IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 27, 2018, accepted October 6, 2018, date of publication October 23, 2018,
date of current version November 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2877696

FogNetSim++: A Toolkit for Modeling and
Simulation of Distributed Fog Environment

TARIQ QAYYUM!, ASAD WAQAR MALIK 1,
MUAZZAM A. KHAN KHATTAK', (Senior Member, IEEE),
OSMAN KHALID?, AND SAMEE U. KHAN?

! Department of Computing, School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan
2Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan
3Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58105, USA

Corresponding author: Asad Wagar Malik (asad.malik @seecs.edu.pk)

ABSTRACT Fog computing is a technology that brings computing and storage resources near to the end
user. Being in its infancy, fog computing lacks standardization in terms of architectures and simulation
platforms. There are a number of fog simulators available today, among which a few are open-source,
whereas rest are commercially available. The existing fog simulators mainly focus on a number of devices
that can be simulated. Generally, the existing simulators are more inclined toward sensors’ configurations,
where sensors generate raw data and fog nodes are used to intelligently process the data before sending
to back-end cloud or other nodes. Therefore, these simulators lack network properties and assume reliable
and error-free delivery on every service request. Moreover, no simulator allows researchers to incorporate
their own fog nodes management algorithms, such as scheduling. In existing work, device handover is also
not supported. In this paper, we propose a new fog simulator called FogNetSim++! that provides users
with detailed configuration options to simulate a large fog network. It enables researchers to incorporate
customized mobility models and fog node scheduling algorithms, and manage handover mechanisms. In our
evaluation setup, a traffic management system is evaluated to demonstrate the scalability and effectiveness of
proposed simulator in terms of CPU and memory usage. We have also benchmarked the network parameters,

such as execution delay, packet error rate, handovers, and latency.

INDEX TERMS Cloud, fog, edge network, IoT, mobility models, OMNeT++.

I. INTRODUCTION

Over the years, there is a tremendous paradigm shift in
Information and Communication Technology from isolated
and limited computing environments to pervasive computing.
The advancement in telecommunication and manufacturing
industry resulted in development of powerful smart-devices
that can ubiquitously join available network at any time.
Recent years have seen the evolution of 5G as a future tech-
nology. The inclusion of 5G technology not only supports
the heterogeneous wireless network connectivity but also
provides a wide spectrum to different applications that can
take benefit from 5G to improve their performance in terms
of e.g., latency, response time, and energy consumption. With
advancement in technology, the devices can become a part of
a grid and generate significant amount of data that is typically

Lavailable at https://fognetsimpp.com

sent to cloud for processing. According to Gartner® (2017)
report, around 8.4 billion devices will be connected to the
Internet by the end of 2017. The raw data generated through
various sensors require intelligent processing to reduce the
bandwidth usage and improve the latency. Therefore, the need
to bring resources close to the end user is rising. Fog is one
of the emerging edge computing paradigms. The term fog
was first introduced by Cisco [1]. As compared to cloud data
centers, fog provides a virtualized computing environment
deployed closer to the end user [2]. The fog resides between
cloud and end-user devices. The cloud and fog provide similar
services to end users but the fog is deployed to facilitate
specific geographic region. Fog cannot exist standalone rather
it augments the cloud computing. It is designed to support
delay-sensitive applications, whereas cloud being far away

2https://www. gartner.com/newsroom/id/3598917

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

63570

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3804-997X

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

IEEE Access

from the user can exhibit higher latency. The fog provides
services to IoT applications from the edge network as well
as from the devices such as routers, access points, Road Side
Units (RSUs) and other user devices. With the deployment
of fog nodes, the reliability, fault tolerance, and scalability of
the devices can easily be managed. Thus, it also reduces the
bandwidth usage between fog node and backend cloud data
centers. The fog is an emerging paradigm but there are sev-
eral challenges it faces, such as heterogeneous device man-
agement, fog nodes architecture, security, device mobility,
and privacy. Moreover, interoperability among heterogeneous
devices is also a challenging task. Data coming from different
devices need to be analyzed and forwarded to other devices
for timely decision making. The typical fog paradigm con-
sists of limited fog nodes that provide virtualized computing
services. Therefore, to efficiently manage resources requires
sophisticated scheduling algorithms. Fig 1 depicts a general
scenario where the efficiency is achieved by implementing
the fog layer in between the local network and cloud. Simi-
larly, like a cloud, proper management of resources usage and
billing is the mandatory requirement of fog paradigm. Fog
provides a flexible environment to end devices, but is difficult
to manage due to its decentralized paradigm. The fog nodes
can be deployed at any place between the device and cloud
infrastructure. As fog is designed to support latency-sensitive
application, Smart Gateways (SG) are the best location to
offer fog computing [3].

Thousands

-
-

CLOUD | Data Centers

FOG | Compute Nodes

Increased distance

EDGE | User Devices

Increased traffic, congession, and latency

FIGURE 1. Computing architecture pyramid.

Fog computing is based on expensive devices and net-
work equipment. It is important to perform pre-deployment
testing of fog platform using simulation tools. However,
no such standard simulation tool/framework is available at
the moment for the fog computing that makes fog simulation
an open research issue as well.

Moreover, the existing fog simulators lack basic features
that we explain in the subsequent text. The existing simulators
are mainly focused on homogeneous devices. The devices
send the data to a centralized node where the data is processed
before sending to the cloud. There exist Java-based simulators
which do not consider the network properties and thus, only
simulate the idealistic environment with no packet drop/error
rate, network congestion, and channel collision. The

VOLUME 6, 2018

simulators only provide limited or simple mobility models
and lacking features like handover. The simulators are not
open source or proprietary and do not support modification.
Thus, researchers cannot incorporate their own resource man-
agement algorithms for testing and modification. Moreover,
energy consumption and cost computation models are also
not supported in existing simulators.

Contribution — In this paper, we have proposed a
fog simulator named as FogNetSim++. In our proposed
FogNetSim++-, a user can simulate heterogeneous devices
with varying features. It also supports the handover feature to
track the source or requested device. Thus, after computation,
results can be delivered through different fog nodes deployed
at the distinct geographical region. The FogNetSim++- archi-
tecture is flexibly designed so that researchers can incorporate
their own algorithms by extending the base classes. Previ-
ously no such simulators exist that facilitate in such a manner;
thus, FogNetSim++ enables users to model, simulate, and
evaluate the different realistic fog scenarios. It also provides
a facility to create a network environment that allows the
static and dynamic nodes in the network and use various
fog protocols for communication, such as Message Queue
Telemetry Transport (MQTT), Constrained Application Pro-
tocol (CoAP), and Advanced Message Queuing Protocol
(AMQP). The FogNetSim++ includes a range of mobility
models, such as StationaryMobility, StaticGridMobility, Cir-
cleMobility, LinearMobility, TractorMobility, RectangleMo-
bility, and TractorMobility. The user can extend these mod-
els to fulfill their requirements. Moreover, energy module
is also incorporated for mobile devices. All the fog nodes
are managed through a central broker, thus various resource
scheduling algorithms can also be incorporated in the pro-
posed simulator.

The rest of the paper is organized as follows: Section 2 bri-
efly describes the related work. In Section 3, FogNetSim++
system model and design is explained. The experimental
setup and simulation details are presented in Section 4.
Finally, we conclude this paper in Section 5 and discuss
future research directions pertaining to the FogNetSim++
simulator.

Il. LITERATURE REVIEW
This section covers details about some of the commonly used
simulators, with comparison to the proposed FogNetSim++.
Han et al. [4] proposed DPWSim, designed for IoT applica-
tions. It supports the service-oriented and event-driven model.
Sotiriadis et al. [5] proposed SimloT which is designed as an
extension of SimIC simulation framework. It provides sev-
eral communication mechanisms for IoT sensors and cloud
data centers. Similarly, a simulation tool EdgeCloudSim is
proposed to reduce the barriers in the conventional cloud
simulators for simulating the edge computing scenarios. It is
designed as an extension to CloudSim [6].

Khan et al. [7] proposed a coordination technique to handle
large number of IoT devices. The framework is implemented
on CloudSim and supports home automation applications.

63571

IEEE Access

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

Zeng et al. proposed IoTSim that enables the big data pro-
cessing in IoT environment. The authors have adopted a
MapReduce model and presented a case study to show the
effectiveness of proposed simulator. Pflanzner et al. [8] pre-
sented a mobile based IoT simulator called MobloTSim.
The main objective is to provide a platform to researchers
to learn IoT device handling without buying extra sen-
sors and devices. Through MobloTSim, users can explore
the detailed working of IoT systems and help in build-
ing initial understanding of a complete IoT connected
system.

Fiandrino et al. [9] proposed a CrowdSenSim, which is
designed to simulate crowd source applications such as smart
cities. To evaluate the proposed simulator, authors have sim-
ulated a street lighting scenario. However, the simulator can
be used for other applications that require data gathering from
various diverse sources. The CrowdSenSim is freely available
for researchers and users.

SimpleloTSimualtor [10] is commonly used tool to simu-
late IoT environment with sensors and devices. It also sup-
ports number of IoT specific protocols such as MQTT, CoA,
etc. However, SimpleloTSimulator requires 64-bit RedHat
Linux environment for successful installation and execution
of all the packages. Similarly, IBM offered PaaS enabled IoT
simulator termed as IBM Bluemix [11]. It provides a web
based interface for quick deployment of cloud applications
that can gather data from various sensors and devices. It pro-
vides support for hardware devices of ARM, Intel, and Texas
Instrument. The data is sent to cloud data center through
MQTT protocol. A platform-as-a-service enabled simulator -
Parse [12] is launched by Facebook. It supports IoT devices.
It provides easy application development environment and
also supports various mobile devices. The Google Cloud
framework includes Google’s 10T solution that provides var-
ious Google services [13]. The proposed framework is highly
scalable, and allows large number of devices, gathers data
and provides a visualization platform. In particular, data from
devices are received at Load Balancer and from here it is
disseminated to the next layer i.e., AppEngine.

Gupta et al. [14] proposed an IoT and fog simulator called
iFogSim. It is designed as an extension of CloudSim using
Java technology. The authors presented the impact of resource
management techniques in terms of latency, congestion, and
cost. However, there are few drawbacks: (a) it is based on
Java, therefore, core network parameters are not supported,
(b) it is not compatible with different versions of java, more-
over, the documentation is not extensive to support develop-
ment. In our proposed simulator, a complete network toolbox
is available to simulate delay, latency, congestion, packet
drop, thus, it gives the flexibility to simulate diverse networks
with variable characteristics.

A Cisco solution based IoT simulation testbed is proposed
— called FIT IoT Lab [15]. It also supports open-source
solutions. It allows the use of wireless nodes deployed across
France. The sensors and gateways are accessed through the
remote interface. However, the simulator does not conduct

63572

simulation in a controlled environment, therefore, the simu-
lation cannot be repeated.

WSNet is simulator designed to simulate wireless net-
works [16]. It is a discrete event simulator. It can be used
to simulate IoT network. It already includes modules such
as mobility, energy, radio interfaces, and routing proto-
cols. Moreover, it also supports simulation of disasters such
as earthquake, and fire.

Conti et al. [23] proposed a scheme that help fog comput-
ing nodes with battery to store energy that can be used to
execute compute intensive tasks. The power storage can help
fog node during peak load time even with low power gen-
eration. The authors proposed reinforcement based learning
technique to minimize the job loss.

Name et al. [24] discussed the resource allocation and user
mobility. The authors proposed the algorithm to optimize the
resource allocation and handle the handover for mobile users
in fog environment.

Meng et al. [25] studied the delay-constraint model for
computation offloading on Cloud or fog computing servers.
The main goal is to minimize the energy consumption in
terms of computation and communication keeping in con-
sideration the delay constraint of every task. The proposed
hybrid approach has reduced the overall energy consumption.

In fog computing, usually the resources are limited com-
pared to cloud; therefore, typical cloud resource allocation
algorithms cannot fulfill the rapid changing needs of the user.
Ni et al. [26] proposed a resource allocation algorithm for
fog environment using priced timed petri nets. Priced timed
Petri net is the variant of Petri nets that define the system
based on price and time. It is used to characterize the dynamic
behavior of a system and also help in effectively analyzing the
performance in terms of time and cost. The proposed scheme
considers price and completion time of a task. Moreover,
the algorithm that predicts the time required for a particular
task is also proposed in this work.

Fog provides a middle-ware for the applications of
IoT where sensors/devices generate significant amount of
data [27]. Similarly, the energy management of edge devices
is also very crucial. Xu et al. [28] proposed a dynamic energy
management framework that learn on-the-fly and dynami-
cally manage the workload offloading mechanism.

Ananthanarayanan et al. [29] proposed a geographical dis-
tributed framework for large-scale video analytics. To support
real-time video analytics, gateway nodes are used to fulfill the
computing requirement. Ren et al. [30] discussed a scalable
framework for edge computing. The framework is designed
to support smart home applications, the collected data from
various sensors are sent to decision making nodes, the com-
munication can be reduced with the installation of nearby
computing nodes [31].

A video transmission model is proposed by Xu et al. [32]
where Mobile Edge Computing (MEC) server is used to con-
trol the video caching mechanism. Many well-known content
providers, such as Youtube, NetFlix, etc., are caching con-
tents at the edge, thus reducing the latency. Chen et al. [33]

VOLUME 6, 2018

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

IEEE Access

TABLE 1. Simulator comparison.

Customize

Simulators Prog. Platform Network) Open Mobile Mobility Sched}lling Device Energy
Language Configuration | Source | Nodes Models Algorithms | Handover | Module
EdgeCloudSim [6] Java All No Yes Yes No Yes No No
MobloTSim [8] Java Linux No Yes Yes No No No No
SimpleloTSimulator [10] Java Unix No No Yes No No No No
IBM BlueMax [11] Java/Python | Cloud No No Yes No No No No
Google IoT Sim [13] NA Cloud No No Yes No No No No
iFogSim/MyiFogSim [14] | Java All No Yes Yes No Yes No No
Cooja [17] C Linux No Yes Limited | No No No No
FogTorch [18] Java All No Yes No No No No No
RECAP simulator [19] N/A - Limited N/A No No No N/A N/A
EmuFog [20] Python All Yes Yes No No No No No
Edge-Fog cloud [22] Python All No Yes Limited | No No No No
Mobile Fog [23] N/A - No No Yes No No No No
FogNetSim++ C++ All Yes Yes Yes Yes Yes Yes Yes

proposed a device-to-device crowd sourced framework for
MEC using 5G technology. In 5G technology, a device can
communicate with other devices. Therefore, a large number
of devices can require computing resources at the edge loca-
tion. Sonmez et al. [6] proposed a framework that defines
the strategies for better resource sharing and task execution
in collaborative and energy-efficient manner.

Tang et al. [34] proposed a distributed fog architecture for
the integration of different infrastructures, services, and com-
ponents for smart cities. The authors claimed that with the
deployment of fog node, the response time has been reduced
significantly. Li et al. [35] proposed a cooperative framework
to enhance the data collection quality in fiber channel net-
works. The delay constraints are fulfilled through the concept
of offloading at dynamic fog nodes. Meng et al. [25] pro-
posed a hybrid offloading framework that can offload data
and computation at fog nodes and cloud data centers. The
main objective is to reduce the overall energy consumption
for computation and communication.

Mukherjee et al. [36] discussed the security issues in IoT
environment. Similarly, Hu et al. [37] discussed the security
and privacy of face detection applications while computations
are performed at the fog layer. The commonly used pro-
tocols for the fog paradigm are publish/subscription based.
A content-based publish subscribe scheme is proposed to
handle privacy issues [38]. Similarly, the fog architecture is
also useful for vehicular applications that require quick com-
putation for real-time decision making. A fog architecture for
vehicular computing is proposed by Bonomi et al [2].

Most of the simulators discussed above are not flexibly
designed to facilitate researchers to incorporate their own
algorithms. Moreover, the existing simulators are mainly
focused on devices they can support; however, the network
protocols and communication stack are not fully considered.
To test and analyze the algorithms, there is a need for flexible,
extensive, and rapidly deployable fog simulator. The detailed
comparison is shown in Table 1. In next section, the details
of the proposed simulator are discussed to address the above-
mentioned issues.

VOLUME 6, 2018

Ill. FOGNETSIM++: TOOLKIT FOR MODELING

AND SIMULATION

A. SYSTEM MODEL

The proposed system can support P mobile devices (d),
M fog nodes and a broker node (B). The mobile devices
can communicate with the broker node through the base
station (BS). The mobile devices can be of different types,
either they are sensing devices which only generate data for
further processing at the fog node or they can offload task
for computation. Therefore, the mobile device can execute
an application which requests for computing capacity at the
fog node. Here, we have implemented a traffic model as an
M/M/1 queue on mobile device and M/M/c queue on fog
nodes. Every mobile device can generate a service request
to the fog node through its BS. If the cumulative request
rate is less than the accepted rate of fog node, then all the
requests will be accepted to process on fog node. Otherwise,
the request is further subleased to the neighboring fog nodes.
This entire process is managed by the broker node. The broker
node continuously monitors the fog nodes, their queue length,
and sizes of every request. Based on these parameters, it can
sublease the tasks to other fog nodes. Moreover, here we have
assumed that offloading task to the back-end cloud data center
can further add the delay, however, the option is still available
at the broker node which can be utilized in extreme cases
where the request rate increases exponentially. Moreover,
the requests generated from mobile devices (d;,i € P)
follows a Poisson process model, where (u;) is the average
request arrival rate.

Every request generated from device (d;) is computation-
ally intensive, totally independent and can be scheduled on
any fog node or cloud data center. Further, there are kK homo-
geneous fog nodes that can be used to execute the received
task. In every fog node location, there are g nodes available
to provide services. The execution rate is represented as 6.
The maximum workload of the fog node is represented as ¢y.
The reason to define the max workload is to evade unneces-
sary queuing delay. The execution request from a d; is first
received at the B. Thus, according to the Poisson process,

63573

IEEE Access

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

we can write the total arrival rate is as follows:
P
Pootal =) Hi. M
i=0

Further, the request that every fog node can accept is
stated as:

1 ¢f > Mrtotal
p=1_%
Mtotal

@

¢f - < Mrotal

Therefore, using (1) and (2), we can compute the execution
rate at fog nodes as:

utotal

ls\::utolalxw:{ ¢f

¢f P Mtotal}) (3)

¢f < MUrotal

Using Erlang’s formula [39] and the queuing theory analy-
sis, we can compute the average waiting time of each request
at fog node is as follows.

K, ’f(’%o’f"’ 1

Dovair = k0 — ptotal + @ @)
The broker node is managing all the fog nodes and if the
fog node cannot process any new request, the broker forwards
the overloaded request to neighboring fog nodes which are
underutilized. Moreover, in extreme case, the task can be
transferred to the cloud data center (we are not considering
this case here). Therefore, if no fog node is available which
can accept the new task, the broker can hold the task in its own
queue for time (¢). After the expiry of time, it can forward the
task to available fog node. Otherwise, after the expiry of time
t, the broker can drop the task and request for re-transmission.
Energy Model — FogNetSim++ also provides the energy
model. The energy of a given task can be computed using (5).
Where E; represents the energy consumption for task z. It is
the combination of device energy and energy consumed at fog
node. At device end, the energy is consumed in uploading the
task ¢ of size S(z) on data channel of bandwidth B with its
transmission power Pyqns. Whereas, the power consumed in
processing task ¢ of size S(¢) at fog node (FN) with computing
capacity yf,. Pigje represents the idle power. The state diagram
of the current energy model is presented in the Fig. 2. The (6)

represents the total energy for Q tasks.

S() S()

Etfn = — - Pyans + — - Pidle- (5)
B i
e
E = ZE{". (©6)
=0

Pricing Model — FogNetSim++ also provides different
pricing models. The central broker monitors the resource
usage. The pricing model available in FogNetSim+-+ is listed
in Table 2. For the pricing model, the broker is responsible for
managing the user SLA (service level agreement).

The proposed FogNetSim++ is an extensive simulator
designed to support task execution inside the fog. Usually,
the resources available at fog level are less compared to

63574

Connection established
with user

Receiving

Forwarding packet

FIGURE 2. State diagram for energy model.

TABLE 2. Pricing models supported in FogNetSim++.

Pricin Features/ .

b Modelg Description Price
Networking, Storage

1. Pay-as-you-go Compute $.0004/Mb

) Subscription Monthly Task size 10Gb $50/User

' Monthly Task size 100Gb $450/User

3 Pay-for-resources Storage $0.0048/GB

= Compute $.0002/Mb
A dynamic model changes

4. Hybrid Model according to the queue size | $.0004-$.0008
of broker

the cloud data center. Therefore, efficient utilization of fog
resources is highly desirable. Moreover, the proposed frame-
work is designed with a centralized task manager i.e., bro-
ker node. The broker is responsible for managing the entire
fog resources. Initially, the device contacts broker with its
computational requirements. On successful allocation of fog
node, the device directly sends the task to the assigned node.
Thus, this reduces the overhead at the broker node. Moreover,
the proposed work also supports sensing devices, which can
only generate data, and other devices can acquire that data
through subscription. The rest of the technical details are
discussed in the next subsection.

B. IMPLEMENTATION

The FogNetSim++ is developed as an extension of
OMNeT++. The OMNet++ is commonly used open source
tool that provides an extensive library to simulate network
characteristics. It provides a number of built-in modules that
act like realistic network devices. Fig. 3 shows the design
of proposed FogNetSim++. In FogNetSim++-, all the avail-
able modules of OMNeT++ can be easily integrated. The
researchers can easily modify the modules of FogNetSim-++-

VOLUME 6, 2018

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

IEEE Access

[Handoff Mana;—;.] Ewubility Mudules] [Scheduling Policy

] [Mobile devices]

[Sensors Fog Nodes][Broker Node

FIGURE 3. FogNetSim++ design.

to simulate their scenarios. The main objective of the devel-
opment of FogNetSim-++ is that the existing frameworks
are designed to support different sensors [10], [11]. How-
ever, they have ignored the network characteristics such as
error rate and data rate that can play a critical role in sim-
ulating latency-sensitive applications. Similarly, the existing
work does not support mobility or provide simple mobility
models [40]. The graphical interface of FogNetSim++ is
shown in Fig. 4. Our proposed FogNetSim++ present the
complete simulation environment that includes sensors, fog
nodes, a broker node and geographically distributed data
centers. The broker is responsible for managing the fog nodes,
it receives the service request and assigns fog nodes keeping
in view the utilization of every fog node. It is a novel frame-
work that supports both mobile and static nodes, devices, and
gateways. The modular design of FogNetSim++ is shown
in Fig 3. The FogNetSim++- comprises of two main modules
i.e., end devices and broker.

»
[3
L »
radioMedium configurator laptopUser » »
userNode1 3
9 userNode2 userNode12
4 userNode6

useande3 ¢ g ¢ ’ & " ’
& e <D ’ s LL LL

ap: P al 4 mobile3
useande4 D P2

useandes 4@9 . .’

userNode11

g @1

gl erz BaseTnker routey1l FogNode4

FogNode1
2 -

»
userNode9 userNode8
userNode10

stan(sensnr,e é =3
& # <
s Foghodez _ routert =l ,
mobile2 mobile &L

aps ap6

FIGURE 4. FogNetSim++ - A graphical user interface.

The core modules of FogNetSim++ are broker, fog node,
and the end devices. The broker is the centralized resource
manager that keeps track of all the fog nodes. The fog node
provides a computation service. The end device is the actual
node/sensor that can move during communication and gener-
ate requests for computing nodes. The broker node receives a
request from devices to perform the requested computation.
The broker node maintains a queue from where the requests
are served on first come first serve basis. Thus, the broker is
responsible for task scheduling, execution, and handover. The
handover module is used in two cases, i). when the node is

VOLUME 6, 2018

moving from one region to another and its requested task
is being executed. In that case, broker dynamically trans-
fers the unallocated task to its neighbor fog node; ii). the
requested task is transferred to the neighboring node where
fog node is available or lightly loaded. The latter is used
when directly connected fog node is heavily loaded, and
cannot fulfill the request due to large pending tasks, as shown
in Fig 5. The broker nodes are also connected to a backbone
network which further connects it with the cloud data center.
The computed results/data can be sent to the data center
for storing and to perform analysis at a later stage. Usually,
there are limited fog nodes that provide computation. Every
fog node provides services to a large number of devices.
In a typical case, it is used to gather data from sensors, and
the only meaningful information is sent to the data center.
In proposed FogNetSim+-+, researchers can incorporate their
own request scheduling algorithms at the broker node to
support the execution of tasks at the fog node. Moreover,
the sophisticated handover algorithm can also be incorporated
very easily. This can introduce a new research direction in fog
simulators. In all the previous simulators, no such scheduling
algorithms are available that allow researcher to utilize fog
nodes efficiently.

The network module in FogNetSim+4- provides com-
plete network physical/wireless link properties such as packet
drop, retransmission, bit error rate, and link bandwidth. The
FogNetSim++ provides flexibility in network configura-
tions. The user can define network parameters according to
their design requirements. Thus, the more realistic network
can be simulated. The FogNetSim++ includes a number of
communication protocols, that can be used to simulate diverse
scenarios. At present, the available protocols are TCP, UDP,
FTP, HTTP, MQTT, CoAP, and AMPQ. The HTTP, TCP,
and UDP can also be used for communication with the data
center. The FogNetSim++ supports heterogeneous devices
and fog nodes with a variable number of applications that can
execute over each node concurrently. Moreover, the appli-
cations can use different communication protocols. Further,
it also supports IPv4 and IPv6; however, both cannot be
used simultaneously. Moreover, the broker can be used to
dispatch the data to the requested devices; therefore, publish,
subscribe mechanism is implemented at the broker node. Any
device can register with the broker either as a subscriber,
publisher or both. Thus, the broker tracks the device loca-
tion and share updates to all the subscriber devices. This
mechanism is added to support the role of various sensors
in IoT. For this purpose, MQTT is a publish/subscribe based
lightweight messaging protocol®, which is implemented in
FogNetSim++ for communication among devices and bro-
ker nodes.

1) BROKER MODULE

As discussed above, the broker node is responsible to provide
resources on request. In FogNetSim+-+-, we have categorized

3 http://mqtt.org/tag/standard

63575

IEEE Access

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

Static Nodes

~ Fog

|
A

! Capacity not available
‘.h”\._‘ Requesting neighbors

Storage == 'j_j
= = |'='
frastructurg

Data center

Fog 1)l !

.'.. 'th . 1
f |
Reqyest ‘;{i“ 1
- ‘/ RESUIE?':

Fog Broker Module

FIGURE 5. FogNetSim++ working model.

the nodes into three types i.e., static, mobility-based, and
Wireless Access Based (WAB). The static nodes are the fog
computing servers, placed at the gateway to provide com-
puting on request. The mobility-based are the actual mobile
nodes that can request computation from fog nodes. The
WAB are the access points that can be used to serve the
connected nodes. The internal modules of the broker node
are shown in Fig 6. The WAB is designed on the inspiration
of Cisco Edge* series routers which provide the facility of
computing along with the routing. The other features of the
broker node are to register/manage publishers, subscribers,
schedule fog nodes for requested devices, resource manage-
ment, optimal utilization of resources among the number of
requested devices, manage handovers, provide communica-
tion link with data centers, and reliable data delivery. The
execution of broker and fog node is listed in Algorithm 1 and
Algorithm 2. The simulation parameters of broker node are
listed in Table 3.

2) END NODE DEVICES

Another core module of FogNetSim-++ is mobile devices
that can play an important role in fog computing. Here,
we categorize devices as — sensor nodes and user nodes.
A sensor nodes act as data generator, and send the generated
data to broker or other devices after regular interval of time.
Whereas, a user node can generate or receive data. A user

4www.cisco.com

63576

ﬂ StandardBroker

status

ene rage
bnergy! emsnt

energyGenerator

€l

g

b

3
2

(I
3\
2\
E
=
2
3
=
g8
E
i

€
S
ol
o
-3
&

routing

5
g
o
&

0 im

ForderfnumPcapRecorder

peplsizegf(pppg)]

oD extinum ExteteifreiufRefocks]

ethlsizegfethg)]

FIGURE 6. Internal modular view of Broker Node.

node can also act as a sensor. Moreover, these nodes are fur-
ther arranged into two types: (a) wired and (b) wireless nodes.
Nodes can be static or mobile, both versions are supported
in FogNetSim+-+-. Devices can register to publish data. The
data is pushed to a broker node. In the proposed simulator,
all the devices are IP enabled, thus can acquire IP addresses
through DHCP. The devices support MQTT protocol along
with other application protocols such as HTTP, TCP, FTP,
SMTP, SNMP, and UDP. Moreover, the selection of a pro-
tocol for communication is done at design time. Due to the
flexible architecture of FogNetSim++, researchers can eas-
ily incorporate other protocols through well-defined classes.

VOLUME 6, 2018

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

IEEE Access

Algorithm 1 Algorithm — Broker Node (B)

Algorithm 2 Algorithm — Fog Node (FN)

1: List fogNodes[] < FDy

2: List devices[] < dp
3: Queue taskQueue[] <« nill
4: Timer timer < 0
S:
6: while (true) do
7: if MessageRecInWaiting then
8: Msg < Message.Received
9: if Msg.Type == Result then
10 Forward Msg to d;
11: else if Msg.Type == FN.®; then
12: Update FN;.®; < P;
13: else if Msg.Type == d;.position then
14: Update All d;.Position for Handoff
15: else if Msg.Type == Service,., then
16: taskQueue < Msg
17: end if
18: end if
19:
20: if taskQueue ! = Empty then
21: Msgreq < taskQueuey,p
22: if FN;.workload < FN;.®; then
23: Forward Msg;., to FN;
24: else
25: boolflag < true
26: for i=0 .. Mdo
27: if FN;.workload > FN;.®; then
28: Msgeq < taskQueuep,p
29: Forward Msgye, to i
30: flag < true
31: end if
32: end for
33: if flag then
34: Starttimer < Ar
35: end if
36: end if
37: end if
38:
39: if timerexpire then
40: for i=0 .. Mdo
41: if FN;.workload > FN;.®; then
42: Msgreq < taskQueuepop
43: Forward Msgye, to i
44: end if
45: end for
46: end if

47: end while

The end devices are mainly used to generate or consume
data. A device uses MQTT messages for communication with
a broker node. The FogNetSim++ supports heterogeneous
devices; every device can have a different feature such as data
rate, functionality and etc.

VOLUME 6, 2018

1: Timer timer < 0
2: Queue taskQueue[] <« nill
3: while (true) do

4 if MessageRecInWaiting then
5: Msg < Message.Received
6: taskQueue < Msg

7 end if

8: if taskQueue! = Empty then

9: Msgreq < taskQueuep,),
10: Outcome <— ExecuteMsgyeq
11: Send(Outcome, B)

12: end if

13: if timer expired then

14: Send(¢;, B)

15: timer < reset

16: end if

17: end while

Static sensors Broker Node Fog Nodes

Mobile devices

FIGURE 7. Case study - simulated topology.

Mobility Models — Mobility is another very important fea-
ture of end devices. In FogNetSim++ wireless and wired
devices are supported. The mobility can play an important
role, it can create new challenges for researchers in the form
of optimum use of resources and resources’ handover. Nor-
mally mobility models are classified into two categories
i.e., entity and group model. In the entity model, the move-
ment of each node is independent of other nodes. The most
commonly used entity models are random waypoints, Gauss
Markov, and City section. In the group model, the move-
ment of one node is dependent on the movement of other
nodes. The most commonly used group models are Column
Mobility, Nomadic Community, and Reference Point Group.
The FogNetSim+-+ supports only entity models. The already
available models are a random waypoint, Mass mobility,
Gauss Markov, Chaing mobility, CircleMobility, LinearMo-
bility and vehicle mobility.

IV. TESTING AND PERFORMANCE EVALUATION

FogNetSim++ offers a comprehensive platform to simu-
late diverse fog applications. It also helps to understand the
basic concept of fog computing. The FogNetSim++ provides
a rich network configuration managed through a network

63577

IEEE Access

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

TABLE 3. Simulation parameters - broker.

Parameter Description

numMQTTApps | The parameter indicates that the number of MQTT applications at each broker, it can be any integer number between 1— n
hasMQTT a one bit field to indicate that the protocol being used is MQTT

numTcpApps The parameter indicates that the number of TCP applications concurrently executing on broker node — default(0)
numUdpApps The parameter indicates that the number of UDP applications concurrently executing on broker node — default(0)
numSctpApps The parameter indicates that the number of Sctp applications concurrently executing on broker node — default(0)
numPingApps The parameter indicates that the number of Ping applications concurrently executing on broker node — default(0)

TABLE 4. Machine specification.

Parameters Value
CPU 4

Core(s) per socket | 2
Thread(s) per core | 4
CPU MHz 2390

Memory 8 Gb

20

15

10

CPU usage (%)

0
2 @ D DD T] D AR O
PP P ISP PP

No. of nodes (user nodes + brokers)

FIGURE 8. FogNetSim++ CPU usage with respect to number of nodes.

module. It allows the simulation of a realistic network envi-
ronment that opens new challenges for researchers such as
resources utilization, data error rate, and handoffs. All the
modules are configured through a configuration file with
extension ini. A user can set values of different parameters,
such as, number of brokers, fog nodes, end devices, data
rate, channel noise, and mobility models for every individ-
ual or group of nodes.

Case Study — To give the basic understanding of the frame-
work and to evaluate the performance of the simulator, a com-
munication network scenario is simulated based on smart
traffic management system. The smart traffic management
is an ideal case for fog nodes, where a number of static
sensors are deployed to gather traffic information. More-
over, pedestrians can also share the surrounding conditions
through their smart devices. The pedestrians are mobile, can
freely move in any direction. These sensors generate data

63578

1400

1200
B I|||| ” |||
o |

o & 40 S o0 &

PELELEP L L PP PP

Mo. of nodes (user nodes + brokers)

Memory usage (Mb)
s 8 8 8

FIGURE 9. FogNetSim++ memory usage with respect to the number of

nodes.
H

3

g 8

g 8

g

Delay (sec)

200
100 II
D---llll
'00
Ny

n] L T T TP T D A
PP AP P E PP P PP

No. of noes (user nodas + brokers)
FIGURE 10. Delay in constructing enriched GUI .

at discrete points. The data is processed at the fog node for
quick response, to identify any rules violation, such as over
speeding, or any unusual situation. Moreover, there are law
enforcement agencies which have subscribed to these sensors
depending upon their geographical location. The fog nodes
are used to identify the violations based on received data and
disseminate the results to the subscribers. Apart from this,
the law enforcement agencies can also generate a request for
computing resources to perform their search or predictions.
Here, we have analyzed the network based on the above
mentioned scenario using a FogNetSim++. The simulated
topology is shown in Fig. 7. The sensor generates data after

VOLUME 6, 2018

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

IEEE Access

~
[=]

. .
— 60
=
E []
£ ™]
vso ®
-E o »®]
§%
=] L]
£ L]
2 30
E - * » . o
g 20 .oo. 0& ‘ . ."“.
2o »” w e .s,'-h .‘ ¥
[} e @
0%’ } oe "q.
o o“h L AN Ch bl W
0.00 50,00 100.00 150.00 200.00 250.00 300.00 350.00
Simulation Time (sec)
(@)
70.00
. * L]
= 60.00 °
£ .
E 50.00
= L]
§ 00
=
3 3000
E
S 2000
v
o
= 10.00
0.00
0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00

Simulation Time (sec)

(©)

B
[=]

— 60
E
E .
w 50 ¢
E °« * °
= .
5% .
E 30 L] L] .
E . ..: . 1] .
S L/ [o § o o
20 L] L]
N 3 T I T A s
LB Y
LA T} L] .
’o : . ’0 ®eny °*
0.00 50.00 100.00 150.00 200.00 250,00 300.00 35
Simulation Time (sec)
(b)
70.00
.
— 60.00
£ .
“uETso.uo
.
= . .
.
E 40-00 L]
"
5 30.00 . ® . .
£ o ® ° H 8 .0
S Te & o o W
w LI ’.0 °2 '. 0.e
¥ 1000 .QQQ&.O k ”h‘
* %S Pin
« ¥ & %o]
0.00
0.00 50.00 100.00 150.00 200.00 250.00 300.00 35

Simulation Time (sec)

(@

FIGURE 11. Average execution time in different task size categories. (a) Small-sized tasks. (b) Medium-sized tasks. (c) Large-sized tasks.

(d) Random-sized tasks.

regular intervals of time. The broker node receives the data
and forward to the fog node for processing and results are
disseminated to the subscribed devices. Moreover, the devices
can send the compute capacity request to the broker node.
The broker assigns resources based on the scheduling policy
and after execution, sends back the result to the requested
device. During the task execution, the broker also tracks
the requested or subscribed devices for hand-off operations.
The scalability of proposed FogNetSim++ is measured in
terms of memory and CPU usage. As the IoT comprises
of a large number of devices, therefore, it is important to
benchmark the proposed FogNetSim++ in terms of memory
and CPU usage. Moreover, the other network parameters that
are benchmarked here are the delay, latency, and error rate.
The delay is also measured with respect to the execution
task. The task is categorized as large (1500 MIPS), medium
(900 MIPS), small (200 MIPS), and random (a random num-
ber between 200 and 1500 MIPS). Usually, different function-
ality requires a different amount of computing capacity. For
example, in a traffic management system, identifying objects
from a snapshot, or predict the movement of group can take a
different amount of execution time. The system specifications
are mentioned in Table 4. The parameters used in a simulation
are listed in Table 5.

VOLUME 6, 2018

TABLE 5. Simulation parameters.

0.00

0.00

Sr. | Parameters Value
1 Broker(s) can support upto 400
2 Wireless sensors 10-400
3 Wireless Mobility MassMobility
4 AccessPoint Broker(s) 10-400
5 Wireless Access Point(s) 10-400
6 Device(s) 60-880
7 Cloud Data-center(s) 1-4
8 Devices 1-100 Mobility Circular Mobility
9 Devices 101-300 Mobility Vehicle Mobility
10 | Devices 301-600 Mobility Mass Mobility
11 Devices 601-880 Mobility Linear Mobility
12 | Fog Nodes 1-1200 mqttApps | 1 at each
13 | Brokers Topic Name(s) Sensing data
14 | Broker-Broker Link 10 Gbps

The proposed FogNetSim++- is evaluated by varying the
number of devices. The Fig. 8 shows that the CPU usage with
respect to the total number of modules shows the increasing

63579

IEEE Access

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

25.00%

20.00%

15.00%
10.00%
5.00%
0.00%

Small Medium Large Random

Handoff %:age

Task Size

FIGURE 12. Handoff performed w.r.t task size.

B
4 B8 12 1 2o 24 22 32 36

No. of users

Delay (ms)
- %]] w {71}
w Q wn [=] m

-
o

&

FIGURE 13. Average delay w.r.t users.

trend; however, for around 1320 nodes, the CPU usage is
below 25%. The number of nodes mentioned in the fig-
ure includes both devices, fog nodes, and the broker node.

Similarly, with the increase in a number of nodes, the mem-
ory consumption also shows an increasing trend. However,
for 1320 nodes around only 15% of memory is used (see
Fig. 9). Thus, this clearly shows that the proposed simulator
can easily support the execution of thousands of nodes on
a typical computing machine. This is primarily due to the
reason that each node maintains a very less node-specific
data. In the simulator design, the common data is shared
among all the nodes. The FogNetSim++ is designed on
the top of OMNeT++, that provides a rich graphical user
interface. Therefore, increasing the number of nodes usually
requires a significant amount of time to populate the GUI. So,
the delay in construction of GUI interface is also an important
parameter to observe. Fig. 10 shows the delay in constructing
the graphical user interface (GUI). At 1320 nodes the max-
imum delay is around 600 seconds. This is due to the rich
GUI that allows users to inspect every module and parameters
through GUI. However, the proposed simulator can also run
in command line mode to avoid such delays.

The Fig. 11 shows the average task computation time for
small, medium, large and random sized tasks. The dotted
line represents the average time at every simulation interval.

63580

10
9

8
7
i
5
4
3
2
1
0

Task Size Small Task Size Medium

Delay (ms)

Task Size Large Task Size Random

FIGURE 14. Total Delay based on the compute capacity requirement.

Small-sized tasks Medium-sized tasks Large-sized tasks Random-sized tasks

95
4

9
9
]

5.2

Packet error rate (%)

3
81
9
9

B

FIGURE 15. Average wireless error rate reported during the execution.

Fig. 12 shows the percentage of hand-offs performed during
the evaluation. However, it can be seen that with an increased
task length, there are greater chances for a hand-off operation.
Moreover, device location and mobility model also played an
important role in hand-offs. Thus, the broker node maintains
the location of the requested node, so that after the task
completion, results can be dispatched accordingly.

The end-to-end delay increases with the increase in the
number of user nodes as shown in Fig 13. Here we define end-
to-end delay as the time taken by a request from the device
to the broker node. In a typical scenario of large number of
devices generating requests at regular intervals, it results in
more delay as depicted in the figure.

In the experimental setup, the results are gathered based
on different task computation requirements. The tasks are
categorized as small, medium, large and mix. Fig. 14 shows
the average task completion delay in each of the task category.
The figure clearly shows that the large task computation
requirement takes a significant amount of time in completion.
Therefore, small execution tasks can enhance the system per-
formance and reduce the waiting time at fog nodes. However,
Fig. 15 shows the average error rate reported during execu-
tion. The devices communicate using the wireless channel.
However, the rate varies with device placement, congestion
of the network, and the mobility model used for a node.

VOLUME 6, 2018

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

IEEE Access

—llser 1

w 0.2 User 2

Residual Energy (J)
o =
E :

User 3

3
13
)14

LECE;
aed
r~

4.50
3,177

54.257

rd
)
m
=
B

72,048

97.
108.017
115.520

P~ oo oo,

19.662
310
38.786
450
49974

137
128.461
133.567

121.535

Simulation Time (s)

FIGURE 17. Residual Energy Vector over simulation time.

g Smial-Sized Task Medium-Sized Task

Large-Sized Task Random-Sized Task

.
tn

=]

= 2 w
h & & >

Average Energy Per Task (ul)
3

(SR =1

-10 -8 -6 -4 -2 0 2 4 6 B 10

Tansmission Power (dBm)

FIGURE 18. Average Energy Consumption vs Transmission power.

The average latency at discrete points is shown in Fig. 16.
Here, the x-axis represents the simulation time and y-axis
shows the latency. Fig. 17 shows the residual energy of three
mobile users. The residual energy is defined as the remaining
energy at a mobile node after communication with broker/fog
node. The FogNetSim-++ provides an extensive way to mea-
sure the energy of every mobile node that participated in
the simulation. The node no longer becomes the part of the
network when its residual energy reaches zero.

Fig. 18 shows the energy consumption with respect
to transmission power. In FogNetSim++4-, the mobile
nodes can dynamically change their transmission power

VOLUME 6, 2018

to communicate with broker/fog node. On the other hand,
changing the transmission power can directly affect the life
of battery operated devices. With large transmission power,
the device can last for the shorter period of time.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The inception of fog and edge computing provides new
opportunities for delay-sensitive applications. The provision
of computing at the network edge, closer to the end user,
reduces the traditional network communication delays com-
pared to the cloud-based execution model. In this paper,
we have proposed a fog network simulator. In particu-
lar, FogNetSim++ provides a framework for researchers
to investigate their own resource management techniques,
perform resource handover, adopt new algorithms with the
complete network stack. All the existing simulators do not
completely provide the network characteristics, mobility fea-
tures, and resource management modules. FogNetSim++
provides the diverse network features and supports a large
number of mobility models. Thus, our objective is to facil-
itate researchers for the rapid development and testing of
new resource management algorithms. In this paper, we have
benchmarked the FogNetSim++ in terms of network usage
and its behavior with respect to increase in traffic. The
performance evaluations illustrate the effectiveness of the
proposed framework. In future, we would like to extend
the FogNetSim+-+ to include the VM migration among fog
nodes. Moreover, interoperability among fog federations is
another interesting area that need further exploration.

ACKNOWLEDGMENTS

The work of S. U. Khan is based upon work supported
by (while serving at) the National Science Foundation.
Any opinion, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78-81, 2016.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘““Fog computing and its
role in the Internet of Things,” in Proc. Ist Ed. MCC Workshop Mobile
Cloud Computing, 2012, pp. 13-16.

[3] P. Bellavista, L. Foschini, and D. Scotece, “Converging mobile edge
computing, fog computing, and IoT quality requirements,” in Proc.
IEEE 5th Int. Conf. Future Internet Things Cloud (FiCloud), Aug. 2017,
pp. 313-320.

[4] S.N.Hanetal., “DPWSim: A simulation toolkit for IoT applications using

devices profile for Web services,” in Proc. IEEE World Forum Internet

Things (WF-10T), Mar. 2014, pp. 544-547.

S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, “Towards

simulating the Internet of Things,” in Proc. 28th Int. Conf. Adv. Inf. Netw.

Appl. Workshops (WAINA), May 2014, pp. 444—448.

[6] C.Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environment
for performance evaluation of edge computing systems,” in Proc. 2nd Int.
Conf. Fog Mobile Edge Comput. (FMEC), May 2017, pp. 39-44.

[71 A. M. Khan, L. Navarro, L. Sharifi, and L. Veiga, “Clouds of small
things: Provisioning infrastructure-as-a-service from within community
networks,” in Proc. IEEE 9th Int. Conf. Wireless Mobile Comput., Netw.
Commun. (WiMob), Oct. 2013, pp. 16-21.

[5

—

63581

IEEE Access

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T. Pflanzner, A. Kertész, B. Spinnewyn, and S. Latré, ‘“MobloTSim:
Towards a mobile IoT device simulator,” in Proc. IEEE 4th Int. Conf.
Future Internet Things Cloud Workshops (FiCloudW), 2016, pp. 21-27.
C. Fiandrino et al., “CrowdSenSim: A simulation platform for mobile
crowdsensing in realistic urban environments,” IEEE Access, vol. 5,
pp. 3490-3503, 2017.

SimpleloTSimulator. Accessed: Aug. 10, 2018. [Online]. Available: http://
www.smplsft.com/SimpleloTSimulator.html

IBM Bluemix Platform. Accessed: Aug. 10, 2018. [Online]. Available:
https://console.ng.bluemix.net

Parse—The complete Application Stack. Accessed: Aug. 10, 2018.
[Online]. Available: https://parse.com/products/iot

Google Cloud Platform. Accessed: Aug. 10, 2018. [Online]. Available:
https://cloud.google.com/solutions/iot/

H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,” Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275-1296, 2017.

C. Adjih et al., “FIT IoT-LAB: A large scale open experimental ToT
testbed,” in Proc. IEEE 2nd World Forum Internet Things (WF-IoT),
Dec. 2015, pp. 459-464.

K. Dolui and S. K. Datta, “Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,” in Proc.
Global Internet Things Summit (GloTS), Jun. 2017, pp. 1-6.

Contiki Cooja. Accessed: Aug. 10, 2018. [Online]. Available: http:/www.
contiki-os.org/start.html

A. Brogi and S. Forti, ““QoS-aware deployment of [oT applications through
the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185-1192, Oct. 2017.
J. Byrne et al., “RECAP simulator: Simulation of cloud/edge/fog com-
puting scenarios,” in Proc. Winter Simulation Conf. (WSC), Dec. 2017,
pp. 4568-4569.

R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
Fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” in Proc. IEEE Fog World Congr. (FWC), Oct. 2017,
pp. 1-6.

N. Mohan and J. Kangasharju, “Edge-fog cloud: A distributed cloud for
Internet of Things computations,” in Proc. Cloudification Internet Things
(CloT), Nov. 2016, pp. 1-6.

K. Hong, D. J. Lillethun, U. Ramachandran, B. Ottenwilder, and
B. Koldehofe, “Mobile fog: A programming model for large-scale appli-
cations on the Internet of Things,” in Proc. MCC@SIGCOMM, 2013,
pp. 15-20.

S. Conti, G. Faraci, R. Nicolosi, S. A. Rizzo, and G. Schembra, “‘Battery
management in a green fog-computing node: A reinforcement-learning
approach,” IEEE Access, vol. 5, pp. 2112621138, 2017.

H. A. M. Name, F. O. Oladipo, and E. Ariwa, “User mobility and resource
scheduling and management in fog computing to support IoT devices,”
in Proc. 7th Int. Conf. Innov. Comput. Technol. (INTECH), Aug. 2017,
pp. 191-196.

X. Meng, W. Wang, and Z. Zhang, “Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,” IEEE Access, vol. 5,
pp. 21355-21367, 2017.

L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy
in fog computing based on priced timed Petri nets,” IEEE Internet Things
J., vol. 4,no. 5, pp. 12161228, Oct. 2017.

A. Carrega, M. Repetto, P. Gouvas, and A. Zafeiropoulos, “A middle-
ware for mobile edge computing,” IEEE Cloud Comput., vol. 4, no. 4,
pp. 26-37, Jul. 2017.

J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,” IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 3, pp. 361-373, Sep. 2017.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer app
for edge computing,” Computer, vol. 50, no. 10, pp. 58-67, 2017.

J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable iot
architecture based on transparent computing,” I[EEE Netw., vol. 31, no. 5,
pp. 96-105, Aug. 2017.

X. Gong, L. Guo, G. Shen, and G. Tian, “Virtual network embedding
for collaborative edge computing in optical-wireless networks,” J. Lightw.
Technol., vol. 35, no. 18, pp. 3980-3990, Sep. 15, 2017.

X. Xu, J. Liu, and X. Tao, “Mobile edge computing enhanced adaptive
bitrate video delivery with joint cache and radio resource allocation,” IEEE
Access, vol. 5, pp. 16406-16415, 2017.

63582

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive D2D
collaboration for energy-efficient mobile edge computing,” IEEE Wireless
Commun., vol. 24, no. 4, pp. 64-71, Aug. 2017.

B. Tang et al., “Incorporating intelligence in fog computing for big data
analysis in smart cities,” IEEE Trans. Ind. Informat., vol. 13, no. 5,
pp. 2140-2150, Oct. 2017.

T. Li, Y. Liu, L. Gao, and A. Liu, “A cooperative-based model for smart-
sensing tasks in fog computing,” IEEE Access, vol. 5, pp. 21296-21311,
2017.

M. Mukherjee et al., “Security and privacy in fog computing: Challenges,”
IEEE Access, vol. 5, pp. 19293-19304, 2017.

P. Hu, H. Ning, T. Qiu, H. Song, Y. Wang, and X. Yao, ““Security and pri-
vacy preservation scheme of face identification and resolution framework
using fog computing in Internet of Things,”” IEEE Internet Things J., vol. 4,
no. 5, pp. 1143-1155, Oct. 2017.

Q. Wang, D. Chen, N. Zhang, Z. Ding, and Z. Qin, “PCP: A privacy-
preserving content-based publish—subscribe scheme with differential pri-
vacy in fog computing,” IEEE Access, vol. 5, pp. 17962-17974, 2017.

B. Ngo and H. Lee, “Analysis of a pre-emptive priority M/M/c model with
two types of customers and restriction,” Electron. Lett., vol. 26, no. 15,
pp. 1190-1192, Jul. 1990.

M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, ‘““The case for VM-
based cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14-23, Oct. 2009.

TARIQ QAYYUM received the B.S.C.S. degree
from the Islamia University of Bahawalpur, Pak-
istan. He is currently pursuing the M.S.I.T. degree
from the National University of Sciences and
Technology, Islamabad, Pakistan. His research
interests include cloud computing, fog computing,
10T, and distributed systems.

ASAD WAQAR MALIK received the Ph.D. degree
in computer software engineering from NUST,
Pakistan. He is currently an Assistant Professor
with the School of Electrical Engineering and
Computer Science, NUST. His research interests
include parallel and distributed simulation, cloud
computing, and large-scale networks.

MUAZZAM A. KHAN KHATTAK (SM’15)
received the master’s degree in mobile ad-hoc net-
works from IIUI and the Ph.D. degree in com-
puter sciences as sandwich program from ITUI and
the University of Missouri Kansas City (UMKC),
USA, in 2011. He completed his first Post doc
at the University of Ulm, Germany, in 2013, and
the second Post doc from the University of Mis-
souri, KC, USA, in 2016. He was with the Net-
working and Multimedia Lab, UMKC, USA, as a

Research Fellow. In 2011, he joined the CS Department, Abdul Wali Khan
University Mardan, as an Assistant Professor/Chair. Later, he joined the
National University of Sciences and Technology as an Assistant Professor
in 2013. He is currently a Tenured Associate Professor/Associate Dean at
the Department of Computing, SEECS, National University of Sciences
and Technology, Islamabad, Pakistan. His research interests include wireless
networks sensor, body area networks, image processing, image compression,
image encryption, and data network security.

VOLUME 6, 2018

T. Qayyum et al.: FogNetSim++: Toolkit for Modeling and Simulation of Distributed Fog Environment IEEEACC@SS

VOLUME 6, 2018

OSMAN KHALID received the master’s degree
in computer engineering from the Center for
Advanced Studies in Engineering, Islamabad, and
the Ph.D. degree in electrical and computer engi-
neering from North Dakota State University, USA.
He is currently an Assistant Professor with the
Department of Computer Sciences, COMSATS
University Islamabad, Pakistan. His areas of inter-
ests include fog computing, disaster response sys-
tems, recommender systems, and wireless routing
protocols.

SAMEE U. KHAN received the Ph.D. degree from
the University of Texas, Arlington, TX, USA,
in 2007. He is currently the Lead Program Director
(Cluster Lead) for the Computer Systems Research
at the National Science Foundation. He is also a
Faculty Member at North Dakota State University,
Fargo, ND, USA. His research interests include
optimization, robustness, and security of computer
systems. His work has appeared in over 400 pub-
lications. He is an ACM Distinguished Speaker,
an IEEE Distinguished Lecturer, and a fellow of the Institution of Engineer-
ing and Technology (formerly IEE) and the British Computer Society. He is
on the editorial boards of leading journals, such as ACM Computing Surveys,
IEEE Accgss, IEEE CoMMUNICATIONS SURVEYS AND TUTORIALS, IET Wireless
Sensor Systems, IET Cyber-Physical Systems, and IEEE IT Professional.

63583

	INTRODUCTION
	LITERATURE REVIEW
	FOGNETSIM++: TOOLKIT FOR MODELING AND SIMULATION
	SYSTEM MODEL
	IMPLEMENTATION
	BROKER MODULE
	END NODE DEVICES

	TESTING AND PERFORMANCE EVALUATION
	CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES
	Biographies
	TARIQ QAYYUM
	ASAD WAQAR MALIK
	MUAZZAM A. KHAN KHATTAK
	OSMAN KHALID
	SAMEE U. KHAN

