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ABSTRACT The dynamic capture ability of diagonal recurrent neural network (DRNN) makes them a
suitable candidate for implementing real-time nonlinear adaptive controllers to handle the nonlinearity and
uncertainty of high-power distributed microwave heating system (HPDMHS). In conventional DRNN-based
adaptive control, the diagonal recurrent neural controller (DRNC) is trained online with one step cost and
control law are not always optimal. To improve this, this paper couples a simple direct adaptive neural control
with adaptive critic design (ACD) technique to achieve the optimal temperature tracking in HPDMHS. After
transforming the original optimal temperature tracking control problem into an error regulation problem,
the desired control is obtained by a regular DRNC, while the error regulation control is solve by ACD
technique using DRNN. Simulation results demonstrate the superiority of the proposed DRNC-ACDmethod
over conventional adaptive control in temperature tracking for HPDMHS.

INDEX TERMS High-power distributed microwave heating system, diagonal recurrent neural network,
optimal temperature tracking control, adaptive critic design, direct adaptive control.

I. INTRODUCTION
Microwave heating has been widely applied in food and
chemical industries as an attractive alternative to conventional
heating methods, as it enjoys the superiorities of brief startup
periods, reduced power consumption and shorten processing
time [1]. Recent years, to improve the overall efficiency and
productivity, numerous studies have been focused on the con-
troller designs in microwave heating systems (MHS) [2]–[4].
Akkari et al. [2] proposed a global linearizing control based
on a gray-boxmodel, however an undershoot is obvious in the
middle stage of microwave thawing process. Yuan et al. [4]
further presented a sliding mode control strategy based on a
thermodynamicmodel. Besides, considering input saturation,
internal uncertainty and external disturbance, Zhong et al. [3]
proposed a H∞ guaranteed cost tracking control method
based on a one-dimensional cavity model. Results demon-
strated that the problem of thermal runaway and local over-
heating in heated medium can be well prevented. However,
the mechanism models mentioned above are characterized
by their high nonlinearity, which directly contributes to the
high complexity in controller design. Especially in industrial

applications, MHS usually integrates multiple microwave
sources by means of power synthesis to form the high-power
distributed microwave heating system (HPDMHS) to achieve
the large scale synchronous heating purpose. In such systems,
each independent microwave source is capable of automati-
cally adjusting its power according to the environment, which
contributes to the more complex coupling of multi-physical
fields and stronger interaction among system states. Although
in our previous work, a temperature prediction model was
developed for distributed microwave heating system using
deep learning and isolation forest [5], the control problem has
not been considered. The direct consequence of the nonlinear-
ity and complexity of HPDMHS is the wide spread system
uncertainties that prevent the problem solving from using
the conventional model-based control approaches. This con-
tributes to the development of more sophisticated techniques
which are more suitable to handle such complex system.

Numerous sophisticated control techniques have been
arisen recent years to handle such system nonlinearities
and complexities, such as extremum seeking control [6], [7],
robust control [8], iterative learning control [9] and neural

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

68839

https://orcid.org/0000-0001-6449-0625
https://orcid.org/0000-0001-5328-4068
https://orcid.org/0000-0002-0788-561X


T. Liu et al.: Adaptive Critic Based Optimal Neurocontrol of a Distributed Microwave Heating System

control [10]–[12]. They have been successfully applied in
lighting systems, mechanical systems and power systems.
Among them, neural networks are found to be the most
promising tool in modeling and control of complex real
systems with high degree of nonlinearity. This motivates us
employ neural networks as an identifier and controller for
HPDMHS. Precisely, feedforward neural networks (FNNs) is
a static network without the tapped delays. In contrast, diag-
onal recurrent neural network (DRNN) that consists of both
feedforward and feedback connections in network structure
allows them to store information for later use, which pro-
vides it the ability to capture the dynamics of the plant [13].
Ku and Lee [14] has pointed that DRNN is more effective
and efficient for implementing real time nonlinear adaptive
controllers than FNNs. From the view of control system
design, Kumar et al. [15] used two distinct neural networks
to control systems adaptively by direct and indirect con-
trol. Subsequently, Ku and Lee [13] proposed indirect con-
trol architecture by using DRNN. The control architecture
consists of a diagonal recurrent neural controller (DRNC)
and a diagonal recurrent neural identifier (DRNI). In this
regard, an unknown system is identified by the DRNI, which
provides the information about the system to the DRNC. The
DRNCgenerates a control signal to drive the unknown system
such that the error between actual system output and desired
output is minimized. Since the design of DRNC requires
rarely information of the plant and the control performance
is completely determined by learning algorithm, such control
scheme is easy implementation and simple adjustment.

Ku et al. [16] further applied this DRNN-based adaptive
control in a nuclear reactor system. The use of dynamic
back propagation with adaptive learning rate guarantees
convergence of whole system. But the plant output does
not track the reference model very well in low power
regions. Gao et al. [17], has employed DRNN for control
water tank temperature. The advantage is that it does not
require intensive computation at each control instant and
has potential applications to the situation where a process
is sufficiently nonlinear and real-time implementation is
critical. In [18], a robust DRNN based state observer is
designed for nonlinear systems, but its control performance
has not been tested. In [19], a new weight update algorithm
based on stochastic automation has been proposed for DRNN
control system design. Chow and Fang [20] further devel-
oped two-dimensional theory based online learning algorithm
for recurrent neural network control of nonlinear systems.
Reference [21] has presented a direct and indirect adaptive
control approach for nonlinear systems based on a fuzzy
recurrent neural network. Reference [22] has designed an
internal model controller for pneumatic manipulators, where
a FNN and a DRNN are employed as neural controller and
identifier, respectively. Reference [23] used DRNN for con-
trol of variable flow heating system and gradient descend
is derived for online training. In [24], a sigmoid diagonal
recurrent neural network (SDNN) is proposed for identifica-
tion and control of nonlinear systems, where its new network

structure is based on adaptation sigmoid weight of hidden
layer neurons. Reference [25] has employed two type of
neural networks to control a single-link flexible arm. They
have shown that the DRNN-based control achieve a higher
precision of tip motion tracking than that of in FNN-based
control. In [26], a chaotic DRNN with logistic mapping was
proposed to improve the convergent speed and generaliza-
tion performance of conventional DRNN. Its corresponding
adaptive control scheme is further presented to control the
chaos. Reference [27] proposed an adaptive control for non-
linear dynamic systems based on DRNN. A new learning
algorithm based on Lyapunov stability criterion is developed
to update parameters of DRNC. Simulation results show that
the proposed control algorithm outperforms the conventional
DRNN-based control in terms of accuracy and robustness.

From the literature survey it was found that the application
of DRNN as a controller has held great intuitive appeal and
has attracted considerable attention in recent years. On the
one hand, some papers are focusing on the development of
new learning algorithm for DRNC, since the use of tradi-
tional gradient descend has the tendency of stucking at local
minimal. On the other hand, some papers combine DRNC
with various optimization techniques to improve the control
performance. However, most of these researches simply use
the traditional direct or indirect control scheme. Form the
view of cybernetics, two prominent deficiencies are presented
in such control scheme: one is that DRNC usually meets
the difficulty of many-to-one inverse mappings; the other is
that since the DRNC is online trained with only one step
error or cost, the control law is not always optimal.

To handle the above mentioned problems, this paper steps
through the components of a new diagonal recurrent neu-
ral adaptive control scheme designed specifically to provide
highly accurate temperature tracking results for HPDMHS.
While using DRNN as the foundation, the traditional direct
neural control method is integrated with an adaptive critic
design (ACD) technique. The critic method removes the
learning process from simply one-step cost, but learns to
minimize the sum of all discounted costs, or cost-to-go, which
provides the optimal and robust feedback control laws [28].
At the first step of our new design, DRNC is employed to
generate desired control signal using distal supervised learn-
ing approach. This employs the conventional direct adap-
tive control frame, where the optimal manner is difficult to
achieve. Thus we transform the original optimal tracking
control problem into an error regulation problem, which has
divided the problem into two parts. The ACD technique is
then introduced with DRNN to employ as an optimal regula-
tor for the tracking error dynamics. Through combining the
desired control (generated by DRNC) with regulation control
(generated by ACD), the final optimal control law can be
achieved through the hybrid DRNC-ACD strategy. The main
contributions of this paper are summarized as follows.

1) Propose to couple an direct adaptive DRNN control
with ACD technique to achieve the optimal tracking
control. Compared with [13] and [14], the tracking
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error dynamics can be regulated by the added critic and
actor DRNN. Compared with [29] and [30], DRNN is
employed to replace the conventional FNN as a more
robust identifier and controller.

2) The proposed control strategy is applied to HPDMHS,
where the system dynamics is completely unknown.

3) The temperature tracking control performance of the
proposed method is tested and compared with the con-
ventional DRNN adaptive control in HPDMHS.

The rest of the paper is organized as follow. Sect. II
gives the brief introduction of HPDMHS and its identifica-
tion model. In Sect. III, some preliminaries about DRNN,
DRNN-based adaptive control and ACD are introduced.
Sect. IV gives the hybrid DRNC-ACD construction for the
temperature tracking control in HPDMHS. The effectiveness
of the proposed method is tested and verified comparing
with conventional DRNN-based control method in Sect. V.
Finally, Sect. VI concludes the paper with remarks on the
future work.

II. MODELING OF HPDMHS BASED DRNN
A. CONFIGURATION OF HPDMHS
The Schematic of HPDMHS is shown in Fig. 1. The sys-
tem is mainly constructed of four parts, multi-microwave
source subsystem (MSS), multimode cavity (MC), medium
transmission subsystem (MTS), and data acquisition subsys-
tem (DAS). The MC has a rectangular shape with an inlet
opening for the raw materials and an outlet discharge to
receive the heated materials. The materials are distributed
evenly on the MTS, of which the speed of conveyor belt can
be manipulated by a motor driver. The MSS integrates five
microwave sources and each one is capable of continuous
adjustment ranging from 0-3kW. The microwave power is
then directed into the MC through waveguide for heating
purpose. As a DAS, an optical fiber thermometer (FTS-I201,
Optsensor, China) is employed at the outlet of the MC to
measure the temperature of exported material, while PLC

FIGURE 1. Schematic of experimental HPDMHS.

is employed to establish the required connection between
device and computer through RS-232/RS-485 converter by
the integratedModbus protocol. Themicrowave powers, tem-
perature measurement and conveyor speed are then real time
recorded until the heating process is finished, thus, a set of
input/output data sample ready to be used in system identifi-
cation to develop the desired model can be obtained.

B. SYSTEM IDENTIFICATION BASED ON DRNN
System identification is based on applying a suitable input
signal to the system to be identified in order to excite its
dynamics and consequently to observe its response to the
applied input signal. In this context, a data collecting exper-
iment is conducted to obtain the required input/output data
set by a real-time microwave rice drying experiment. In this
data set, the input signals to HPDMHS are five microwave
powers and conveyor speed. Turning up the output power
can enhance the electromagnetic field, while turn down the
conveyor speed can prolong themicrowave radiation time and
thus raising the temperature, vice versa. The output signal
to HPDMHS is rice temperature that can be measured by
an optical fiber thermometer. In general, the DRNN based
identification is a combination of past output and input values
from the system and the input signal, respectively. Thus,
the mathematical model of HPDMHS can be expressed as
follow:

y(k + 1) = F(y(k), up1(k), up2(k),

up3(k), up4(k), up5(k), uv(k)) (1)

where up1(k) to up5(k) denote the incident powers of five
microwave sources, uv(k) is the conveyor speed which is
converted by motor frequency, y(k) and y(k+1) represent the
current and next moment sample temperature, respectively.
The function F(·) can be identified by neural networks due to
its universal approximation ability. In our work, a DRNNwith
the structure of 7-15-1 is constructed to identify the system.
After a sufficiently long training process, it is able to learn
the system dynamics. Thus, a DRNI for HPDMHS is built.

III. PRELIMINARIES

FIGURE 2. Structure of DRNN.
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A. DRNN
Fig. 2 shows the structure of DRNN. Input weight vector
connected external inputs to hidden layer is denoted as W I .
Neuron presented in the hidden layer is known as recur-
rent neuron that has an internal feedback loop to itself.
The diagonal weights are represented as red curves and in
case of DRNN they provide a weighted unit delay output
of the recurrent neuron as an input to the same recurrent
neuron. Because of this, DRNN can store information for
later use and is better at dealing with time-varying input
and output. The diagonal weights are represented as WD

=

{wD1 ,w
D
2 , . . . ,w

D
m}, where m denotes the number of recurrent

neurons in the hidden layer. The output weight is denoted
by WO

= {wO1 ,w
O
2 , . . . ,w

O
m}, while the input vector is

X = {x1(k), x2(k), . . . , xn(k)}, where n denotes the input
dimension. Then themathematical model for DRNN is shown
below

y(k) =
∑
m

WO
mHm(k) (2)

Hm(k) = ϕ(Sm(k)) (3)

Sm(k) = WD
mHm(k − 1)+

∑
n

W I
nmxn(k) (4)

where for each time step k , W I denotes the input weights,
Sm(k) is the sum of inputs of mth recurrent neuron, Hm(k) is
the output of mth recurrent neuron, and y(k) is the output of
DRNN. It should be noted that activation function ϕ(·) chosen
in the recurrent neuron is usually nonlinear tangent hyper-
bolic function which enables the output have both positive
and negative value, while the activation in the output neuron
is considered to be linear so that there is no restriction on its
value.

B. DRNN-BASED ADAPTIVE CONTROL
Weight vectors W I , WD and WO denote the parameters of
DRNC. These parameters are required to be adjusted dur-
ing online training. This will make DRNC yield desired
control signals which causes the output of DRNI to follow
the desired reference model output. The gradient descend is
used to derive the weight adjustment rule. The conventional
DRNN-based adaptive control scheme is shown in Fig. 3.
u(k) denotes DRNC output. y(k) and yr (k) denote the DRNI
and reference model output, respectively. The TD component

FIGURE 3. Block diagram of DRNN-based adaptive control.

represents the tapped delay whose output is a unit delay value
of its input, hence y(k − 1) and u(k − 1) are outputs of TD
components, which are introduced to the inputs of DRNC.
In general, the unknown plant is first offline identified by
DRNI. Then its weights are frozen. The DRNC is used to
drive the DRNI so that the error e(k) = yr (k)− y(k) between
the actual output and the desired output is minimized. For
convenience of analysis, the weight vectors of DRNN are
generalized expressed asWG. E(k) is defined as the objective
function which can be expressed as

E(k) =
1
2
(e(k))2 (5)

Then using the backpropagation, the update rule is as follow:

WG(k + 1) = WG(k)+ η1WG(k)

+α(WG(k)−WG(k − 1))

1WG(k) =
∂E(k)
∂WG(k)

=
∂E(k)
∂e(k)

∂e(k)
∂WG(k)

(6)

where η represents learning rate, α denotes momentum factor
which enables to speed up the learning without causing insta-
bility in the system.1WG(k) denotes the required adjustment
to be made in the weights. It should be noted that ∂y(k)

∂u(k) is

required when solving ∂e(k)
∂WG(k) by chain rule. This term is

called jacobian/sensitivity of the plant, which can be directly
solved through backpropagation by DRNI.

C. ACD
Optimal control theory has been an active area of non-
linear system for several decades. However, the devel-
opment of nonlinear optimal control technique is mainly
hampered by solving Hamilton-Jacobi-Bellman (HJB) equa-
tion. The ‘‘curse of dimensionality’’ is almost inextrica-
ble in solving the HJB equation by traditional dynamic
programming (DP) [31]. To apply the optimization idea of
DP successfully for nonlinear system, ACD was proposed
in 1997 [32]. It employs an actor-critic way commonly used
in reinforcement leaning to search the optimal policy. Critic
methods remove the learning process one step from control
network, so that desired control action information is not
necessary. The critic network learns to approximate the cost-
to-go (the function J of the Bellman’s equation in DP) and
uses the output of an action network as one of its inputs [33].

The family of ACDs has been classified into sev-
eral main schemes including heuristic dynamic program-
ming (HDP), dual heuristic dynamic programming (DHP),
action-dependent HDP (ADHDP), ADDHP, globalized
DHP (GDHP) and ADGDHP [28]. In this paper, the simple
and powerful HDP [34] approach is adopted for the design of
an optimal regulator of error dynamic system.

Considering a discrete-time nonlinear system that can be
expressed as

y(k + 1) = f (y(k))+ g(y(k))u(k) (7)

where y(k) represents the state vector of the system, u(k)
denotes the control input, f (·) and g(·) are system functions.
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For optimal tracking control problem, the control objective
is to find the optimal control u∗(k) so that the nonlinear
system (7) can track a reference trajectory yr (k) in an opti-
mal manner [29], [30]. The tracking error can be defined as
follow:

e(k) = y(k)− yr (k) (8)

Assume that the desired trajectory satisfies the following
form:

yr (k + 1) = f (yr (k))+ g(yr (k))ur (k) (9)

where ur (k) denotes the desired control input that can be
obtained by

ur (k) = g−1(yr (k))(yr (k + 1)− f (yr (k))) (10)

Then, the regulation control ue(k) is defined by

ue(k) = u(k)− ur (k) (11)

Considering (7)-(11), the tracking error e(k + 1) can be
expressed as

e(k + 1) = y(k + 1)− yr (k + 1)

= f (e(k)+ yr (k))− yr (k + 1)

+ g(e(k)+ yr (k))(ue(k)+ ur (k))

= f (e(k)+ yr (k))− yr (k + 1)

+ g(e(k)+ yr (k))ue(k)

+ g(e(k)+ yr (k))

· g−1(yr (k))(yr (k + 1)− f (yr (k))) (12)

From (12), we can see that it is possible to use ue(k) and
e(k) to obtain the tracking error e(k + 1). For convenience
of analysis, (12) can be rewritten as

e(k + 1) = fe(k)+ ge(k)ue(k) (13)

where

fe(k) = f (e(k)+ yr (k))

+ g(e(k)+ yr (k))g−1(yr (k))(yr (k + 1)− f (yr (k)))

− yr (k + 1)

and ge(k) = g(e(k)+ yr (k)).
To this end, our objective is to find the control sequence

ue(·) = [ue(k), ue(k + 1), . . .] to minimizes the following
cost-to-go:

J (e(k)) =
∞∑
i=k

β i−kU (e(i), ue(i)) (14)

where β is the discount factor with 0 < β ≤ 1, andU denotes
utility function that is a measure of one-step cost of control.
This can be selected based on minimum-fuel considerations,
minimum energy, minimum risk, etc [35]. In our problem,
the utility function U is based on the minimum temperature
tracking error and microwave energy, which is designed as
follow:

U (e(i), ue(i)) = e(i)TPe(i)+ ue(i)TQue(i) (15)

where P and Q are symmetric positive definite matrices with
appropriate dimensions.
Now, from (11) it is observed that the tracking control u(k)

consists of a predetermined desired control ur (k) correspond-
ing to the reference trajectory yr (k) and an error regulation
control ue(k) corresponding to the tracking error e(k). Before
proceeding, the following theorem is needed.
Theorem 1: Let ue(k) be an admissible control such that the

tracking error system (13) is asymptotically stable. Then the
error system function fe(k) is bounded satisfying

‖fe(k)‖2 ≤
1
2
(ζλmin(P)‖e(k)‖2

+ (ζλmin(Q)− 2g2M )‖ue(k)‖2) (16)

where λmin(P) is the minimum eigenvalue of P, λmin(Q) is the

minimum eigenvalue of Q. ζ > 2g2M
λmin(Q)

is a known positive
constant.

Proof: We define the following positive definite Lya-
punov function:

VL(k) = eT (k)e(k)+ ζJ (e(k)) (17)

where J (e(k)) =
∞∑
i=k
β i−kU (e(i), ue(i)) is defined in (14).

Since we are working in discrete domain, the difference of
the Lyapunov function is given by

1VL(k) = VL(k + 1)− VL(k) (18)

It can be rewritten as

1VL(k) = eT (k + 1)e(k + 1)− eT (k)e(k)+ ζ1J (e(k))

(19)

where1J (e(k)) = J (e(k+1))−J (e(k)). Using (13) and (14),
we can get

1VL(k) = (fe(k)+ ge(k)ue(k))T (fe(k)+ ge(k)ue(k))

− eT (k)e(k)− ζ (eT (k)Pe(k)

+ uTe (k)Que(k)) (20)

After applying the Cauchy-Schwarz inequality, we can get

(fe(k)+ ge(k)ue(k))T (fe(k)+ ge(k)ue(k))

≤ 2‖fe(k)‖2 + 2g2M‖ue(k)‖
2 (21)

eT (k)Pe(k)+ uTe (k)Que(k)

≤ λmin(P)‖e(k)‖2 + λmin(Q)‖ue(k)‖2 (22)

Thus,

1VL(k) ≤ 2‖fe(k)‖2 + 2g2M‖ue(k)‖
2
− eT (k)e(k)

− ζ (λmin(P)‖e(k)‖2 + λmin(Q)‖ue(k)‖2)

1VL(k) ≤ 2‖fe(k)‖2 − (ζλmin(Q)− 2g2M )‖ue(k)‖2

− ζλmin(P)‖e(k)‖2 − ‖e(k)‖2 (23)

Considering the goal of the tracking error system (13) being
asymptotically stable 1VL(k) < 0, we require

‖fe(k)‖2 ≤
1
2
(ζλmin(P)‖e(k)‖2

+(ζλmin(Q)− 2g2M )‖ue(k)‖2) (24)
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Therefore, if the bound in (24) is true, we can get
1VL(k) < 0, implying the asymptotic stability of (13). �
Remark 1: Theorem 1 shows that if fe(k) is bounded satis-

fying (16), then, for the error system (13), there must exist an
admissible control ue(k) not only stabilizes the system (13)
but also guarantees (14) is finite.

In this sense it can be said that the optimal tracking control
problem of (7) is transformed into an optimal regulation
problem of (13). Noted that cost-to-go can be rewritten in a
recursive form which is as follow:

J (e(k)) = e(i)TPe(i)+ ue(i)TQue(i)

+

∞∑
i=k+1

β i−k−1U (e(i), ue(i))

= e(i)TPe(i)+ ue(i)TQue(i)+ βJ (e(k + 1)) (25)

According to Bellman’s optimality principle, the optimal
cost-to-go J∗(e(k)) satisfies the discrete-time HJB equation

J∗(e(k))=min
ue

{
e(k)TPe(k)+ue(k)TQue(k)+βJ∗(e(k+ 1))

}
(26)

It is observed that the optimal cost-to-go J∗(e(k)) is obtained
by an optimal regulation control ue∗(k), which is able to
minimize J (e(k)) as J∗(e(k)) . Then the optimal regulation
control ue∗(k) is formulated as

ue∗(k) = arg min
ue(k)

{
e(k)TPe(k)+ ue(k)TQue(k)

+βJ∗(e(k + 1))
}

= −
β

2
gT (e(k)+ yr (k))

∂J∗(e(k + 1))
∂e(k + 1)

(27)

where ue∗(k) is the optimal regulation control associated to
the optimal cost-to-go J∗(e(k+1)) . However, it is impossible
to obtain e(k + 1) as well as J∗(e(k + 1)) at the current
time step. Thus, the approximate optimal solution of HJB
equation is perused instead of the analytical solution and
HDP is employed to approximately solve this kind of optimal
control problems.

HDP successively adapts two neural networks to determine
the optimal cost-to-go and control laws, namely, an action
network (which dispenses the regulation control signals) and
a critic network (which approximates the optimal cost-to-go).
The adaptation process starts with an arbitrarily chosen con-
trol by the action network; the critic network then guides the
action network toward the optimal solution at each time step.
In HDP, action-critic connections are mediated by a model
network approximating dynamics of the plant. In this case,
the DRNI is used as model network.

IV. DRNC-ACD CONSTRUCTION FOR TEMPERATURE
TRACKING CONTROL IN HPDMHS
In this part, we implement the DRNC-ACD construction for
temperature tracking control in HPDMHS. In (13), the origi-
nal tracking control problem has been converted to the error

regulation problem. It should be noted that the desired control
ur (k) = [urp1(k), urp2(k), urp3(k), urp4(k), urp5(k), urv(k)]
can be obtained by setting y(k) = yr (k) and u(k) = ur (k)
in the original system (7), i.e.,

yr (k + 1) = F(yr (k), ur (k))

ur (k) = F−1(yr (k + 1), yr (k)) (28)

where F−1(·) is the inverse function of F(·) . This inspires
us to employ the conventional DRNN-based direct adaptive
control to learn the inverse dynamics of the system. The
DRNC is established with the aid of the trained DRNI as
shown in Fig. 4, where yr (k) is defined as

yr (k) =

Rk + yini, 0 ≤ k ≤
ymax − yini

R
ymax, k >

ymax − yini
R

(29)

FIGURE 4. Block diagram of DRNN-based direct adaptive control.

where R denotes the temperature rising rate, yini is the initial
temperature, while ymax denotes steady temperature. ŷr (k+1)
is the estimated reference trajectory, ûr (k) denotes the esti-
mated desired control. Using the defined error function

eg(k + 1) = ŷr (k + 1)− yr (k + 1)

Eg(k + 1) =
1
2
egT (k + 1)eg(k + 1) (30)

The gradient-based adaptation rule of DRNC is same with
Eq. (6). After a sufficiently long training process, it is
assumed that the DRNC has learned the inverse dynamics of
DRNI and desired control law ur (k) can be obtained.
Next, we employs HDP to solve the optimal regulation

control law u∗e (k) = [u∗ep1(k), u
∗

ep2(k), u
∗

ep3(k), u
∗

ep4(k),

u∗ep5(k), u
∗
ev(k)]. In the HDP control scheme, there are three

neural networks, which are DRNI (act as model network),
critic DRNN and actor DRNN. Combining the DRNC (dis-
penses desired control) with HDP (generates optimal error
regulation control), the structure of DRNC-ACD is shown
in Fig. 5. The blue line means weight transmission, where two
critic DRNNs show the time difference during the algorithmic
procedure, and they actually are the same network.

Additionally, it should be noted that before implementing
the HDP algorithm, the training of both DRNC and DRNI
should be completed. Then, the corresponding weights are
frozen.

The error function Ec(k) for critic DRNN is defined as

Ec(k) =
1
2
ec(k)T ec(k)

ec(k) = Ĵ (e(k))− [U (e(k), ûe(k))+ Ĵ (e(k + 1))] (31)
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FIGURE 5. Block diagram of DRNC-ACD control.

The optimal cost-to-go J∗(e(k)) can be gradually approxi-
mated as the error function Ec(k) is minimized over time. The
adaption rule for critic DRNN is gradient-based backpropa-
gation which can be seen in (6).

The target value of desired regulation control ue(k) for
actor DRNN can be obtained by (27). Thus, the weights of
actor DRNN are updated to minimize the following objective
error function Ea(k):

Ea(k) =
1
2
ea(k)T ea(k)

ea(k) = ûe(k)− ue(k) (32)

Again, using the gradient-descend method, the actor DRNN
can be trained to generate the optimal regulation control
signal u∗e(k). The updating rule for actor DRNN is the same
with critic DRNN.

Additionally, it should be noted from (27) that the control
coefficient matrix g(y(k)) is required for computing the target
value of regulation control . However, it is very difficult to
know the system dynamics of HPDMHS, thus we can not
obtain g(y(k)) directly. In this paper, we establish the system
model by aDRNIwhich can provide a platform for estimating
the value of control coefficient matrix. Reconsidering (7), for
DRNI we can get

g(k) =
∂ ŷ(k + 1)
∂u(k)

(33)

This term is the jacobian of plant output to its input,
which can be directly solved through backpropagation of
DRNI.

The training procedure consists of two training cycles:
one for critic DRNN and other for actor DRNN as illus-
trated in Fig. 6. At the first time step k , the critic DRNN’s
training is carried out first with small initialized random
value. Its incremental optimization is implemented by (31).
After the training of critic DRNN becomes convergent, its
weights are frozen. The training of actor DRNN is contin-
ued by (32) until the convergence of actor DRNN has been
achieved.

The actor DRNN’s weights are now frozen. The system
operation condition is changed, where the time step k equals

to k + 1, the critic DRNN’s cycle starts again. In this way,
the HDP algorithm iterates these two operations while from
time to time changing the time step. At every time step,
the actor DRNN’s weights are updated based on the improved
control law ue(k), and the critic DRNN’s weights are updated
based on the improved cost-to-go function J (e(k)). The algo-
rithmic procedure is finished until the maximum time step
has been reached and the optimal control signals are obtained
over the horizon.

V. SIMULATION RESULTS
In this section, both the proposed control method and the
conventional DRNN-based adaptive control method will be
implemented into the HPDMHS illustrated in Sect. II. Their
control performance will be tested and compared throughly.

The objective of the designed controller is to maneuver the
plant so that it will follow the reference response which is
given in (29), where the temperature rising rate R = 0.125,
the initial temperature Tini = 35◦C, steady temperature
Tmax = 60◦C. In HPDMHS, due to the physical limitations
of magnetrons, the incident power for each microwave source
only can be adjusted between maximum value and minimum
value 0W ≤ upi ≤ 3000W (i = 1, . . . , 5)
To begin with, a DRNI is established by a DRNN with

the structure of 7-15-1. With the initial weights being chosen
randomly in [−0.1, 0.1], we train the DRNI for 100 steps
using 700 data samples by gradient descend algorithm. The
training result is shown in Fig. 7. It is clear that after training,
the temperature error is within 1◦C, so the DRNI successfully
learns the dynamics of the HPDMHS. Next, both controllers
are implemented on the DRNI.

A. CONVENTIONAL DRNN-BASED ADAPTIVE CONTROL
With the aid of the trained DRNI, a DRNN with struct-
ure 8-10-6 is employed to construct the DRNC in the con-
ventional adaptive control system (as shown in Fig. 3). The
learning rate decides the speed at which the parameters of
DRNC will adjust during the control process. A high value of
η may lead to instability and result in out-of-bound output,
while a small value contributes to a slow learning process
as little improvement will be made in parameters from one
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FIGURE 6. Training procedure for HDP algorithm.

FIGURE 7. The system identification error.

iteration to the next. In our study, an adaptive learning rate
is chosen where its value decreases along the time step
η = a×e(−b×k), where a, b are constant, k denotes the current
time step. Besides, a momentum term α is added in the update

FIGURE 8. Temperature tracking performance based on DRNN-based
adaptive control algorithm.

equation to increase the rate of learning and yet avoiding
the danger of instability. In simulation, parameter a is taken
to be 0.8, b is 0.001 and momentum term α is set to 0.005.
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FIGURE 9. System inputs variations based on adaptive control. (a) Mcrowave power 1. (b) Mcrowave power 4. (c) Mcrowave power
2. (d) Mcrowave power 5. (e) Mcrowave power 3. (f) Conveyor speed.

FIGURE 10. Training error of DRNC.

The initial weights of DRNC is chosen close to zeros which
is set to [−0.1, 0.1].

The temperature tracking result based on conventional
DRNN-based adaptive control is shown is Fig. 8. A signif-
icant oscillation can be seen at the temperature rising stage.
The reason for this is that arbitrary weights are selected at the
beginning of the training, which leads to undesired tracking
performance. The weights are then adjusted at each iteration
and gradually trend to be convergent. Although temperature
can keep steady at 60◦C, its rising stage can hardly tack
the reference trajectory. The system inputs up1, up2, up3,
up4, up5 and uv are shown with the phenomenon of rapid
switching action in Fig. 9. Because of the constrained system
inputs, the switching control phenomenon is shown during
the microwave heating system. This rapid regulation can
hardly be achieved in a real system, as it will destroy the
magnetron and motor driver.

B. DRNC-ACD CONTROL
To improve the control performance, the ACD is employed to
combine with DRNC. Firstly, with the aid of DRNI, a DRNC

FIGURE 11. Temperature tracking performance based on DRNC-ACD
control algorithm.

FIGURE 12. Cost-to-go of critic DRNN.

with structure 1-8-6 is trained to generate the desired control
ur (k) using the distal supervised learning approach (as shown
in Fig. 4). The learning rate and momentum term are set
to be η = 0.1 × e(−0.001×k) and α = 0.001, respectively.
The initial weights of DRNC is chosen randomly in [−0.1,
0.1]. We train the DRNC using 1000 data samples, the error
between reference and system output is shown in Fig. 10,
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FIGURE 13. System inputs variations based on DRNC-ACD control. (a) Mcrowave power 1. (b) Mcrowave power 4. (c) Mcrowave
power 2. (d) Mcrowave power 5. (e) Mcrowave power 3. (f) Conveyor speed.

which is visible that the DRNC has successfully learn the
inverse dynamics of the system.

After finishing the training of DRNC, their weights are
kept unchanged and HDP algorithm gets start. Two DRNNs
are used to construct the actor DRNN and critic DRNN
with structures 1-8-6 and 1-4-1, respectively. The initial
weights of critic and actor DRNN are all set to random in
[−0.1, 0.1]. The learning rates and momentum factors for
actor DRNN and critic DRNN are both η = 0.1× e(−0.05×k)

and α = 0.001. Using the gradient descent algorithm,
we online implement the HDP for 1000 time steps with each
time step containing 200 inner-loop training steps for both
critic and actor DRNN.

Fig. 11 demonstrates the outperformance achieved by
DRNC-ACD strategy, as the tracking performance in tem-
perature rising stage has been significantly improved. The
system can track the reference trajectory yr (k) in an optimal
manner. From the view of control system design, the rising
time of response curve in Fig. 11 shows an approximate
20% reduction compared with that of in Fig. 8, which again
provides the evidence of superior efficiency of DRNC-ACD
method over conventional DRNN-based adaptive control
method. The curve of cost-to-go is shown in Fig. 12, where
it becomes convergent within 200 steps. Fig. 13 presents the
real time regulation of five microwave powers and conveyor
speed, which is obvious that the switching rate of system
inputs is significantly reduced. This is beneficial to mag-
netron and motor driver.

VI. CONCLUSION
This paper couples the classical DRNC with ACD tech-
nique to solve the temperature tracking control problem in
microwave heating system. Firstly, the original tracking con-
trol problem is transformed into an error regulation problem
with theoretical analysis. The DRNC-ACD construction is
then designed with four neural networks, namely, DRNC,

DRNI, critic DRNN and actor DRNN. During online learning
process, DRNC is used to generate the desired control ur (k),
while the critic DRNN evaluates the effect of the regulation
control policy ue(k) by estimating a cost-to-go, and then the
actor DRNN adjusts the current policy to minimize the cost
estimated by the critic. As this process continues repeatedly,
the optimal control policy is approximated gradually. Results
show that the proposed controller can achieve a higher track-
ing control precision with less inputs oscillation than that of
in conventional DRNN-based adaptive control method.

Despite the advantages presented by the new design,
the proposed controller when equipped with gradient descend
algorithm can be prone to stuck at the local minimal, espe-
cially when the operational condition is changed signifi-
cantly. Further works will focus on improving the stability
of controller, a more powerful and robust online learning
technique for DRNC-ACD will be investigated.
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