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ABSTRACT Effective machinery prognostics and health management play a crucial role in ensuring the
safe and continuous operation of equipment, and satisfactory characteristics’ expression of machine health
status plays a key role in the ability to diagnose faults with high accuracy. At present, most methods based on
signal processing and the shallow learning model rely on artificial feature extraction to identify the machine
fault type. In practical applications, however, meaningful health management requires correct recognition of
not only the health type but also the fault degree, if any occurs. Such recognition is useful for determining the
priority level of mechanical maintenance and minimizing economic losses. Deep learning techniques, such
as deep belief network (DBN), have demonstrated great potential in exploring characteristic information
from machine status signals. In this paper, an end-to-end fault diagnosis model based on an adaptive
DBN optimized by the Nesterov moment (NM) is proposed to extract deep representative features from
rotating machinery and recognize bearing fault types and degrees simultaneously. Frequency-domain signals
are inputted into the model for feature learning, and NM is introduced to the training process of the
DBN model. Individual adaptive learning rate algorithms are then applied to optimize parameter updating.
The performance of the proposed method is validated using a self-made bearing fault test platform, and the
model is shown to achieve satisfactory convergence and a testing accuracy higher than those obtained from
standard DBN and support vector machine.

INDEX TERMS Bearing, health management, deep belief network, end-to-end model.

I. INTRODUCTION
Rotating machinery is widely used in the fields of manufac-
turing and aerospace, among others. Given developments in
science and technology, machines are becoming increasingly
complicated, intelligent, and integrated, and their working
conditions are becomingmore complex and dynamic. Rolling
bearings, which usually operate at heavy loads and high
speeds, are key components of many machines. The health
status of a rolling bearing directly affects the performance,
quality, and reliability of equipment in various manufacturing
process. Depending on the type and size of the machine, bear-
ing issues account for approximately 40% (large machines)
to 90% (small machines) of all machine faults [1]. There-
fore, to improve the reliability and ensure the safe operation

of these machines, effectively diagnosing bearings is
essential [2]; such diagnosis can also help reduce operating
and maintenance costs.

Numerous researchers have proposed various bearing fault
diagnosis methods from the signal-processing aspect, such
as empirical mode decomposition [3], wavelet packet trans-
form [4], and morphological filter [5]. Wang et al. [6] pro-
posed a new multi-speed fault diagnostic approach by using
self-adaptive wavelet transform components generated from
bearing vibration signals to identify four health states of
rolling bearings. Zhang et al. [7] proposed a combination
of the improved ensemble empirical mode decomposition
(EEMD) and spectral kurtosis methods to address the prob-
lem of poor rolling bearing signals under the high background
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noise of high-speed printing presses. Cui et al. [8] used a
search algorithm to extract the morphological characteris-
tics of signals of different gear fault types to recognize the
damage pattern of gear signals. Yao et al. [9] used harmonic
wavelet entropy to convert vibration signals into time-scale
representations and achieved fault diagnosis of train bearings
through demodulation and the envelope spectrum. A novel
double-dictionarymatching pursuit for fault extent evaluation
of rolling bearings based on the Lempel–Ziv complexity
index has been proposed to achieve satisfactory quantitative
rolling bearing fault diagnosis [10]. Overall, these methods
consistently achieve good results; however, they also require
special expertise to enable effective signal processing. When
strong background noise signals of complicated machines are
encountered, health management through signal processing-
based methods becomes difficult, and the extracted features
are often unclear, thereby prohibiting accurate manual analy-
sis and evaluation.

Several intelligent fault diagnosis methods, such as sup-
port vector machine (SVM) [11] and artificial neural
network [12], have recently been proposed. However, tradi-
tional intelligent systems with shallow architectures depend
on distinctive characteristics, which are often extracted man-
ually. The representative ability of extracted features greatly
affects the training and testing of fault diagnosis models.
Thus, a self-learning model that can automatically extract
features containing effective health information from com-
plex signals is urgently needed to assist machine condition
monitoring. As a breakthrough in neural networks, deep
learning [13] combines multiple nonlinear learning layers to
simulate the multi-layer abstract learning mechanism of the
human brain; this approach thus possesses the capacity to
process raw data in different domains and avoids the com-
plexity and uncertainty often observed in traditional feature
extraction processes. Some typical deep-learning networks
include stacked auto-encoder [14], convolutional neural net-
work (CNN) [15], and deep belief network (DBN) [16].
These methods have been successfully applied to speech
recognition [17], natural language processing [18], and com-
puter vision [19]. DBN has also been introduced to the
field of mechanical fault diagnosis. Tran et al. [20], for
example, successfully used DBN to identify defects in the
valves of a reciprocating compressor. Guo et al. [21] pro-
posed a two-layer hierarchical diagnosis network based on a
CNN to classify bearing fault types and diagnose fault sizes.
Gan et al. [22] employed a two-layer hierarchical network
based on DBN to diagnose bearing faults, and Jia et al. [23]
utilized a DNN based on auto-encoders for bearing fault
diagnosis.

Deep learning shows strong ability in feature learning but
is challenged in the field of mechanical equipment fault
diagnosis. On the one hand, some studies are still based on
manual preprocessing of characteristics prior to deep-model
training, which does not make full use of the advantages of
deep learning. On the other hand, during the training of deep-
learning models, overfitting or missing of optimal values may

easily occur, and some measures or strategies must be devel-
oped to achieve successful model construction. Moreover,
most of the existing research identifies fault types but rarely
attempts to determine their degree despite the consensus that
recognition of both fault type and degree will be beneficial to
machine health management.

This paper addresses these issues and develops an
end-to-end fault diagnosis model based on an adaptive
DBN optimized by the Nesterov moment (NM) to extract
deep representative features from rotating machinery and rec-
ognize bearing fault types and degrees simultaneously. First,
frequency-domain signals are prepared for inputting into the
deep-learning model for feature learning. Then, NM is intro-
duced to the training process of DBN. Next, an independent
adaptive learning rate is developed to optimize the param-
eter update process. Finally, the characteristics learned by
DBN are used to identify fault types and degrees. Compared
with the standard DBNmethod, NM can roughly judge where
the parameters are proceeding and decline in advance validly
to avoid missing the optimal point, thereby avoiding the prob-
lem of overfitting and local convergence. The development of
an independent adaptive learning rate improves the conver-
gence speed, and the proposed method enables simultaneous
identification of fault types and degrees using one model. For
verification, bearing signals from different health conditions
are collected through a self-made bearing fault test bench
for analysis, and the performance of the proposed method
demonstrates satisfactory convergence. In fact, the testing
accuracy of the proposed method is higher than those of
standard DBN and SVM.

The rest of this paper is organized as follows.
Section 2 explains the proposed adaptive DBN optimized
by NM, Section 3 introduces an end-to-end model based
on the improved DBN for recognizing both bearing fault
type and degree, and Section 4 validates the performance
and superiority of the proposed method compared with other
methods through experimental analysis. Finally, conclusions
are given in Section 5.

II. ADAPTIVE DEEP BELIEF NETWORK OPTIMIZED
BY THE NESTEROV MOMENT
A. RESTRICTED BOLTZMANN MACHINES AND DEEP
BELIEF NETWORK
A restricted Boltzmann machine (RBM; Figure 1) is a special
form of the Markov random field proposed by Smolensky.
RBM consists of visible and hidden layers containing visible
v = {v1, v2, · · ·, vi, · · ·, vn} and hidden h = {h1, h2, · · ·,
hj, · · ·, hm} neurons, respectively.
The visible layer is used to represent the input data, where

each visible neuron is only associated with m hidden neu-
rons and independent of other visible neurons. The hidden
layer is understood as the intrinsic expression of the data.
Each hidden neuron is only affected byn visible neurons
and independent of other hidden neurons. As a stochastic
network, RBM ismainly described by probability distribution
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FIGURE 1. Schematic architecture of RBM.

and energy functions. Since the state of the neuron value of
the RBM is random, according to Bayesian network theory,
knowledge of the joint probability distribution, edge proba-
bility distribution, and conditional probability of visual neu-
rons and hidden neurons is necessary to describe the whole
network.

RBM neurons belong to the Boolean data type, which
describes only two states: state 1 indicates that neurons are
activated, and state 0 indicates that neurons are suppressed.
Then, for a defined set of neuronal states (v, h) ∈ {0, 1},
the energy function of RBM is defined as:

E(v, h; θ ) = −
n∑
i=1

m∑
j=1

wijvihj −
n∑
i=1

aivi −
m∑
j=1

bjhj (1)

where θ = {W , a, b}, vi represents the state of the
ith neuron in the visible layer, hj represents the state of the
jth hidden neuron, ai represents the bias of the ith neuron in
the visible layer, bj represents the bias of the jth neuron in the
hidden layer, andwij indicates the connection weight between
the ith neuron in the visible layer and the jth neuron in the
hidden layer.

The joint probability of visible neurons and hidden neurons
is defined as

P(v, h; θ ) =
1

Z (θ )
exp(−E(v, h; θ )) (2)

which is the Gibbs distribution of the RBM network,
Z (θ ) is the normalization factor, and the sum of the joint
probabilities is guaranteed to be 1, Z (θ ) is the normalization
factor and defined as:

Z (θ ) =
∑
v

∑
h

exp(−E(v, h; θ )) (3)

The edge probabilities and conditional probabilities of
visible and hidden neurons can be obtained from the joint
probabilities:

P(v; θ ) =

∑
h
exp(−E(v, h; θ ))∑

v

∑
h
exp(−E(v, h; θ ))

P(v |h ; θ ) =
exp(−E(v, h; θ ))∑
v
exp(−E(v, h; θ ))

(4)

P(h; θ ) =

∑
v
exp(−E(v, h; θ ))∑

v

∑
h
exp(−E(v, h; θ ))

P(h |v ; θ ) =
exp(−E(v, h; θ ))∑
h
exp(−E(v, h; θ ))

(5)

After providing a set of visible neuron states, the probabil-
ity that the ith hidden neuron is activated is:

p(hj = 1 |v ; θ ) = σ (
∑n

i=1
wijvi + bj) (6)

where σ represents the sigmoid function σ = 1/
(1 + e−x). Similarly, after providing a set of hidden neuron
states, the probability that the ith visible neuron is activated
is:

p(vi = 1 |h ; θ ) = σ (
∑m

j=1
wijhj + ai) (7)

RBM training involves searching for parameters that max-
imize the edge probability of the visible neurons in the Gibbs
distribution represented by RBM, that is, maximizing the
logarithmic likelihood function:

θ∗ = argmax
θ

L(θ ) = argmax
θ

∑
v
lnP(v; θ ) (8)

Based on log-likelihood function, parameters are calcu-
lated by the following update rules:

∂ ln p(v; θ )
∂wij

= 〈vihj〉data − 〈vihj〉 mod el

∂ ln p(v; θ )
∂ai

= 〈vi〉data − 〈vi〉 mod el

∂ ln p(v; θ )
∂bj

= 〈hj〉data − 〈hj〉 mod el (9)

where 〈·〉data represents the training data distribution
expectation and 〈·〉modelrepresents the expectation related to
the distribution defined by the model. The sample of 〈·〉data
can be easily obtained, whereas the sample of 〈·〉model cannot.
Therefore, contrastive divergence is used to approximate the
gradient by one full-step of Gibbs sampling. The updated rule
can be modified as follows:

1wij = ηw(〈vihj〉0 − 〈vihj〉1)

1a = ηa(〈vi〉0 − 〈vi〉0)

1b = ηb(〈hj〉0 − 〈hj〉1) (10)

where ηw, ηa, and ηb represent the learning rates of the
weight wij, the visible layer deviation value a, and the hidden
layer deviation value b, and have values ranging from 0 to 1.

In 2006, Hinton et al. [24] proposed DBN, which is a stack
of several RBMs. In DBN, data enter from the visible layer of
the underlying RBM, and the features are extracted bottom-
up through the stackedRBMs. Finally, the deep features of the
original data are obtained, and a classification layer is added
to the top layer to classify the extracted features.

Figure 2 shows a stacked DBN model with three RBMs.
The first RBM is formed by layer1 (as the visible layer) and
layer2 (as the hidden layer), while the second RBM is formed
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FIGURE 2. Schematic architecture of DBN.

by layer2 (as the visible layer) and layer3 (as the hidden
layer). The third RBM is formed by layer3 (as the visible
layer) and layer4 (as the hidden layer). Finally, the third layer
of the hidden layer h3 and the classification layerO constitute
the top classifier. Deep features from the third RBM are fed
into a softmax classifier to conduct the classification task
and one-hot encoding is adopted to binarize the labels. The
number of neurons in the visible layer is determined by the
dimensions of the input data, and the number of neurons in the
classification layer is determined by the number of categories
of input data.

B. NESTEROV MOMENT FOR DEEP BELIEF
NETWORK LEARNING
Stochastic gradient descent (SGD) is often used to deter-
mine the gradient descent of likelihood functions. However,
the objective functions encountered in practice tend to show
various gradients in different dimensions. Figure 3 shows that
the function is steeper in the longitudinal direction than in
the lateral direction, forming a gully. In this case, since the
change in gradient is large in the y direction and small in x
the direction, the SGD oscillates in the y direction, slowly
moves toward the x direction, and gradually approaches
an optimal value, resulting in a slow training speed of
the RBM.

The momentum method [25] can effectively speed up the
gradient descent of SGD through the gully and suppress
oscillations. The momentummethod is based on the SGD and
accomplished by multiplying the gradient of the last update
by a momentum factor γ and adding the gradient calculated
at in this case as the gradient of this update.

vt = γ vt−1 + η∇θJ (θt−1)

θt = θt−1 − vt (11)

In Equation (11), the momentum factor γ is usually set
to 0.9. Since the objective function oscillates back and forth
in the y direction, the two successive gradients converge. If
they have oscillating values in the y direction, the gradients
in this direction cancel each other out and suppress the sway

FIGURE 3. Mini-batch stochastic gradient descent along gullies.

FIGURE 4. Mini-batch stochastic gradient descent along gullies with a
momentum.

FIGURE 5. General procedure of the improved DBN method.

after addition. The gradient in the x direction is maintained.
Thus, when the two gradients are added, the gradient descent
in the x direction is accelerated and the optimal point is
quickly approached, as illustrated in Figure 4.

The use of the momentum method in SGD causes accumu-
lation of gradients in the same direction and cancellation of
gradients in different directions, resulting in acceleration of
approaching the optimal point. However, the gradient descent
of the momentum method is random; it cannot judge where
the parameters are heading and it decreases rapidly, causing
the parameter to fall rapidly near the optimal point andmiss it.
NM [26] can effectively solve this problem by calculating the
gradient of J (θ − γ vt−1) to predict the position of the next
drop of the parameter and decelerating before the parameter
reaches the optimal point to avoid missing it.

vt = γ vt−1 + η∇θJ (θt−1 − γ vt−1)

θt = θt−1 − vt (12)

Unfortunately, the NM method is sometimes excessively
conservative. As the speed of the parameter approaching
the optimal point slows down, if the parameter is not near
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FIGURE 6. Training process of adaptive DBN optimized by the NM method.

TABLE 1. Specifications of the test bearing.

the optimal point, the NM method still reduces the updated
gradient, leading to a decline in speed well before the param-
eter approaches the optimal point; in addition, the speed of

model training is slow [27]. Hence, the individual adaptive
learning rate, which is developed to avoid this problem,
is introduced.
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TABLE 2. List of bearing health conditions.

TABLE 3. Description of the dataset for the end-to-end fault diagnosis
model.

C. INDIVIDUAL ADAPTIVE LEARNING RATE FOR
UPDATING DEEP BELIEF NETWORK PARAMETERS
To obtain the ideal classification effect and training speed,
an individual adaptive learning rate was used to train the
RBMmodel. The connection weightwij update equations are:

hij(k) =

{
hij(k − 1)+ αif (gradkijgrad

k−1
ij ) > 0

hij(k − 1)× (1− α)if (gradkijgrad
k−1
ij ) < 0

(13)

1wkij = η · h
k
ij · ∇θJ (θt−1 − γ vt−1) (14)

where gradkij indicates the gradient of the weight wij after
training k times and hij(0) is set to 1. If the current direction
of the weight gradient is consistent with the previous gradient
direction, hij(t) increases by α times; by contrast, if the cur-
rent direction of the weight gradient is opposite the previous
gradient direction, hij(t) is reduced by 1−α times. The value
of this parameter should be small, such as 0.1, to ensure that
the learning rate does not grow too fast and the model does
not miss the optimal solution when the learning rate increases
by α multiples. The limitation of hij(t), which remains within
the range of [0.01, 100], can effectively prevent the vanishing
gradient problem.

Since the basis of judgment of the independent adap-
tive learning rate is different from that in the NM method,

FIGURE 7. End-to-end model based on adaptive DBN optimized by the
NM method.

FIGURE 8. Bearing experimental fault platform.

the former can effectively avoid the problem that the
model training speed slows down during the training pro-
cess of the NM method. When the NM method judges
incorrectly, the independent adaptive learning rate com-
pensates the gradient update by increasing the descend-
ing step size to ensure that the parameters can obtain
faster training speeds without exceeding the optimal
point.
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FIGURE 9. Time-domain signals under different bearing health conditions.

FIGURE 10. Frequency-domain signals under different bearing health conditions.

III. END-TO-END FAULT DIAGNOSIS MODEL BASED ON
ADAPTIVE DEEP BELIEF NETWORK OPTIMIZED BY THE
NESTEROV MOMENT
The DBN classification procedure is divided into two
major processes, namely, pre-training and fine-tuning. In the

pre-training process, each RBM network is individually
trained using a greedy layer-by-layer algorithm. The spe-
cific steps are as follows. The data are inputted into DBN’s
visible layer to train the first RBM, and updating of the
RBM parameters through forward and reverse propagation is
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TABLE 4. Results obtained by the end-to-end fault diagnosis model.

performed until the maximum number of cycles is reached.
The layer characteristics of the data are first learned from
the first RBM output in the hidden layer. Then, fixing the
parameters of the first RBM, these features are inputted into
the second RBM. The above steps are repeated to train the
parameters of the second RBM. Fine-tuning is applied to
improve the performance of the DBN model by utilizing
the back-propagating (BP) algorithm [28]. After pre-training
of the Softmax classifier, the tagged data are used to begin
input from the bottom layer, and BP [29] is used for global
fine-tuning.

Combining the independent adaptive learning rate and the
NM method based on standard DBN, the adaptive DBN
optimized by the NM method, that is, the improved DBN,
is established, as presented in Figure 5. Figure 6 illustrates
training process of the improved DBN, which pre-trains each
RBM to complete initialization of the end-to-end model
through greedy unsupervised learning and unlabeled training
sample sets.

This paper builds an end-to-end fault diagnosis model
based on the improved DBN to identify fault types and
degrees. First, the NM method and the independent adap-
tive learning rate are developed to improve the DBN
in terms of model optimization. Then, an end-to-end
fault diagnosis model is established based on the
improved DBN. Signals under different health conditions
are analyzed, as presented in Figure 7. Hence, the end-to-
end model can directly recognize various fault types and
degrees.

IV. EXPERIMENTAL VERIFICATION
A. BRIEF INTRODUCTION OF THE DATASET
Figure 8 shows the experimental platform, which includes
a drive motor, normal bearing, test bearing, shaft, bolt-nut
loading system, accelerometer, and NI PXle-1082 data acqui-
sition system. The plum coupling transmits power to the shaft,
where the test bearing (6205-2RS SKF) is installed. The bolt-
nut loading system includes loading bolts, nuts, cushioning
devices, and the SGSF-20K dynamometer. By tightening the
nut above the bolt, the nut is squeezed against the support to
create an adjustable radial load. As shown by the red block
in Figure 8, a PCB 352C33 accelerometer was installed on
the bearing block at 12 o’clock. Here, the sampling frequency
is 10 KHz.

Table 1 shows the geometric parameters of the test bearing.
A total of 16 health conditions, including four fault types
(normal, outer race fault, inner race fault, and roller fault)
and five fault degrees (0.2, 0.3, 0.4, 0.5, and 0.6 mm), are col-
lected from the self-made bearing test platform and analyzed,
as shown in Table 2. The waveforms of signals are presented
in Figures 9 and 10.

For analysis, 3/4 of the total samples are randomly selected
as training data, and the remaining samples are used for
testing. Detailed information of the dataset is summarized
in Table 3.

In the end-to-end fault diagnosis model, the number of
visible layer neurons is 624, and the number of neurons in
the first hidden layer is 500. In the second hidden layer, the
number of neurons is 300. The connection weights of each
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FIGURE 11. Ten repeated analysis results by the end-to-end fault diagnosis model for 0.4-0.6 mm roller
faults.
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FIGURE 11. Ten repeated analysis results by the end-to-end fault diagnosis model for 0.4-0.6 mm roller
faults.

FIGURE 12. Training processes of RBM1 and RBM2 in the fine-tuning iterations.

layer are initialized byN (0, 0.01). In the pre-training process,
the learning rate of the first RBM is initialized to 0.1, and the
learning rate of the second RBM is initialized to 0.0025. The
weight decay term L2 is added to penalize the large weight
term, and the attenuation coefficient is 0.0001. The number
of pre-training iterations is set to 5000, and the number of
iterations is fine-tuned to 5000. To reduce the impact of ran-
dom factors, the experiment was repeated 10 times, and the
average results are considered the final recognition results.

B. EXPERIMENTAL RESULTS AND ANALYSIS
Table 4 reveals the results obtained by the end-to-end fault
diagnosis model. The average testing accuracy of the model
is 98.98%. For the first 13 bearing-health conditions, all of
the recognition results of the model are achieved with the
expected accuracy of 100%; for bearing-health conditions

Nos. 14, 15, and 16, the average accuracies for roller fault
degree recognition are 92.0%, 96.0%, and 94.4%, respec-
tively. Compared with those of inner and outer race faults,
dynamic characteristics are more complicated when the sur-
face of the roller suffers from defects; thus, the representa-
tive ability of the features learned from complex dynamic
responses is relatively weak. Figure 11 reveals the specific
results of 10 repeated analyses of bearing health conditions
Nos. 14 to No. 16, which feature different roller fault degrees.
Incorrect recognition only occurs in these three conditions.
For other conditions, the recognition accuracy of the end-to-
end fault diagnosis model is 100%.

Comparative analysis between the proposed method
and standard DBN and SVM was conducted. The same
frequency-domain signals were used as inputs to thesemodels
for recognition, and the average results of the comparative
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FIGURE 13. Trends of testing accuracy of two models in the fine-tuning iterations.

FIGURE 14. Trends of error for the testing samples in each fine-tuning iteration.

methods are expressed in Table 5. The first and second
methods revealed testing accuracies of 64.25% and 98.67%,
while the proposed method achieved an identification result
of 98.98%. In general, the proposed end-to-end fault diagno-
sis model based on improvedDBNperforms better than either
standard DBN or SVM. Figure 12 depicts the training process
of RBM1 andRBM2 in fine-tuning iterations and shows satis-
factory convergence trends. As shown in Figure 13, while the

fault-identification accuracy of the proposed method is lower
than that of the standard DBN at the beginning of the analysis,
it gradually and steadily increases. After 2500 iterations, the
accuracy of the improved DBN gradually surpasses that of
the standard DBN and shows the highest values among the
methods tested. Similarly, in Figure 14, although the error
of the proposed method is higher than that of the standard
DBN at the beginning of analysis, it steadily decreases and
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TABLE 5. Average testing accuracy using different methods.

gradually becomes lower than that of the standard DBN after
2500 iterations. These improvements may be attributed to the
ability of the NMmethod to calculate the position of the next
drop of the gradient prediction parameter of J (θ − γ vt−1),
thereby ensuring that the parameter is always close to the
optimal point at the appropriate speed to avoid missing it.
At the same time, the independent adaptive learning rate
can compensate the gradient descent to a certain extent,
effectively avoiding the problem that the training speed of
the NM method is too slow during the training process.
Taking the results together, the end-to-end model based on
the improved DBN achieves ideal results and exhibits better
performance than conventional methods.

V. CONCLUSION
In this study, a novel end-to-end fault diagnosis method is
proposed for the fault diagnosis of rotating machinery. The
frequency-domain signals are inputted into the model for
feature learning. To ensure that parameters decline at the
appropriate speed to avoid missing the optimal point and
improve training performance, NM is introduced to the train-
ing process of DBN. An individual adaptive learning rate
algorithm is developed to select a suitable step length with
which to accelerate the descent to optimize the process of
parameter updating. Finally, the characteristics learned by
DBN are used to identify various fault types and degrees.
The proposed method can automatically extract valid fault
features and avert form the extraction of complex features
from frequency-domain signals manually. Verification using
a self-made bearing fault testing platform indicated that the
proposed method demonstrates excellent recognition perfor-
mance on the defective bearing dataset and achieves higher
accuracy than standard DBN and SVM.
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