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ABSTRACT Many traditional concept factorization methods employ single graph to approximate the
manifold structure of data. Therefore, they cannot capture the underlying geometric structure hidden in
data effectively. In this paper, we propose a novel method, called Multiple graph regularized Concept
Factorization with Adaptive Weights (MCFAWs), for data representation. It exploits the intrinsic geometric
manifold of the data by the linear combination of multiple graphs with parameter free. Therefore, our
proposed MCFAW method can be applied to many real problems. Besides, an efficient optimization
algorithm is presented to solve the proposed model. Some experimental results on the benchmarks show
that the proposed MCFAW method outperforms the state-of-the-art methods.

INDEX TERMS Concept factorization; manifold; graph; parameter free; data representation

I. INTRODUCTION
Over the past few years, representation learning of the high
dimensional data is a fundamental topic in pattern recognition
and machine learning communities. Data representation aims
to explore the semantic information of the high dimensional
data using the low dimensional features, which is an effective
way to overcome the curse of dimensionality. Recently, there
have been several attempts to improve the performances of
data representation techniques [1]–[5].

Many studies have shown that matrix factorization meth-
ods can provide a powerful representation ability in real
applications, such as data clustering, object tracking and
image classification [6]–[8]. Among the matrix factoriza-
tion methods, Nonnegative Matrix Factorization (NMF) [9]
requires both basis matrix and coefficient matrix to be strictly
nonnegative, and thus only allows additive, not subtractive,
combination of the samples. Therefore, it is a parts-based
representation method. This strict constraint, however, leads
to the fact that NMF cannot be applied to many real problems
due to noise or outlier. To solve this problem, the Concept
Factorization (CF) [10] method was proposed for document
clustering. The major advantages of CF over NMF is that CF
is not only performed on the high dimensional data mixed

with negative elements, but also can be easily extended to its
kernel version. In order to make full use of the label informa-
tion among the data, many semi-supervised and supervised
methods have developed in the past few years [11]–[16].

Recently, Liu et al. [11] proposed a semi-supervised con-
cept factorization method by adding a hard label constraint.
Hua et al. [12] introduced a supervised method, call dis-
criminative concept factorization (DCF) for data representa-
tion. Li et al. [13] proposed a semi-supervised discriminative
concept factorization method that adopts the limited label
among the data as a discriminative constraint. In order to
explore the latent manifold of data, Cai et al. [17] proposed
the Local Consistent Concept Factorization (LCCF) method
using single graph regularizer. Shu et al. [18] further intro-
duced a local learning regularized CF method, which uses
each sample’s neighbors to exploit both the local manifold
structure and the discrimative structure of data. A locality-
constrained concept factorization (LCF) algorithm [19] was
proposed by incorporating a locality constraint into model
of CF. Inspired by deep learning, the multilayer concept
factorization (MCF) method [20] was proposed for data rep-
resentation. MCF utilizes the multilayer structure to learn the
representation of high dimensional data. To take advantage
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of the manifold structures of both data space and feature
space, they further proposed a dual graph regularized MCF
method. In order to adaptively determine the neighborhood
number of each sample in graphmodel, a variant of CF, called
CF with adaptive neighbors (CFANs) [21], was proposed by
imposing the adaptive neighbors constraint. Therefore, it can
effectively extract the representation space that preserves
geometrical structure of the data. The methods mentioned
above adopt single graph model to approximate the manifold
structure of data. However, they cannot effectively discover
the underlying structure hidden in data in this way.

In this paper, we propose a novel method, called Mul-
tiple graph Concept Factorization with Adaptive Weights
(MCFAW), to better explore the intrinsic manifold structure
of data. Our proposed method employs a linear combina-
tion of multiple graphs to construct a regularizer. Moreover,
the weight set of these graphs is determined adaptively with-
out introducing additional parameter. Therefore, our pro-
posed MCFAW method is easily applied to a wide range
of practical problems. Experimental results have shown that
the proposed method is superior to other methods on some
benchmarks.

The remainder of this paper is organized as follows.
We represent an overview of both NMF and CF in Section 2.
We describe our proposed MCFAWmethod and its optimiza-
tion scheme in Section 3. Experimental results are shown in
Section 4. Finally, we draw the conclusions in Section 5.

II. RELATED WORKS
A. NMF
The goal of NMF is to represent the input matrix X ∈ Rm×n as
the product of two low-rank nonnegative matrices U ∈ Rm×k

and V ∈ Rn×k . Therefore, the standard NMF minimizes the
objective function as follows:

O =
∥∥∥X − UV T

∥∥∥2
F

s.t. U > 0, V > 0 (1)

where ‖·‖F denotes the Frobenius norm. It is obvious to see
that it is unrealistic to seek its global optimization solution
due to the non-convexity of Eq. (1). Fortunately, its local
optimization minimum can be achieved using an alternative
optimization algorithm [9]. Therefore, the updating rules of
model (1) can be presented as follows:

ut+1ij ← utij
(XV )ij

(UV TV )ij
(2)

vt+1ij ← vtij
(XTU )ij
(VUTU )ij

(3)

B. CF
CF is an important variation of NMF. In CF, each underlying
concept can be characterized by a linear combination of
all samples uj =

∑
i
hijxi, where hij denotes a nonnegative

association weight. Therefore, CF aims to seek the following
approximation

X ≈ XHV T (4)

by minimizing the following problem

O =
∥∥∥X − XHV T

∥∥∥2
F

s.t. H > 0, V > 0 (5)

Similarly, Eq. (5) can be solved by the similar optimization
scheme. Therefore, the updating rules of CF are given as
follows:

ht+1ij ← htij
(KV )ij

(HV TV )ij
(6)

vt+1ij ← vtij
(KH )ij

(VHTKH )ij
(7)

where K = XTX . From Eq. (6) and (7), it can be observed
that CF is easily kernelized while dealing with nonlinear
problems.

III. OUR PROPOSED METHOD
A. MOTIVATION
It is often acknowledged that the manifold learning theory
plays an important role in data representation. In traditional
CF methods, a single nearest neighbor graph is used to model
the manifold structure hidden in data. However, it is difficult
to determine the optimal number of the nearest neighbors.
Therefore, we propose a novel method, called Multiple graph
regularized Concept Factorization with Adaptive Weights
(MCFAW), to explore the geometric structure of the high
dimensional data. Our MCFAW can learn an optimal weight
set for all graphs automatically without introducing addi-
tional parameter. Therefore, our proposed method is easily to
be applied to real problems. We will introduce the model of
our proposed method and its optimization scheme in details
in the following subsections.

B. THE MODEL OF THE PROPOSED MCFAW METHOD
Our proposed MCFAW method explores the intrinsic man-
ifold that are approximated by the linear combination of
multiple Laplacian graphs. Therefore, the model of MCFAW
can be formulated as the following minimization problem:

O =
∥∥∥X − XHV T

∥∥∥2
F
+ λ

q∑
i=1

αiTr(V TLiV )

s.t. H > 0,V > 0, αi = 1/(2
√
Tr(V TLiV )) (8)

where λ denotes a nonnegative tradeoff parameter, and αi is
the weight of the i-th Laplacian graph. The first term denotes
the reconstruction term, and the second term stands for our
proposed multiple graph regularizer.

C. ALGORITHM FOR SOLVING THE PROPOSED MODEL
It is clear that the model of our proposed MCFAW method is
not-convex in H and V together. Fortunately, we can obtain a
sub-optimal local minimum solution using the multiplicative
updating algorithm proposed in [9].

Then our proposed model (8) can be rewritten as follows:

O =
∥∥∥X − XHV T

∥∥∥2
F
+ λ

q∑
i=1

αiTr(V TLiV )
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= (X − XHV T )T (X − XHV T )+ λ
q∑
i=1

αiTr(V TLiV )

= (I − HV T )TK (I − HV T )+ λ
q∑
i=1

αiTr(V TLiV )

= tr(K )− 2Tr(VHTK )+ Tr(VHTKHV T )

+ λ

q∑
i=1

αiTr(V TLiV ) (9)

where K = XTX . Therefore, the problem (9) can be solved
by iterating the following three steps:

(a) Optimal Solution to H
Let ψik be the Lagrange multiplier for constraint hik ≥ 0.

Defining 9 = [ψik ], the Lagrangian function L (H) is given
by

L (H) = −2Tr(VHTK )+ Tr(VHTKHV T )+ Tr(9HT )

(10)

By taking the derivative of Eq. (10) with respect to H , we
have

∂L (H)
∂H

= −2KV + 2KHV TV +9 (11)

According to Karush-Kuhn-Tucker conditions ψikhik = 0,
we have

−(KV )ikuik + (KHV TV )ikuik = 0 (12)

Thus, we derive the updating rule of H as follows:

ht+1ij ← htij
(KV )ij

(KHV TV )ij
(13)

(b) Optimal Solution to V
Let φik be the Lagrange multiplier for constraint vjk ≥ 0.

Defining8 = [φik ], the Lagrangian functionL (V ) is defined
by

L (V ) = −2Tr(VHTK )+ Tr(VHTKHV T )

+ λ

q∑
i=1

αiTr(V TLiV )+ Tr(8V T ) (14)

By taking the derivative of Eq. (14) with respect to V ,
we have

∂L (V )
∂V

= −2KU + 2VHTKH + 2λ
q∑
i=1

αiLiV +8

(15)

According to Karush-Kuhn-Tucker conditions φjkvjk = 0,
we get the following equation

−(KH )jkvjk + (VHTKH )jkvjk + (λ
q∑
i=1

αiLiV )jkvjk = 0

(16)

Therefore, Eq. (16) can lead to the following updating rule:

vt+1ij ← vtij

(KH + λ
q∑
i=1
αiWiV )ik

(VHTKH + λ
q∑
i=1
αiDiV )ik

(17)

(c) Optimal Solution to αi
Our proposed method can automatically assign the optimal

weights to all Laplacian graphs. In other words, the larger
weight value is assigned to a better graph, and vice versa.
Here, the weight αi of the i-th Laplacian graph can be set as

αi = 1/(2
√
Tr(V TLiV )) (18)

It can be seen that the weight αi can be determined by
the variable V . Obviously, the weight αi can be iteratively
updated according to Eq. (18).

D. THE PROPOSED MCFAW ALGORITHM
According to the above description, the flowchart of our
proposed MCFAW method is summarized as follows.

Algorithm 1 Our Proposed MCFAWMethod
Input: A data set of m samples X = [x1, x2, · · · , xm],
iteration number t , regularization parameter λ, Laplacian
graph number q.
Step 1: Initialize the weight factor αi = 1

q ;
Step 2: Construct q nearest neighbour graphs
(W1,W2, ...,Wq);
Step 3: Calculate the Laplacian matrices (L1,L2, ...,Lq)
and the diagonal matrices (D1,D2, ...,Dq), respectively;
Step 4: For i = 1, . . . , t do

(a) Update the basis matrix H by Eq.(13);
(b) Update the coefficient matrix V by Eq.(17);
(c) Update the weight αi by Eq.(18);

End for
Output: basis matrix H and coefficient matrix V .

IV. EXPERIMENTAL ANALYSIS
In this section, we carry out some experiments to investigate
the proposed MCFAWmethod for image clustering. To show
the superiority of the proposed method, we compare it with
five other related methods, such as K-means, PCA, NMF,
CF and LCCF, on COIL20, MNIST and PIE datasets. Two
measures including Accuracy (AC) and Normalized Mutual
Information (NMI) are adopted to evaluate all methods for
clustering analysis.

A. COIL20 IMAGE DATASET
The COIL20 dataset includes 1440 image samples from 20
objects. Each object was taken 72 images from different
angles. For simplicity, all sample images were manually
cropped to 32×32, and thus can be represented as a matrix
of size 1024×1440. Some samples from the COIL20 image
database are shown in Fig.1.
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FIGURE 1. Sample images from the COIL20 dataset

TABLE 1. Experimental results on the COIL20 database.

In this experiment, we randomly selected N categories
samples as the subset to evaluate all methods. Here, every
method was run 10 times on different randomly chosen clus-
ters and its average performance was reported as the final
result. For our proposed method, we picked out 5, 7 and
9 neighbors for each sample to construct three graph models,
respectively. The clustering results of all methods on COIL
database are shown in Table 1. It is clear to see that our
proposed MCFAW method outperforms consistently com-
pared with other methods. This is because MCFAW uses the
linear combination of multiple graphs to explore the manifold
structure of the data. Therefore, it can capture the intrinsic
geometric structure of data effectively. Moreover, our pro-
posed MCFAW method is parameter free.

FIGURE 2. Sample images from the MNIST dataset

TABLE 2. Experimental results on the MNIST database.

FIGURE 3. Sample images from the PIE database. (a) Results on the
COIL20 dataset. (b) Results on the MNIST dataset. (c) Results on the PIE
dataset.

B. MNIST HANDWRITTEN DIGITS DATASET
The MNIST handwritten digits dataset contains a total of
10000 image samples. For simplicity, we randomly chose
500 sample images as the experimental subset data. Each
handwritten digital sample was normalized to 28×28 gray
scale image. Fig. 2 shows some handwritten digits images
from the MNIST dataset.

This experiment adopted the same scheme as the previous
experiment. Similarly, we also selected different neighbor-
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FIGURE 4. Clustering performance versus the parameter λ. (a) Results on the COIL20 dataset. (b) Results on the
MNIST dataset. (c) Results on the PIE dataset.

hood samples for each sample to construct three graph mod-
els, respectively. Table 2 shows the performance of all meth-
ods onMNIST database. It can be observed that our proposed

MCFAW method achieves the best average performance in
all methods. The main reason is that the learned coeffi-
cient matrix can encode the geometry manifold structure
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TABLE 3. Experimental results on the PIE database.

information of the data effectively using multiple graph reg-
ularizer without additional parameter. Therefore, it is easily
applied to many practical problems.

C. PIE FACE DATASET
The PIE face database includes 41,368 face images of 68
individuals, which were taken at different poses, illumination
and expressions. Here, 46 images per class were selected to
evaluate the proposed method. Each face image was con-
verted as a 1024 dimensional vector. Fig. 3 shows some
sample images from the PIE database.

Similarly, we also randomly selected N categories sam-
ples as the experimental subset. All methods were run ten
times on each value of N and their average performances
were reported. Meanwhile, 5, 7 and 9 neighborhoods of each
sample were also used to construct three nearest neighbor-
hood graphs. The experimental results of all methods are
shown in Table 3. We can see that LCCF can outperform
CF all configuration of cluster number N. The main reason
is that LCCF considers the geometric manifold structure of
the data using graph regularizer. Besides, it can be seen
that our proposed MCFAW method can achieve a signif-
icant improvement in comparison with LCCF in terms of
AC and NMI. This is because that MCFAW can automati-
cally select the best neighborhood graph without additional
parameter. Therefore, the proposed method can learn a bet-
ter representation for the high dimensional data than other
methods.

FIGURE 5. Convergence curves of our proposed method. (a) COIL20,
(b) MNIST, (c) PIE.

D. PARAMETER SELECTION
A regularization parameter λ need to be set in the mod-
els of both LCCF and MCFAW. In this subsection, some
experiments are conducted to evaluate the proposed MCFAW
method with varied parameter values.

Here, we randomly chose samples in 14, 5, and 30 cate-
gories from COIL20, MNIST and PIE datasets, respectively.
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The parameter λ was set by the grids {0.01, 0.1, 1, 10, 100,
1000}. FIGURE 4. shows the performances of all methods
with varied parameter λ. It can be seen that the proposed
MCFAW method achieves a stable performance in a large
range of the values of the parameter λ.

E. CONVERGENCE ANALYSIS
In this subsection, we carry out some experiments to clearly
show the convergence of our proposed MCFAW method.
Similarly, 14, 5, and 30 categories samples were chosen from
COIL20, MNIST and PIE datasets as the data subset. The
curves about the objective cost on three benchmarks are given
in Fig. 5. From the results in Fig. 5, we can see that our
proposedMCFAWmethod can converge within 40 iterations.

V. CONCLUSION
In this paper, we propose a novel method, called Multi-
ple graph regularized Concept Factorization with Adaptive
Weights (MCFAW), which uses a linear combination of mul-
tiple Laplacian graphs to approximate the intrinsic manifold
structure of data. Moreover, the weights of these graphs
can be learned automatically without additional parameter.
Therefore, our proposed MCFAW method could be easily
applied to many real problems. Extensive experiments are
conducted on three benchmark datasets, and the results have
shown that our proposed method achieves better clustering
performance than the state-of-the-art methods.
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