniform noise and
ignore the off-grid error, their PSD are lower than that of the
proposed method. Obviously, the proposed method keeps the

FIGURE 5. RMSE versus SNR in the uniform noise case.

FIGURE 6. Probability of successful detection versus SNR in the
non-uniform noise case.

highest PSD at all SNRs and reaches 100% sooner than the
other four methods, which means that the proposed algorithm
can reduce the influence of off-grid error and non-uniform
noise simultaneously.

Fig. 7 shows the RMSE versus SNR in non-uniform noise
case with T = 800, and Fig. 8 depicts the RMSE versus
snapshot number in non-uniform noise case with SNR =
0dB. It can be obviously observed that the proposed method
achieves the lowest RMSE in the relatively low SNR, and
when SNR > 6dB the RMSE of OGSBI is lower than the
proposed method. This is because in the case of high SNR,
the non-uniform noise will not have a significant impact on
the estimated performance, and our proposed method mainly
aims at non-uniform noise. Since the off-grid error is not
considered, the performance of SPICE and the method in [27]
are not significantly improved. On the other hand, although
the OGSBI and the root SBL can effectively reduce the off-
grid error, their performance are still seriously affected due to
the influence of non-uniform noise. Hence, the OGSBI shows
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FIGURE 7. RMSE versus SNR in the non-uniform noise case.

FIGURE 8. RMSE versus snapshot in the non-uniform noise case.

the worst performance in Fig. 8 and the proposed method
maintains the most superior performance.

Fig. 9 shows the comparison of RMSE for different meth-
ods at different grid intervals, where SNR = 0dB and the
snapshot number is T = 800. In different grid intervals,
the proposed method can still maintain superior performance
over the other four methods, which should give the credit
to the update process to the sampling grid in the proposed
method. Conversely, the performance of SPICE and the
method in [27] are worse, because they are both based on the
true DOA overlapping with grid points. In addition, although
theOGSBI and the root SBL also have the process of reducing
the off-grid error, the appearance of non-uniform noise makes
their performance inferior to the proposed method.

Finally, in order to further illustrate the robustness and
effectiveness of the proposed method, the RMSE versus the
worst noise power ratio (WNPR) is given in Fig. 10, where
WNPR is defined as WNPR = σ 2

max/σ
2
min [10]. σ 2

max rep-
resents the maximum noise power and σ 2

min is the minimum

FIGURE 9. RMSE versus grid interval in the non-uniform noise case.

FIGURE 10. RMSE versus WNPR in the non-uniform noise case.

noise power. As seen from Fig. 10, in the case of SNR = 0dB
and T = 800, the RMSE of OGSBI is worst and that of the
root SBL grows with the increasing of WNPR, and finally
tends to fail to work. In contrast, the SPICE, the method
in [27] and the proposed method are all robust to WNPR.
And since we adopt a coarser grid, the SPICE and method
in [27] are less affected byWNPR. Although the RMSE of the
proposed method has some fluctuations, it is still acceptable
and generally stable. Moreover, the proposed method has
the lowest RMSE because of its robustness to off-grid error
simultaneously, which leads to superior performance than the
other methods.

V. CONCLUSION
In this paper, we have proposed a robust SBL method for
off-grid DOA estimation with non-uniform noise. In our
proposed method, both the off-grid error and the influence
of non-uniform noise can be effectively minimized. Based on
the accurate reconstruction for non-uniform noise covariance
matrix and iterative updating of the grid, the proposedmethod
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is robust to both off-grid and non-uniform noise. Extensive
simulation results have proved that our method can achieve
DOA estimation accurately with coexistence of off-grid error
and non-uniform noise.
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