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ABSTRACT Noncircular sources are widely used in wireless communication array systems, which can
offer more accurate estimates and detect more sources. However, in practical array systems, the direction-
of-arrival (DOA) estimation performance may be severely degraded by mutual coupling effects. To solve
this problem, we propose a real-valued DOA estimation algorithm for noncircular sources under unknown
mutual coupling. Based on the sources’ noncircularity, an augmented real-valued covariance matrix is
constructed. Then, utilizing the banded symmetric and Toeplitz property of the mutual coupling matrix,
the middle subarray elements are considered as ideal ones, which have the same array gains. Finally,
according to the subspace principle, a rank reduction-based virtual steering vector parameterizing method is
derived, which extracts the DOAs from other nuisance parameters. Compared with conventional algorithms,
the proposed one not only improves the estimation accuracy but also resolves more sources. Moreover, it is
computationally efficient, since it only requires real-valued computations and 1-D spectral search. Numerical
simulations demonstrate that the proposed method performs well under unknown mutual coupling and
outperforms some of the existing approaches in resolution capability, estimation accuracy, and computational
loads.

INDEX TERMS DOA estimation, mutual coupling, noncircular sources, rank reduction.

I. INTRODUCTION
Directions-of-arrival (DOA) estimation by an array of sensors
has been applied in many important areas, such as radar,
sonar and smart city [1]. In general, most DOA estimation
algorithms are based on the implicit assumption that the
radiating sources are complex circular [2]. It is well known
that in modern digital communication systems, noncircular
signals such as binary phase shift keying (BPSK) and M -ary
amplitude-shift keying (MASK) are widely used. Recently,
various DOA estimation algorithms have been proposed to
utilize the structure of second-order noncircularity of the
sources [3]–[7]. For noncircular signals, both conjugated and

unconjugated covariance matrices contain the second-order
statistical characteristics. Therefore, by making use of the
noncircularity, we can resolve more sources and obtain more
accurate DOA estimates [8].

In [2], a noncircular MUSIC-like (NCMUSIC) method is
tailored for noncircular signals, which performs better than
the standard MUSIC algorithm provided that the noncircu-
larity rate of uncorrelated sources is one. Gao et al. [9]
and Chen et al.[10] further generalize the MUSIC algo-
rithm for the DOA estimation problem of mixed circular and
strictly noncircular sources. In [11], a 2qth-order cumulants
based direction finding approach is extended to noncircular
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signals, which can detect more noncircular signals and out-
performs the NCMUSIC algorithm. But, this method is
computationally prohibitive, since it requires constructing
2qth-order cumulants. In [12], by using overcomplete dic-
tionaries to express the conjugated and unconjugated covari-
ance matrices subject to sparsity constraint, the authors
introduced sparse recovery technique to address the prob-
lem of DOA estimation of noncircular sources. However,
it involves l1-norm minimization problem, which is also
computationally demanding. Zheng et al. [13] proposed an
approach to jointly estimate direction of departure (DOD)
and DOA in bistatic multiple input multiple output (MIMO)
radar under the scenario of mixed noncircular and circu-
lar sources. Xie et al. [14], [15] have extended the signal
model to the near-field localization problem for noncircular
sources.

Generally, these techniques assume that the array manifold
is ideal without any uncertainty, such as mutual coupling
effects. However, in the practical applications of array sys-
tems, the mutual coupling effect is often unavoidable, which
will greatly reduce or even invalidate the performance of the
above direction finding algorithms.

Fortunately, many direction finding and calibration tech-
niques have been developed to eliminate or reduce the mutual
coupling effect [16]–[23]. Among these methods, calibration
sources with exactly known locations are widely used to eval-
uate and compensate the mutual coupling effects [16], [17].
However, this kind of methods require recalibration for mul-
tiple times, and the calibration sources may be unavailable
in practical systems. Alternatively, another kind of auto-
calibration methods are proposed, since they avoid additional
calibration sources. Friedlander introduced an alternating
minimization algorithm for DOA estimation and mutual cou-
pling self-calibration [18]. However, the multidimensional
spectral search cannot be applied in real-time. Recently,
based on the auxiliary sensors at both ends of a uni-
form linear array (ULA), Ye et al. [19], Ye and Liu [20],
Xu et al. [21], and Liu et al. [22] proposed some DOA
estimation techniques that circumvent any calibration source
and multi-dimensional search. Yet, the array aperture is
not fully utilized in these methods, especially under strong
mutual coupling effects, since only themiddle subarray rather
than the whole array can be used for direction finding.
Liao et al. [23] transforms mutual coupling effect into gain
and phase uncertainties of the array, where the uncertainties
for the middle subarray are the same. Thereafter, utilizing
the observations from the whole array, DOA and mutual
coupling parameters can be obtained via rank reduction
(RARE) principle. Moreover, a fourth-order cumulant (FOC)
method is proposed in [26], whose performance is supe-
rior especially under the strong mutual coupling scenario.
Xie et al. [27] proposed a RARE based algorithm to localize
mixed far-field and near-field sources under mutual coupling
effect.

To the best of our knowledge, there has been very limited
work contributing to the DOA estimation of noncircualr

signals under unknown mutual coupling. Huang et al. [28]
only analyzed the performance of NC-MUSIC for
uncorrelated strictly noncircular signals in the presence of
mutual coupling, and formulated the DOA biases in a closed
form. Therefore, aiming at filling this lack, we propose a real-
valued direction finding algorithm for noncircular sources
in the presence of mutual coupling. Traditional subspace-
based DOA estimation approaches involve complex-valued
computations for the covariance matrix, eigenvalue decom-
position (EVD) and spectral search. Many studies have been
devoted to a certain unitary transformation which converts
the complex-valued information to the field of real num-
bers [29]–[31]. The computational load of EVD and spectral
search for this kind of transformation is decreased by a
factor of four. However, the transformation itself is still
complex-valued and bring additional computations. There-
fore, it brings us a motivation for seeking a more efficient
method to relieve the computational cost of the complex-
valued calculations.

Based on the noncircularity of the sources, we take the real
part and the imaginary part of the array outputs to construct
an extended covariance matrix. Then, the middle subarray
elements of the virtual arrays are found to be ideal ones which
have the same array gains. Consequently, a RARE based
virtual steering vector parameterizing method is derived,
which decouples the DOA estimation from other nuisance
parameters. The stochastic Cramér-Rao Bound (CRB) of
DOA estimation for noncircular signals under unknown
mutual coupling is also derived.

The advantages of the presented method are:

1) More sources can be resolved compared with the
RARE-based algorithms in [21], because of the
exploitation of the noncircularity;

2) The DOA estimation accuracy can be effectively
improved by exploiting signal noncircularity.

3) It is efficient since it avoids complex-valued computa-
tions and multidimensional search.

The rest of this paper is organized as follows. In Section 2,
a model of noncircular signals with unknown mutual cou-
pling is formulated. Then, the proposed direction finding
algorithm is described in Section 3. Next, a comparison
among the proposed algorithm and some newly developed
algorithms is shown in Section 4. In Section 5, simula-
tions are carried out to evaluate the performance of the
proposed approach. Section 6 concludes our new find-
ings in this paper. Appendix includes the detailed deriva-
tion of the stochastic CRB for the corresponding signal
model.

Note that the key notations throughout the paper are listed
in Table 1 for conciseness.

II. SIGNAL MODEL
Consider K narrowband and mutually independent sources
radiating onto a ULA composed of M omnidirectional ele-
ments. Ideally, the array observation without mutual coupling
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TABLE 1. Key notations used in this paper.

is of the following form

x(t) =
K∑
k=1

a(θk )sk (t)+ n(t) = As(t)+ n(t) (1)

Herein, a(θk ) = [1, u(θk ), . . . , uM−1(θk )]T is the ideal steer-
ing vector with u(θk ) = exp(−j2πd sin θk/λ), θk is the
DOA of the kth signal, λ is the wavelength, and d is the
distance between adjacent elements which is a half wave-
length to avoid phase ambiguities. A = [a(θ1), . . . , a(θK )]
symbolizes the steering matrix of the K sources. In addition,
s(t) = [s1(t), s2(t), . . . , sK (t)]T is the signal vector, and
n(t) = [n1(t), n2(t), . . . , nM (t)]T is the noise vector, where
it is assumed to be additive white Gaussian, and statistically
independent of all impinging signals.

However, in practice, the electromagnetic interaction
between the antenna elements may introduce a mismatched
array manifold. In this scenario, the current in each antenna
element of an array depends not only on their own exci-
tation but also on the contributions from adjacent antenna
elements [18]. As a result, considering the mutual coupling
effect between the array elements, the associated observation
vector should be modified as

x(t) = CAs(t)+ n(t)

=

K∑
k=1

ā(θk )sk (t)+ n(t) = Ās(t)+ n(t) (2)

Herein, ā (θ) = Ca (θ) and Ā = [ā(θ1), . . . , ā(θk )] are
the steering vector and array manifold matrix under mutual
coupling effect, respectively. And C ∈ CN×N represents
the so-called mutual coupling matrix, whose entries are the
mutual coupling coefficients (MCCs).

Friedlander pointed out that MCC is inversely proportional
to the distance between two antenna elements [18]. Thus,
the coefficients between adjacent elements are almost equal,
and the coefficients approaches to zero when the elements
are far away. Accordingly, C is a banded symmetric Toeplitz

matrix with P nonzero coefficients.

C =



1 c1 · · · cP−1 0 · · · 0

c1 1 c1
...

. . .
. . .

...
... c1 1

. . .
...

. . . 0

cP−1
...

. . .
. . .

. . .
... cP−1

0
. . .

...
. . . 1 c1

...
...

. . .
. . .

...
... 1 c1

0 · · · 0 cP−1 · · · c1 1


(3)

where ci = ρiejφi is the nonzero mutual coupling coeffi-
cient, ρi and φi represent the amplitude and the phase of the
ith coefficient ci, respectively.
Additionally, if the received signals are strictly second-

order noncircular, the signal vector can be written as the
following form [3]

s(t) = 8s0(t) (4)

where s0(t) = [s0,1(t), . . . , s0,K (t)]T ∈ RK×1 is the real-
valued signal vector, and 8 = diag{ejψ1 , . . . , ejψK } is a
diagonal matrix which contains the noncircular phase shifts
of the signals [11].

Therefore, the array observation vector for noncircular
signals with mutual coupling is given by

x(t) = CA8s0(t)+ n(t) (5)

With the array observation x(t), this paper aims at obtaining
the DOA estimation of noncircular signals under unknown
mutual coupling effects.

III. PROPOSED REAL-VALUED RARE ALGORITHM
Notice that the previous works on noncircular sources
DOA estimation problems directly use the conjugated coun-
terpart of the signal to construct an extended covariance
matrix, which still operates in the complex domain [9]–[14].
In fact, based on the noncircular characteristics of the sources,
the real part and imaginary part of the received signal can also
be concatenated to construct a real-valued augmented data
matrix, which can be proceeded in the real domain [15].

A. EXTENDED REAL-VALUED SIGNAL MODEL
In order to conduct the transformation of the complex-valued
data to real-valued domain, we have the real and imaginary
parts of x(t), respectively, as

xR(t) = Re[x(t)] = [x(t)+ x∗(t)]/2 (6)

xI (t) = Im[x(t)] = [x(t)− x∗(t)]/2j (7)

According to the signal model in (5), we further have

xR(t) =
(
CA8+ C∗A∗8∗

)
s0(t)/2+ Re [n(t)]

= ĀRs0(t)+ nR(t) (8)

xI (t) =
(
CA8− C∗A∗8∗

)
s0(t)/2j+ Im [n(t)]

= ĀI s0(t)+ nI (t) (9)
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where ĀR = [vR(θ1, ψ1,C), . . . , vR(θK , ψK ,C)] and ĀI =

[vI (θ1, ψ1,C), . . . , vI (θK , ψK ,C)] are the virtual steering
matrices of xR(t) and xI (t), respectively. While nR(t) and
nI (t) represent the real and imaginary parts of the noise
vector n(t). Therefore, the virtual steering vector of xR(t) can
be expressed as

vR(θk , ψk ,C) = Ca(θk ) · ejψk + C∗a∗(θk ) · e−jψk

= hc(θk , ψk ,C)0c(θk , ψk ,C)ac(θk )
− hs(θk , ψk ,C)0s(θk , ψk ,C)as(θk ) (10)

where

ac(θ ) = [1, cos u(θ ), cos 2u(θ ), . . . , cos(M − 1)u(θ )]T

(11)

as(θ ) = [0, sin u(θ ), sin 2u(θ ), · · · , sin(M − 1)u(θ )]T

(12)

hc =
P−1∑
i=1−P

ρ|i| cos
(
φ|i| + ψk + i · uk (θ )

)
(13)

hs =
P−1∑
i=1−P

ρ|i| sin
(
φ|i| + ψk + i · uk (θ )

)
(14)

0c = diag
[
α
(c)
1 , . . . , α

(c)
P−1, 1, . . . , 1, β

(c)
1 , . . . , β

(c)
P−1

]
(15)

0s = diag
[
α
(s)
1 , . . . , α

(s)
P−1, 1, . . . , 1, β

(s)
1 , . . . , β

(s)
P−1

]
(16)

Herein, 0c and 0s are both M × M diagonal matrices con-
taining M − 2P + 2 ones between the elements α(c)P−1 and
β
(c)
1 (also between α(s)P−1 and β

(s)
1 ). From (13) and (14), it can

be seen that hc and hs are two scalar parameters related to
the DOAs, noncircular phases and mutual coupling coeffi-
cients. In general, they are assumed to be non-zero. And for
p = 1, 2, . . . ,P− 1,

α(c)p =

hc −
P−1∑
i=p

ρi cos (φi + ψk − i · u(θk ))

hc
(17)

α(s)p =

hs −
P−1∑
i=p

ρi sin (φi + ψk − i · u(θk ))

hs
(18)

β(c)p =

hc −
P−1∑
i=P−p

ρi cos (φi + ψk + i · u(θk ))

hc
(19)

β(s)p =

hs −
P−1∑
i=P−p

ρi sin (φi + ψk + i · u(θk ))

hs
(20)

Similarly, the virtual steering vector of xI (t) can be
expressed as

vI (θk , ψk ,C) = Ca(θk ) · ejψk − C∗a∗(θk ) · e−jψk

= hs(θk , ψk ,C)0c(θk , ψk ,C)as(θk )

+ hc(θk , ψk ,C)0s(θk , ψk ,C)ac(θk ) (21)

Based on the above analysis, we can now construct a real-
valued augmented data matrix

y (t) =
[
xR (t)
xI (t)

]
=

[
ĀR

ĀI

]
s0 (t)+

[
nR (t)
nI (t)

]
= AEs0 (t)+ nE (t) (22)

where AE = [aE (θ1, φ1,C), aE (θ2, φ2,C), . . . , aE (θK ,
φK ,C)] is the extended steering matrix with the extended
real-valued steering vector being

aE (θk , ψk ,C) =
[
vR(θk , ψk ,C)
vI (θk , ψk ,C)

]
(23)

The real-valued covariance matrix of y(t) can be written as

Ry = E
{
y(t)yT (t)

}
= AERS0A

T
E + σ

2
n I2M (24)

where RS0 = E{s0(t)sT0 (t)}, I2M is a 2M×2M iden-
tity matrix. By taking the eigenvalue decomposition of Ry,
we further have

Ry = Us3sUH
s + σ

2
nUnUH

n (25)

where 3s contains largest K eigenvalues on its diagonal.
Us, a 2M × K matrix, includes K eigenvectors and spans
the signal subspace of Ry, and Un, a 2M×(2M -K ) matrix,
includes 2M -K eigenvectors and spans the noise subspace
of Ry.

In view of the orthogonality between the signal subspace
and noise subspace, multidimensionalMUSICmethod can be
utilized for the joint estimation of DOAs, noncircular phases
and mutual coupling coefficients:

P(θ, ψ,C) = aTE (θ, ψ,C) UnUT
n aE (θ, ψ,C) (26)

It is noticeable that this estimator is computationally
prohibitive since it requires a P + 2 dimensional spectral
search. To reduce the computational load, a real-valued rank
reduction algorithm is proposed in the next subsection, which
decouples the DOA estimation from other nuisance parame-
ters and therefore only involves 1-D spectral search.

B. RANK REDUCTION FOR DOA ESTIMATION
In this subsection, a novel steering vector parameterization
method is introduced considering the special structure of
the mutual coupling matrix—banded symmetric as well as
Toeplitz [18].

According to (10) and (21), the mutual coupling effect
in both virtual steering vectors can be viewed as gain and
phase perturbations related to angles. Fortunately, the diag-
onal matrices 0c and 0s contain a vector whose elements
are all ones, which implies that the middle subarray can be
deemed as an ideal one without any perturbation. Using this
property, the virtual steering vectors in (10) and (21) can be
parameterized as

vR(θ, ψ,C) = Tc(θ )αc(θ, ψ,C)− Ts(θ )αs(θ, ψ,C) (27)

vI (θ, ψ,C) = Tc(θ )αs(θ, ψ,C)+ Ts(θ )αc(θ, ψ,C) (28)
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where Tc(θ ) and Ts(θ ) are M × (2P − 1) block diagonal
matrices, αc and αs are (2P − 1) × 1 real vectors, which are
given by

Tc(θ ) =



1
cos(θ ) 0

. . .

cos ((P−1)θ)
...

0 cos ((M−P)θ)
. . .

cos ((M−1)θ)


(29)

Ts(θ ) =



1
sin(θ ) 0

. . .

sin ((P−1)θ)
...

0 sin ((M−P)θ)
. . .

sin ((M−1)θ)


(30)

αc = hc
[
α
(c)
1 , . . . , α

(c)
P−1, 1, β

(c)
1 , . . . , β

(c)
P−1

]H
(31)

αs = hs
[
α
(s)
1 , . . . , α

(s)
P−1, 1, β

(s)
1 , . . . , β

(s)
P−1

]H
(32)

Furthermore, the extended real-valued steering vector
in (23) can be rewritten as

aE (θ, ψ,C) =
[
vR(θ, ψ,C)
vI (θ, ψ,C)

]
=

[
Tc(θ )αc(θ, ψ,C)− Ts(θ )αs(θ, ψ,C)
Tc(θ )αs(θ, ψ,C)+ Ts(θ )αc(θ, ψ,C)

]
=

[
Tc(θ ) −Ts(θ )
Ts(θ ) Tc(θ )

]
︸ ︷︷ ︸

T(θ )

[
αc
αs

]
︸ ︷︷ ︸
α(θ,ψ,C)

(33)

Substituting (33) into (26), we have

αT (θ, ψ,C)Q(θ )α(θ, ψ,C) = 0 (34)

where

Q(θ ) = TT (θ )UnUT
n T(θ ) (35)

is a (4P − 2) × (4P − 2) real matrix. Note that
T(θ ) ∈ R2M×2(2P−1), Un ∈ R2M×(2M−K ), and Q(θ ) ∈
R2(2P−1)×2(2P−1); then if 2M − K ≥ 2(2P − 1), Q(θ ) is
generally of full column rank. Since α is assumed to be non-
zero, (34) can be true only ifQ(θ ) is rank deficient. The rank
of Q(θ ) drops if and only if θ = θk , k = 1, . . . ,K , in terms
of the idea of RARE. Thus, DOA estimation can be con-
ducted by searching the K highest peaks from the following

1-D spectral function

P(θ ) =
1

det
[
TT (θ )UnUT

nT(θ )
] (36)

Notice that θ is now decoupled from the nuisance
parametersC andψ . As a result, the computational complex-
ity of the proposed RARE estimator is significantly reduced
compared with the MUSIC algorithm, since it only requires
real-valued operation and 1-D spectral search.

C. IMPLEMENTATION OF THE ALGORITHM
Note that the exact covariance matrices and subspaces are
utilized in the previous subsections, but the theoretical covari-
ance matrix like Ry in (24) is unavailable due to the limited
snapshots. In practice, it can be estimated as

R̂y =
1
T

T∑
t=1

{
y(t)yT (t)

}
(37)

Consequently, the presented DOA estimation algorithm is
summarized as follows.
Step 1. Extract the real and imaginary parts of the received

data vector x(t) via (6) and (7);
Step 2. Construct a real-valued augmented data matrix

y(t) based on (22);
Step 3. Estimate the real-valued covariance matrix Ry

using (37);
Step 4. EigendecomposeRy to generate its noise subspace

Un as in (25);
Step 5. Construct the matrix T(θ ) for each searching step

according to equations (29), (30) and (33);
Step 6. Estimate the DOAs through the spatial spectrum

function obtained from the real-valued RARE esti-
mator in (36).

IV. DISSCUSSION
A comparison of our technique with some state-of-the-art
DOA estimation methods under mutual coupling effect is
given in this section: the auxiliary sensors based algorithm
(AUX) in [20], the rank reduction based algorithm (RARE)
in [23] and the fourth-order cumulant (FOC) based algorithm
in [26].

A. COMPUTATIONAL COMPLEXITY
The computational complexity analysis is based on the
main multiplications required in the development of statis-
tical matrices, EVDs and spectral search. Assume that an
M -element array is used by all these algorithms. The
searching step of the spectral function is designated as θ1.
AUX constructs a (M − 2P + 2) × (M − 2P + 2)
covariance matrix, performs the EVD and spectral search.
RARE requires building anM×M covariance matrix, taking
EVD and 1-D spectral search. FOC builds (M−2P+2) fourth
order cumulant matrices of the same sizeM×M , and requires
implementing the SVD of a (M − 2P + 2)M ×M cumulant
matrix. For the proposed one, it needs to establish a 2M×2M
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TABLE 2. Computational complexity comparison.

real-valued covariance matrix, perform EVD on this matrix
and executing 1-D spectral search. It should be noticed that
all these operations involved in the proposed algorithm are
processed in the real domain. Therefore, with the samematrix
dimension, the proposed method can effectively decrease the
computational complexity by a factor of four. The compari-
son results are listed in Table 2.

B. MAXIMUM NUMBER OF RESOLVABLE SOURCES
In this subsection, we discuss the maximum number of
resolvable sources of these algorithms for a given ULA with
M elements. For AUX, it only uses theM − 2P+ 2 elements
in the middle of the array. Since the subspace-based methods
must use at least one eigenvector to span the noise subspace,
AUX can handle M − 2P + 1 sources at most. Likewise,
RARE can resolve M − 2P + 1 sources simultaneously.
FOC takes full use of the array aperture, and therefore it
can estimate up to M − 1 sources. For the proposed algo-
rithm, the noncircularity of the signal has been exploited
to construct an extended subspace, thus it can resolve up
to 2(M − 2P + 1) sources, which is doubled compared
with RARE.

V. SIMULATION RESULTS
In this section, a series of numerical simulations are car-
ried out to compare the performance of the proposed algo-
rithm with other four methods (NCMUSIC, AUX, RARE
and FOC). We adopt a ULA with 10 elements in the simu-
lations and assume that d = λ/2. The incident signals are
independently BPSK modulated with an equal power. The
algorithms are evaluated through spectrum, probability of
resolution (PR), root mean-square error (RMSE) and com-
putational complexity. The PR is the ratio between the times
of signals being successfully resolved to the total number
of Monte Carlo runs. Let 1 denote the angular separation
between the two sources with incident angles θk , k = 1, 2.
They are said to be correctly resolved if the DOA esti-
mates satisfy

∣∣∣θk − θ̂k ∣∣∣ < 1/2. The RMSE is defined
as

RMSE =

√√√√ 1
500

500∑
n=1

(
θk − θ̂n,k

)2
where θk is the DOA of the kth source, and θ̂n,k stands for the
estimate of θk in the nth trial.

FIGURE 1. DOA spectra obtained with NCMUSIC, AUX, RARE and the
proposed method for two BPSK sources. The sources are impinging
from 20◦ and 30◦.

A. SPECTRA OF DOA ESTIMATORS UNDER MUTUAL
COUPLING
In this experiment, the spectra of NCMUSIC, AUX, RARE
and the proposed algorithm under mutual coupling are
investigated.

First, we assume that there are two uncorrelated
BPSK sources radiating from 20◦ and 30◦, with the signal-
to-noise ratio (SNR) and the number of snapshots being
10 dB and 200, respectively. Because the mutual coupling
effect reduces as the distance between two sensors increases,
the nonzero MCCs is set as [1, 0.37 + j0.42, 0.09 − j0.31]
(i.e., P = 3).

The normalized DOA spectra of the four methods are
shown in Fig. 1. It can be seen that the DOA estimates
indicated by NCMUSIC spectrum have obvious biases due
to the perturbations of array manifold generated from mutual
coupling. However, for the other three methods, two sharp
peaks point to the true DOAs of both signals, since the mutual
coupling effect has been compensated in proper ways by
these methods. Moreover, the spectrum peaks generated by
the proposedmethod aremuch sharper than those of AUX and
RARE, which indicates the improvement of the estimation
accuracy due to the exploitation of noncircularity.

Next, we increase the number of radiating BPSK sources
to 10, with their DOA parameters being −70◦, −55◦, −40◦,
−25◦, −10◦, 5◦, 20◦, 35◦, 50◦ and 65◦ . In this scenario,
the AUX and RARE would fail since they can only handle
M − 2P + 1 sources at most. Therefore, we only depict the
spectra of NCMUSIC and the proposed method in Fig.2. The
proposed algorithm can accurately obtain all DOA estimates,
while the spectral peaks of NCMUSIC are biased and thus
less reliable.

B. RMSE VERSUS SNR
In this experiment, the relationship of the estimation accuracy
with the SNR is evaluated under mutual coupling effect.
Assume that there are three uncorrelated BPSK sources
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FIGURE 2. DOA spectra obtained with NCMUSIC and the proposed
method for ten BPSK sources. The sources are impinging from −70◦,
−55◦, −40◦, −25◦, −10◦, 5◦, 20◦, 35◦, 50◦ and 65◦. (Note that the
number of array elements is only 10.)

FIGURE 3. RMSEs of DOA estimates versus SNR. 200 snapshots,
500 Monte Carlo trials.

from −10◦, 20◦ and 50◦ . The snapshots and the nonzero
MCCs are set as 200 and [1, 0.37 + j0.42, 0.09 − j0.31,
0.08 − j0.12], respectively. Figure 3 illustrates the RMSEs
of the four algorithms (FOC, RARE, AUX and the proposed
one), and the CRB is presented for comparison. According
to the results, it is evident that our method achieves a lower
SNR threshold at about 0 dB. In addition, it is superior to
other three methods and approaches the CRB more closely.
The performance of FOC is saturated starting from 5 dB,
because of the cumulant matrix estimation errors introduced
by limited number of observations.

C. RMSE VERSUS SNAPSHOT NUMBER
In the third experiment, we set the SNR as 10 dB but vary
the number of snapshots from 10 to 1000, and the other
parameters are assumed the same as the second experiment.
Fig. 4 shows that RMSEs of all the algorithms drop gradually
with an increase of the number of snapshots. This is due to
the fact that better estimates of the covariance and pseudo

FIGURE 4. RMSEs of DOA estimates versus snapshot number. SNR=10dB,
500 Monte Carlo trials.

FIGURE 5. Probability of resolution versus SNR. 500 independent trials
are realized for each of the four methods.

covariance matrices can be obtained from a larger number of
stationary samples. In addition, the RMSE of our algorithm is
reasonably close to the corresponding CRB and outperforms
other methods.

D. PROBABILITY OF RESOLUTION VERSUS SNR
In the fourth experiment, we investigate the PR of the four
algorithms versus SNR. Consider that there are two BPSK
sources radiating at −2◦ and 2◦, and the SNR ranges from
−10 dB to 20 dB in steps of 2 dB. It can be seen from
Figure 5 that the proposed algorithm has the lowest SNR
threshold of the full PR, while RARE and AUX have worse
resolution as the SNR thresholds are both 12 dB that is much
higher than that of our method. This is due to the fact that the
noncircular information has been fully utilized to enhance the
resolution capability at low SNRs.

E. COMPUTATIONAL COMPLEXITY COMPARISON
In this experiment, we compare the computational loads of
the four algorithms. The searching step for DOA estimation
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FIGURE 6. Computational complexity of the four methods versus
snapshot number.

FIGURE 7. Computational complexity of the four methods versus number
of antennas.

is fixed at 1◦, and the number of snapshots ranges from
10 to 1000. Fig. 6 illustrates the computational burden of
these algorithms as a function of the snapshot number. It can
be observed that the computational cost of RARE and AUX is
slightly higher than that of our method, while FOC takes the
most computational load since it has to calculate the fourth
order cumulants that involves biquadratic operations.

Next, we assume that the number of snapshots is set
as 200 and the antenna elements ranges from 10 to 40. The
computational loads of the four algorithms versus the varia-
tion of antenna elements is illustrated in Figure 7. Similarly,
we can draw the conclusion that the proposed algorithm is
most efficient compared with other ones.

VI. CONCLUSION
In this paper, a real-valued direction finding algorithm
has been proposed for noncircular sources in the pres-
ence of unknown mutual coupling. Exploiting the char-
acteristics of noncircularity and the Toeplitz structure of
the mutual coupling matrix, a real-valued RARE based
algorithm is proposed to separate the DOAs from other

nuisance parameters. Compared with some existing works,
our method has improved estimation accuracy and achieved
more resolvable signals. The simulation results demonstrate
the efficiency and effectiveness of the proposed method for
the DOA estimation of noncircular sources under mutual
coupling.

APPENDIX
DERIVATION OF CRAMER-RAO BOUND
In the appendix, we derive the corresponding stochastic CRB
of DOA estimation for noncircular sources under unknown
mutual coupling effect.

Let 2 = [θT ,ψT , κT ,υT ,µT , σ 2
n ] denotes the real-

valued unknown parameter vector, where θ = [θ1, . . . , θK ]T

is the DOA vector, ψ = [ψ1, . . . , ψK ]T contains the
noncircular phases, κ = Re{c1, . . . , cP−1}T and υ =

Im{c1, . . . , cP−1}T are the real and imaginary parts of the
mutual coupling coefficients, µ = [µ1, . . . , µK ] is the
K×1 vector made from [Rs]i,i, 1≤ i ≤ K , since it is assumed
that the sources are uncorrelated. Suppose that the T samples
of x(t), t = 1, . . . ,T are independent and noncircularly
Gaussian distributed. Based on the results in [32] and [33],
the Fisher information matrix (FIM) corresponding to the
parameter vector2 can be written as

Fm,n = T · Tr
(
∂Rx̃

∂2m
R−1x̃

∂Rx̃

∂2n
R−1x̃

)
(38)

herein,Rx̃ is the extended covariancematrix corresponding to
the augmented signal x̃(t) = [xT (t), xH (t)]T , which is formed
as

Rx̃ = E{x̃(t)x̃H (t)} = ÃRsÃH
+ σ 2

n I (39)

where Ã =

[
CA8

C∗A∗8∗

]
=

[
ã1, . . . , ãK

]
, with

ãk =
[

ejψkCa(θk )
e−jψkC∗a∗(θk )

]
.

The FIM for the unknown parameters and their cross terms
are derived in detail in the following subsection. Since F is a
symmetric matrix, we only need to find the upper triangular
parts of F.

A. FIM WITH RESPECT TO DOA
The partial derivative of the covariance matrix with respect to
DOA is of the following form

∂Rx̃

∂θm
=
˙̃AθmRsÃH

+ ÃRs
˙̃A
H

θm
(40)

where ˙̃Aθm = ∂Ã/∂θm =
[
0, . . . , ∂ ãm/∂θm, . . . , 0

]
. Note

that the nonzero element of ˙̃Aθm only lies in the mth column,
thus it can be expressed as

˙̃Aθm =
˙̃AθemeTm (41)

herein, em represents the mth column of the identity
matrix I2M , and ˙̃Aθ is the matrix composed of derivatives

˙̃Aθ =
[
∂ ã1
∂θ1

, . . . ,
∂ ãK
∂θK

]
(42)
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Substituting (40) into (38), it can be deduced that

Fθmθn
= 2T · Re

{
Tr
{
R−1x̃
˙̃AθemeTmRsÃHR−1x̃

˙̃AθeneTnRsÃH
}

+ Tr
{
R−1x̃
˙̃AθemeTm RsÃHR−1x̃ ÃRseneTn

˙̃A
H

θ

}}
= 2T · Re

{
eTmRsÃH R−1x̃

˙̃AθeneTnRsÃH R−1x̃
˙̃Aθem

+ eTmRsÃH R−1x̃ ÃRseneTn
˙̃A
H

θ R
−1
x̃
˙̃Aθem

}
(43)

Therefore,

Fθθ = 2T · Re{(RsÃHR−1x̃
˙̃Aθ )� (RsÃHR−1x̃

˙̃Aθ )T

+ (RsÃHR−1x̃ ÃRs)� ( ˙̃A
H

θ R
−1
x̃
˙̃Aθ )T } (44)

B. FIM WITH RESPECT TO NONCIRCULAR PHASE
Similarly, the partial derivative of the covariance matrix with
respect to noncircular phase is of the following form

∂Rx̃

∂ψm
=
˙̃AψmRsÃH

+ ÃRs
˙̃A
H

ψm
(45)

where ˙̃Aψm = ∂Ã/∂ψm =
[
0, . . . , ∂ ãm/∂ψm, . . . , 0

]
. Note

that the nonzero element of ˙̃Aψm only lies in the mth column,
thus it can be expressed as

˙̃Aψm =
˙̃AψemeTm (46)

herein, ˙̃Aψ is the matrix composed of derivatives

˙̃Aψ =
[
∂ ã1
∂ψ1

, . . . ,
∂ ãK
∂ψK

]
(47)

Substituting (45) into (38), it can be deduced that

Fψmψn

= 2T · Re
{
Tr
{
R−1x̃
˙̃Aψem eTmRsÃHR−1x̃

˙̃AψeneTnRsÃH
}

+ Tr
{
R−1x̃
˙̃AψemeTm RsÃHR−1x̃ ÃRseneTn

˙̃A
H

ψ

}}
= 2T · Re

{
eTmRsÃH R−1x̃

˙̃AψeneTnRsÃHR−1x̃
˙̃Aψem

+ eTmRsÃH R−1x̃ ÃRseneTn
˙̃A
H

ψR
−1
x̃
˙̃Aψem

}
(48)

Then,

Fψψ = 2T · Re
{(

RsÃHR−1x̃
˙̃Aψ
)
�

(
RsÃHR−1x̃

˙̃Aψ
)T

+

(
RsÃHR−1x̃ ÃRs

)
�

(
˙̃A
H

ψR
−1
x̃
˙̃Aψ

)T}
(49)

C. FIM WITH RESPECT TO MCC
The partial derivative with respect to the real part of MCC is
of the following form

∂Rx̃

∂κm
=
˙̃AκmRsÃH

+ ÃRs
˙̃A
H

κm
(50)

where ˙̃Aκm = ∂Ã/∂κm =
[
0, . . . , ∂ ãm/∂κm, . . . , 0

]
. Note

that the nonzero element of ˙̃Aκm only lies in the mth column,
thus it can be expressed as

˙̃Aκm =


∂C
∂κm

A8

∂C∗

∂κm
A∗8∗

 (51)

Therefore, we can obtain that

Fκmκn = 2T · Re
{
Tr
{
R−1x̃
˙̃AκmRsÃHR−1x̃

˙̃AκnRsÃH
}

+ Tr
{
R−1x̃
˙̃AκmRsÃH R−1x̃ ÃRs

˙̃A
H

κn

}}
(52)

Likewise, Fυmυn , Fκmυn and Fυmκn can be obtained by sub-
stituting ∂Rx̃/∂κm and ∂Rx̃/∂υm into (38).

D. FIM WITH RESPECT TO SIGNAL COVARIANCE
Since the noncircular sources are uncorrelated with each
other, then Rx̃ reduces to

Rx̃ =

K∑
k=1

µk ãk ãHk + σ
2
n I (53)

Therefore, the partial derivative of the covariance matrix
with respect to signal covariance elements is of the following
form

∂Rx̃

∂µk
= ãk ãHk (54)

Substituting (54) into (38), it can be deduced that

Fµmµn = T · Tr{R−1x̃ ãmãHmR
−1
x̃ ãnãHn }

= T · Tr{eTmÃ
HR−1x̃ ÃeneTn Ã

HR−1x̃ Ãem} (55)

Then,

Fµµ = T · (ÃHR−1x̃ Ã)� (ÃHR−1x̃ Ã)T (56)

E. DOA AND NONCIRCULAR PHASE CROSS TERM
Analogously, by applying (40) and (45), it can be obtained
that

Fθmψn = 2T · Re
{
eTmRsÃHR−1x̃

˙̃AθeneTn RsÃHR−1x̃
˙̃Aψem

+ eTmRsÃH R−1x̃ ÃRseneTn
˙̃A
H

ψR
−1
x̃
˙̃Aθem

}
(57)

Consequently,

Fθψ = 2T · Re{(RsÃHR−1x̃
˙̃Aθ )� (RsÃHR−1x̃

˙̃Aψ )T

+ (RsÃHR−1x̃ ÃRs)� ( ˙̃A
H

ψR
−1
x̃
˙̃Aθ )T } (58)
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F. DOA AND MCC CROSS TERM
By applying (40) and (50), we have

Fθmκn = 2T · Re
{
eTmRsÃHR−1x̃

˙̃AκnRsÃHR−1x̃
˙̃Aθem

+ eTmRsÃH R−1x̃ ÃRs
˙̃A
H

κn
R−1x̃
˙̃Aθem

}
(59)

Fθκn = 2T · Re
{
diag{RsÃHR−1x̃

˙̃AκnRsÃHR−1x̃
˙̃Aθ }

+ diag{RsÃHR−1x̃ ÃRs
˙̃A
H

κn
R−1x̃
˙̃Aθ }
}

(60)

The DOA and real part MCC cross term can be expressed as

Fθκ =
[
Fθκ1 , . . . ,FθκP

]
(61)

And Fθυ can be obtained in a similar way.

G. DOA AND SIGNAL COVARIANCE CROSS TERM
By applying (40) and (54), we have

Fθmµn = T · Tr
{
R−1x̃

(
˙̃AθmRsÃH

+ ÃRs
˙̃A
H

θm

)
R−1x̃ ãnãHn

}
= 2T · Re

{
ãHn R

−1
x̃
˙̃AθemeTmRsÃH R−1x̃ ãn

}
= 2T · Re

{
eTmRsÃH R−1x̃ ÃeneTn Ã

HR−1x̃
˙̃Aθem

}
(62)

Thus,

Fθµ = 2T · Re
{(

RsÃHR−1x̃ Ã
)
�

(
ÃHR−1x̃

˙̃Aθ
)T}

(63)

H. NONCIRCULAR PHASE AND MCC CROSS TERM
Based on (45) and (50), we have

Fψmκn = 2T · Re
{
eTmRsÃHR−1x̃

˙̃AκnRsÃHR−1x̃
˙̃Aψem

+ eTmRsÃH R−1x̃ ÃRs
˙̃A
H

κn
R−1x̃
˙̃Aψem

}
(64)

Therefore,

Fψκn = 2T · Re
{
diag{RsÃHR−1x̃

˙̃AκnRsÃHR−1x̃
˙̃Aψ }

+ diag{RsÃHR−1x̃ ÃRs
˙̃A
H

κn
R−1x̃
˙̃Aψ }

}
(65)

I. NONCIRCULAR PHASE AND SIGNAL COVARIANCE
CROSS TERM
Substituting (45) into (54), it can be deduced that

Fψmµn = 2T · Re
{
eTmRsÃHR−1x̃ ÃeneTn Ã

HR−1x̃
˙̃Aψem

}
(66)

and

Fψµ = 2T · Re
{(

RsÃHR−1x̃ Ã
)
�

(
ÃHR−1x̃

˙̃Aψ
)T}

(67)

J. MCC AND SIGNAL COVARIANCE CROSS TERM
Based on (50) and (54), we have

Fκmµn = 2T · Re
{
ãHn R−1x̃

˙̃Aκm RsÃHR−1x̃ ãn
}

(68)

Then, Fκµ, Fυµ, Fµκ and Fµυ can be readily obtained.
Moreover, it is obvious that the noise power is decoupled

with other unknown parameters. Therefore, the cross terms
with respect to σ 2

n are all zeros.
Therefore, taking the above results together, we can formu-

late the FIM as the following form

F =



Fθθ Fθψ Fθκ Fθυ Fθµ 0
Fψθ Fψψ Fψκ Fψυ Fψµ 0
Fκθ Fκψ Fκκ Fκυ Fκµ 0
Fυθ Fυψ Fυκ Fυυ Fυµ 0
Fµθ Fµψ Fµκ Fµυ Fµµ 0
0 0 0 0 0 Fσ 2n σ 2n

 (69)

Subsequently, the CRB for DOA parameters is defined as:

CRBθ =

√√√√ 1
K

K∑
k=1

[
F−1

]
kk (70)
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