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ABSTRACT This paper proposes DROM, a deep reinforcement learning mechanism for Software-Defined
Networks (SDN) to achieve a universal and customizable routing optimization. DROM simplifies the
network operation and maintenance by improving the network performance, such as delay and throughput,
with a black-box optimization in continuous time. We evaluate the DROM with experiments. The exper-
imental results show that DROM has the good convergence and effectiveness and provides better routing
configurations than existing solutions to improve the network performance, such as reducing the delay and
improving the throughput.

INDEX TERMS Deep reinforcement learning, routing optimization, software-defined networking.

I. INTRODUCTION
Software-Defined Networking (SDN) provides flexible traf-
fic control by decoupling the control plane plane from the
data plane, simplifying the network operation and mainte-
nance management process, and thus is widely used as an
emerging architecture for the network innovation. However,
as the network control requirement becomes fine-grained,
the network scale expands rapidly, and the network traf-
fic grows exponentially, traditional static routing algorithms
(e.g., OSPF) are not suitable for the SDN because of their
slow convergence and slow response to the network changes.
Therefore, it is very important to propose a new solution to
optimize the routing process of the SDN while maintaining
the Quality of Service (QoS).

Machine learning attracts many attentions from academia
and industry because of its outstanding performance with
large-scale data processing, classification, and intelligent
decision-making. Some studies use it to solve the deadlock
issue in the network operation andmanagement [1], [2]. Some
works use its intelligent algorithms to achieve the intelli-
gent, customizable, and fine-grained routing management for
the SDN. Wang et al. [3] propose some heuristic algorithms
to optimize the SDN routing [3], but the algorithms’ per-
formances are not stable when the network changes. Rein-
forcement learning (e.g., Q-learning [4]) is also an alternative

solution to improve the network performance [5]. However,
the Q-learning cannot be directly used to optimize the net-
work routing because of its huge demand of the Q table.
Additionally, it only works in discrete times, which does not
hold for the network with dynamic changes. Designing a
routing mechanism that uses the machine learning to achieve
the universal and customizable optimization in continuous
times is a big challenge.

To address the above challenges, we impose the Deep
Deterministic Policy Gradient (DDPG) [6] mechanism to
optimize the routing in the SDN with the DDPG Rout-
ing Optimization Mechanism (DROM). DROM has four
advantages: first, DROM dynamically optimizes customized
parameters or strategies by intelligently adjusting the reward
function. Second, DROM uses neural networks instead
of Q-tables and saves the storage overhead and the time
cost of table lookup caused by maintaining large-scale
Q tables. Third, DROM can be widely used since it does
not rely on any specific network states. Fourth, DROM can
effectively achieve black-box optimization in continuous
time. We evaluate the performance of DROM with exper-
iments. The experimental results show that DROM not
only has good convergence and but also achieves bet-
ter performance and stability than traditional static routing
algorithms.
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The rest of the paper is organized as follows. Section II
introduces related works on intelligent routing optimizations
of the SDN. Section III describes the SDN framework with
the machine learning module and the general principles
of DDPG. We illustrate DROM in Section IV. The perfor-
mance evaluation is presented in Section V. A discussion
about our future work is described in SectionVI.We conclude
the paper in Section VII.

II. RELATED WORKS
To intelligently optimize the routing of the SDN, lots of
intelligent algorithms are imposed into the SDN routing
process, and various techniques have been presented in
prior researches. Li et al. [7] propose a route predesign
scheme based on a multi-machine learning approach. First,
this scheme leverages a proper clustering algorithm, such as
Gaussian mixture model or K-means clustering, to extract
flow features. Then, a supervised learning mechanism, such
as an extreme learning machine, is used to forecast traffic
demand. Finally, an adaptive multipath routing method based
on the analytic hierarchy process is proposed to deal with
elephant flows according to theweights of different constraint
factors. Existing works in [8] and [9] use heuristic algorithms,
such as ant colony algorithm and genetic algorithm, to opti-
mize the routing selection for flows. However, due to the
limitations of heuristic algorithms, the algorithms are only
work for specific problems. When the network state changes,
the parameters of heuristic algorithms may be adjusted, lead-
ing to potential scalability issues. The works in [5] and [10]
both deploy reinforcement learning modules in SDN. Specif-
ically, [5] uses QoS-aware reward functions to implement
QoS adaptive routing in the SDN with Q-learning. The work
in [10] proposes an end-to-end adaptive HTTP streaming
media intelligent transmission architecture. In [10], the sys-
tem modeling is based on a partially observable Markov
decision process, and the Q-learning method is used as a
cluster decision algorithm to maximize quality of experience.

The reinforcement learning is an alternative solution for
optimizing the routing. It can achieve low latency, high
throughput, and adaptive routing. However, the SDN requires
fine-grained control on data flows, and traditional Q-learning
algorithms could require huge storage space to maintain Q
tables, each of which contains states, actions, reward infor-
mation. In addition, as the Q-table scale extends, the look-
up time of the Q tables could also increase significantly.
These limitations greatly restrict the application of the rein-
forcement learning in the SDN routing. To handle the prob-
lems, Sendra et al. [11] use a neural network to replace the
Q-table in the traditional Q-learning method. DQN [12] is
used to optimize the routing process but it only works for
discrete-time control since it cannot converge in real time.

III. FRAMEWORK AND DDPG GENERAL PRINCIPLES
How to combine the SDN with a machine learning algo-
rithm to improve the network performance is an interesting
and valuable question [13]. This section proposes a feasible

FIGURE 1. Structure of a machine learning-based SDN framework.

framework for incorporating a machine learning module to
the SDN to realize intelligent operation and maintenance.

A. A MACHINE LEARNING-BASED SDN FRAMEWORK
Fig. 1 shows the structure of a machine learning-based SDN
framework, which has an intelligent decision-making mod-
ule of the machine learning in the SDN control plane. The
intelligent decision-making module efficiently generates net-
work policies to realize the global, real-time and customized
network control and management. Specifically, by obtain-
ing the global network status from the SDN, the intelligent
decision-making module generates a network strategy, and
the corresponding rules are generated by the control plane
based on the strategy. From this architecture, we can intel-
ligently optimize a series of maintenance and management
operations, such as routing, resource adaptation, to improve
the network performance.

B. THE GENERAL PRINCIPLE OF DDPG
The reinforcement learning enables agents to learn actions
in the environment to maximize its reward value. Deep
reinforcement learning combines the perception ability of
deep learning with the decision-making ability of enhanced
learning. However, the general value-based deep reinforce-
ment learning mechanism, such as DQN [12], cannot solve
the modeling and control of continuous actions, which is
not suitable for the dynamic and real-time network system.
The policy-based reinforcement learning methods, such as
Deterministic Policy Gradient (DPG) [14], can realize the
continuous-time control and optimization, but they only gen-
erate policy functions for linear functions and have the over-
fitting issue caused by the correlation of the training data.
To solve these problems, DeepMind propose a new deep
reinforcement learning approach named DDPG [6], which
combines the DQN method with the DPG method in an
actor-critic framework. DDPG uses neural networks to gener-
ate the strategy function andQ function and forms an efficient
and stable discrete action control model.

Fig. 2 shows the DDPG framework. Notably, µ and Q
represent the deterministic strategy function and Q function
generated by the neural network, respectively. In the
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FIGURE 2. DDPG framework.

actor-critic architecture of DDPG, the actor module adopts
the DPG method while the critic module adopts the DQN
method. Each actor module consists of two neural networks,
one is an online network for training and learning, and the
other one is a target network for blocking the correlation of
the training data. The target network has the same structure
of the online network but uses the previous parameters of
the online network. The online network regularly passes its
parameters to the target network, and the target network use
the parameters to update its own parameters. In a training
period, the transition information of each interaction with the
environment is stored in an experience pool, and the learning
batch of the neural network is composed of transition process
information sampled from the experience pool.

The parameter updating process of the DDPG consists of
updating the actor module of the neural network and updating
of the critic module of the DQN neural network. The two
updates are related to each other. For the neural network of the
actor module, the policy gradient should be backpropagated.
The policy gradient can be calculated by Eq.(1).

∇θµJ = grad[Q] ∗ grad[µ]

≈
1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si (1)

In the equation, the first half part grad [Q] is the action
gradient from the critic network and used to characterize the
movement direction of the actor to obtain a higher reward.
The second half part grad [µ] is the parameter gradient from
the actor network and used to characterize how the neural
network of the actor should adjust its parameters to choose
the high reward actions. The equation shows that the neural
network of the actor module modifies its parameters to obtain
high rewards.

To update of the critic module in the DQN network, we cal-
culate the TD error of the critic module as the mean square
error of the online network’s Q value and the target network’s

Q value. It is shown in Eq.(2).

L =
1
N

∑
i
(yi − Q(si, ai|θQ))2 (2)

In the above equation, yi is the Q value of the target network
based on the next state si+1 and next action ai+1. The target
network selects the next action ai+1 and the next state si+1
with the parameter µ′ from the previous online network.
Eq.(3) is the equation for calculating yi.

yi = ri + γQ′(si+1, µ′(si+1|θµ
′

)|θQ
′

) (3)

In the above equation, the Q value of the online network
evaluates the actor network with the current state to select the
current action. The online network of the actor module passes
its selected current action to the online network of the critic
module, and the online network of the critic module evaluates
the action to generate the Q value.

IV. MECHANISM OF DROM
The basic principles of DDPG and the framework of SDN
deploying machine learning modules are introduced in the
previous section. In this section, we introduce the DROM.
By running DROM, the customized performance parameters,
such as delay, forwarding path length, throughput, can be
automatically optimized to realize the real-time control of the
network in continuous time, thus effectively alleviating the
pressure of operation and maintenance.

Fig. 3 shows DROM framework. DROM agents interact
with the environment through three signals: state, action, and
reward. Among them, state s is the Traffic Matrix (TM) of
the current network load, and the action a taken by the agent
to the environment is to change the weights of links in the
network. By changing the weights of the links, the agent can
change the paths of the data flows. The reward r of the agent
is related to the network operation and maintenance strategy.
It can be a single performance parameter, such as delay,
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FIGURE 3. DROM framework.

throughput, or a comprehensive strategy to balance multiple
parameters. For instance, Eq. (4) takes multiple parameters
into consideration.

Ri−>j = R(i− > j|st , at )

= −h(at )+ αdelayij + βBWij + γ lossij+θTPij (4)

This equation illustrates that the network is at state st with
the received action r . Suppose the path calculated after the
link weight adjustment is pi,j. In the equation, function h
denotes the cost to implement action at that represents the
action influence to switch operations. α, β, γ , θ ∈ [0, 1) are
the tunable weights and determined by the operation and
maintenance strategy. In addition, cost h can be set to a
constant value over actions typically. The adjustment of these
control strategies can be achieved by changing the reward
settings. In the later section, we use the minimizing delay as
an example to explain how DROM works.

The training purpose of the DDPG agent is to find the
optimal action a according to an input state s to maximize a
reward r . The general process of DROM can be summarized
as follows: with network analysis and measurement from the
SDN controller, the DROM agent can obtain the accurate
network state s and determine an optimal action: a set of
link weights [w1, w2, . . .wn]. The new paths of flows are
recalculated based on the set of updatedweights, and the SDN
controller generates new rules to establish the new paths.
After the path update, the reward r and the new network
state are obtained through the next network analysis and
measurement. The performance of the required network is
iteratively optimized.

V. EXPERIMENTS AND EVALUATION
In this section, we evaluate the performance of DROM, ver-
ify the effectiveness and convergence of DROM agent and
present the performance advantages of DROM agent com-

pared with traditional routing protocols. Section V.A intro-
duces the experimental methods in detail, and Section V.B
presents experimental results.

A. EXPERIMENTAL SETUP
The hardware environment of the experiment uses NVIDIA
Tesla P100 GPU and 24 GB DDR4 memory, and the operat-
ing system is Ubuntu 16.04. We use Keras and TensorFlow
as the machine learning framework and built the simulation
network environment with OMNeT++ [15]. Under the same
topology, this paper tests the self-convergence and effec-
tiveness of DDPG agents and compares the performance of
DROM with OSPF, the current mainstream routing protocol,
along with a large number of randomly generated routing
configurations.

FIGURE 4. Sprint backbone network.

In the experiment, we use a real backbone network
topology-Sprint network [16], which consists of 25 nodes and
53 links. Fig.4 shows the topology. The bandwidth of each
link is the same.We set up several different Traffic Load (TL)
levels to simulate the actual network scenario. Each TL level
is a specific percentage of the total network capacity. We use
the gravity model [17] to generate several different traffic
matrices under the same TL. We generate several traffic
matrices with different total traffic or distribution for training
and testing.

To verify the validity and convergence of DROM, we train
DROM agents with different steps under different traffic
intensity levels and test the performance of the trained agents
to verify the effectiveness and convergence. Similarly, to ver-
ify the performance advantages of DROM, we design two
experimental scenarios: (1) Under different traffic intensity,
we compare the performance of DROM with 200000 ran-
domly generated valid routing configurations. These ran-
dom routing configurations ensure the representativeness and
validity of the test dataset through the large quantity. (2) In the
same network environment, we compare the routing perfor-
mance of DROM and OSPF, which always uses the initial
weight for each link.
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B. EXPERIMENTAL RESULTS
In this paper, we use the minimizing delay as the operation
and maintenance strategy and as the performance measure
metric of DROM. In the experiment, we mainly focus on
the convergence and effectiveness of DROM and compare
the delay performance of DROM with OSPF and random
routing configuration. To verify scalability, we also use the
maximizing throughput as another operation and mainte-
nance strategy and compare the performance of DROM with
existing throughput solutions [5], [18]. SDN-LB [18] can
achieve throughput optimization by dynamically scheduling
load to avoid congestion based on the SDN. QAR [5] uses
QoS-aware reward functions to implement QoS adaptive
routing. In this experiment, the reward function of QAR is
only related to throughput.

1) CONVERGENCE AND EFFECTIVENESS OF DROM
In the experiment, we use four different TLs: 10%, 40%,
70% and 100%of thewhole network bandwidth, respectively.
For each TL, we generate 250 traffic matrices. We train
DDPG agent under different TLs for 2000, 4000, 10000,
20000, 50000, 80000, and 100000 times with the same traffic
matrices. Then, we test the performance of the DROM agent
with 1000 testing traffic matrices as the input and obtain the
routing results from the trained agent for each TL. Given the
traffic matrix and routing solution, we can obtain network
performance parameters, such as network delay, directly from
the OMNeT++. To ensure the validity of the data, we use
the average results of 1000 experiments to reflect the training
results.

FIGURE 5. Network delay of training steps under different traffic loads.

Fig. 5 shows the experimental results. In the figure,
the DROM agent effectively reduces the network delay.
As training steps increase, the network delay reduces.
Under TL = 70%, the delay performance of DROM with
100000 steps training improves 40.4%, which is lower than
the performance of DROM with training 2000 steps training.

2) PERFORMANCE ADVANTAGES OF DROM
To verify the advantages of DROM, we compare DROM
with 200000 randomly generated routing configurations
and OSPF.

FIGURE 6. Comparison of DROM and random routing configuration under
different traffic loads.

We use DROM with 100000 steps training as the compari-
son baseline. Fig. 6 shows the comparison results in the form
of box plots.

In the figure, the upper and bottom parts of the rect-
angular respectively represent the upper quartile and the
lower quartile values of the delays, and the line in the mid-
dle of the rectangular represents the median of the delays.
The upper and lower ends of the straight line extending
from the rectangle represent the maximum and minimum
values of delays, respectively. For simplicity, the outliers
are not shown in the figure. Experimental results show
that the delays of DROM are less than the lower quartile
delay of the randomly generated routing configurations, and
the minimum delay of DROM is very close to the best
result of the randomly generated routing configurations. The
above results fully verify the superiority and effectiveness of
the DROM.

Subsequently, we run DDPG agents and OSPF as rout-
ing mechanisms under the same TL and the same link
weights of the experimental topology. DDPG agents under-
gone 100000 steps training. Fig.7 shows the transmission
delay of 8000 packets of DROM and OSPF. In Fig.7 (a),
the peak delays of OSPF are larger than 300 ms, while
in Fig.7 (b), DROM only has a few of the peak delays
over 300 ms, The result indicates that DROM outperforms
OSPF and verifies the effectiveness and performance advan-
tages of DROM.

We also use throughput maximization as the operation
and maintenance strategy. The DROM agents are trained
at TL levels with the same steps (i.e., 100000 steps), and
1000 testing traffic matrices are used as the input to obtain
the throughput of each TL. We compare DROM with two
existing throughput optimal solutions: SDN-LB [18] and
QAR [5]. Similarly, we use the average results of the
1000 test experiments as the performancemetric. Fig.8 shows
the results of DROM, QAR and SDN-LB. In the figure,
when the TL exceeds 30%, DROM’s throughput is larger
than that of the two comparison schemes. This experiment
result further illustrates that DROM outperforms the existing
solutions.
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FIGURE 7. Comparison of DROM and OSPF under different traffic loads.
(a) Delay of OSPF. (b) Delay of DROM.

FIGURE 8. Comparison of DROM and two existing solutions under
different traffic loads.

VI. FUTURE WORK
From the above results, we can see the DROMcan achieve the
customizable routing optimizations with the different opera-
tion and maintenance strategies. How to generate a strategy
is still an open question. If we can combine the QoS-aware
traffic classification and the network measurement with the
DROMwe can generate a strategy that is adaptively generated
to realize the QoS-aware, reliable and effective end-to-end
transport. We leave this interesting problem as our future
work.

VII. CONCLUSION
In this paper, we propose a machine learning-based SDN
framework, which uses a novel deep reinforcement learning
mechanism called DDPG to optimize the routing process
of the SDN. Based on the framework, we propose a rout-
ing optimization mechanism called DROM to realize the
global, real-time and customized network intelligence control
and management in continuous time. The experiment results

show that DROM has a good convergence and effectiveness,
and compared with existing routing solutions, DROM can
improve the network performance with stable and superior
routing services.
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