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ABSTRACT Smartphones are the most ubiquitous and popular hand-held devices because of their rich
set of features and wide variety of services that require frequent battery recharging. In smartphones, most
energy issues are due to energy bugs (ebugs). These ebugs are said to be exist when smartphone software
applications (apps) consume more power than expected while executing, or they continue to consume energy
even after these apps are closed or terminated. In this research, we introduce the concept of application tail
energy bugs (ATEBs) and provide an operational definition for it. Then, we discuss about the main potential
causes of ATEBs and the user actions that can trigger them. To provide a proof of concept, we conduct
experiments using real Android apps. To identify all the scenarios that can cause ATEBs, we develop a
testing app and perform 32 experiments. The main goal of the experiments is to check the behavior of
app components, such as activities and services in the presence/absence of four different types of wakelocks.
Then, we discuss the relationship between software changes and energy consumption by tracing wakelocks
that keep the device awake and services that might be engaging the CPU. The power consumption of the
app is measured using the monsoon power meter. Because power meters are not often available to software
developers, we design a tool to detect ATEBs. This tool utilizes Android debug bridge (adb) commands to

extract system-related information. The tool effectiveness is evaluated using five Android apps.

INDEX TERMS Energy bug, software testing, energy efficiency.

I. INTRODUCTION

Mobile devices are pervasive due to their rich features and
services. However, they are constrained by their battery
life. Unfortunately, the development in battery technology
is not on par with the developments in software and hard-
ware systems [1]. Therefore, a paramount attention from
both academia and industry has been given for develop-
ing more power efficient techniques and algorithms in both
hardware and software. Due to high market competition,
app developers rarely have sufficient time to carefully opti-
mize their app’s energy consumption [2]. Thus, many apps
suffer from energy bugs. In the presence of an energy bug,
the app may not fail/stop, but it may only cause a higher
energy consumption, which makes energy bug very difficult
to detect [3]. In literature, there is a lack of useful infor-
mation which can guide developers how to detect the pres-
ence of energy bugs in smartphones as shown in the next
section.

In this work, we consider Android based smartphones.
Android is an open source platform that has dominated
the market very quickly. For power optimization purposes,
Android apps do not provide an explicit “Exit” or “Quit”
button. It has been reported that frequently loading apps into
and out of the memory has a negative impact on the battery
life. When the app is stopped, Android OS tries to keep it in
the memory as long as possible. When the system is out of
memory, the OS starts to kill stopped apps to reclaim space.
Recently used apps start more quickly if they are still in the
memory. Instead of an explicit exit button, Android phones
provide multiple ways to close a running app, such as pressing
the home/back button, using the swipe-out gesture, or using
the force-stop option from the settings. Having many ways
to close the app has created confusion among users about
the best way to close the app. Moreover, It has been noticed
that different apps have differently implemented app clos-
ing options. This inconsistency in app implementation has
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negatively affected the battery life and thereby the experience
of the end user.

In addition, because smartphones are resource limited
devices, mishandling resources has often caused power con-
sumption inefficiencies. In this work, we are interested in the
type of energy bugs that sustain after closing the app. We call
this type of energy bugs as the app tail energy bug (ATEB). As
the name suggests, an ATEB is energy wastage due to some
unwanted processing after stopping or closing the app. This
energy loss indicates that the app does not allow the phone to
sleep, resulting in prolonged battery drain.

In this research, we discuss the potential causes of ATEB.
Then, we show how certain user actions in closing the
app can trigger the ATEB. We conduct experiments using
real Android apps from Google play store. We also explore
the interaction between programmer’s mistakes and user’s
actions. The power consumption of the app is measured
using the Monsoon power meter. Then, a tool is designed
to detect ATEBs without the need to use the power meter.
This tool utilizes Android debug bridge (adb) commands to
extract system related information. The tool effectiveness is
validated through power consumption measurements using
the power meter. In summary, we make the following three
contributions:

o We provide a formal definition of the app tail energy bug

(ATEB);

« We identify the potential root causes of ATEBs and the

user actions that trigger them; and

o We develop a Java based tool to detect the presence of

app tail energy bugs in Android smartphones.

The rest of the paper is organized as follows. In Section II,
we present the research literature related to app-tail energy
bugs in smartphones. In Section III, we present the opera-
tional definition of ATEB. In Section IV, we validate the def-
inition of app tail energy bugs using real apps. In Section V,
we apply use cases to simulate more ATEBs. In Section VI,
we present ATEBs tool design and evaluate its effectiveness.
Finally in Sections VII and VIII, we discuss the results and
conclude the work.

Il. RELATED WORK

In order to make smartphone applications more energy
efficient, researchers have worked mostly from three per-
spectives. First, various definitions have been proposed to
characterize energy bugs. Second, different frameworks are
proposed to detect energy bugs. Finally, to reduce total cost
of testing for energy bugs and automate the process, different
tools are designed. In this section, we review the published
works that fall into these three prospectives.

The available definitions of energy bugs are very broad,
emphasizing only the causes using non measurable descrip-
tive words. Researchers have discussed different types of
energy bugs that manifest after closing the app, such as
resource leaks [4], wakelock bugs [5], vacuous background
services bugs [6], and immortality bugs [3]. Even though
guidelines to locate energy bugs are provided, the necessary
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line of actions is not available. Pathak er al. [3] presented a
taxonomy of energy bugs in smartphones and discussed the
reasons for those energy bugs. In our previous work, an opera-
tional definition for energy bugs is provided [7]. In this work,
we utilize this definition and propose a framework to detect
a special type of ebugs which is app tail energy bugs.

In literature, a number of different frameworks have been
developed. Pathak et al. [3] proposed guidelines for develop-
ing a systematic diagnosis framework to detect energy bugs in
smartphones. They recommended to classify energy bugs on
the basis of symptoms and then identify the faulty software
component, but they did not provide a workable procedure
that developer can apply. Banerjee et al. [6] proposed a frame-
work to systematically generate test inputs that help to capture
energy bugs. Each test input is basically a sequence of user
interactions (touches or taps on a smartphone screen) that
may trigger an energy bug in the application. They used a
customized version of a third-party tool to generate control
flow graphs for event trace generation. The tool does not
cover all possible GUI states in the application. The drawback
is the lack of selection criteria for the suspected user inputs
which can stress energy bugs in smartphones, whereas, in our
work, we identify the user actions that need to be covered in
order to trigger an ATEB.

In literature, the main focus is to design tools to detect
wakelock bugs. Pathak et al. [5] used dataflow analysis tech-
nique to detect energy bugs caused by wakelock leakage.
Later, researchers proposed different static and dynamic
analysis techniques for the same purpose. For example,
Vekris et al [8]. proposed a static analysis technique for
verifying the absence of wakelock leakage in an Android
app. Static analysis requires the availability of the app code,
which limits the applicability of the tool. In [9], a Wakescope
scheme is designed to detect and notify of a misuse of wake-
lock handling. In [10], EnergyPatch is developed that uses
a combination of static and dynamic analysis techniques to
detect, validate, and repair energy bugs in Android apps. Our
tool is more close to WLCleaner [11]. WLCleaner uses adb
commands to fetch wakelocks status from the kernel. It also
checks CPU utilization after the screen is off. If the CPU is not
running, the application is in the sleep mode and any active
wakelock must be released, whereas in our tool, we com-
pare the system states before starting and after closing the
app to detect unreleased wakelocks. Moreover, WLCleaner
is an application that can be installed in smartphones the
run Android older than Android 4.4 KitKat. Starting from
Android 4.4 KitKat, Google has tighten the OS security
by removing in-device adb support. Therefore, we develop
a Java based desktop tool by utilizing embedded adb
commands.

Ill. APPLICATION TAIL ENERGY BUGS

In this section, we propose an operational definition for
the app tail energy bug. An app is considered to have
caused an ATEB in a smartphone when the mean of power
consumption (Pr) after closing the app is greater than
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FIGURE 1. Power trace for a hypothetical application.

the mean of power consumption (Pi) before opening the
app.

The concept of power loss or leakage due to a hid-
den or unseen defect is very broad and it is applicable
in different fields [12]. Figure 1 shows a power consump-
tion trace of a hypothetical app. We define two states
with respect to the power consumption of the app: pre-
execution state and post-execution state. For both states,
the app power print is characterized by the mean rate of
energy consumption which represents the power in watts
(P; and Pr). According to the definition, a smartphone is
in an ideal working condition without the presence of an
application tail energy bug if the power consumption of
pre-execution state and the post-execution state are the same.
That is:

Py =P; (D

Now, if there is an application tail energy bug in the smart-
phone, the desired output will not be achieved and the sys-
tem may be in a high power consuming state. In this state,
the smartphone consumes on average more power than it was
before the execution of the app. It will lead smartphone’s
battery to drain. Thus:

P; > P; 2)

IV. IDENTIFICATION OF APPLICATION TAIL

ENERGY BUGS

In this section, we first demonstrate the test bench setup used
to validate the definition of ATEBs. Then, we discuss how
programmer actions can lead to ATEBs. Lastly, we identify
a set of user actions that can trigger ATEBs. We do that
by means of experiments and real mobile apps from Google
store.

A. TEST BENCH

The test bench setup for the validation of our proposed def-
inition for ATEBs is shown in Figure 2. The smartphone
is energized from the power meter to provide a constant
voltage source. A laptop computer is used to continuously
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FIGURE 2. The test bench with Power tool.

monitor the power supply and collect the measurement data
for the test duration using the Power tool app. To bypass the
smartphone’s battery, a modified battery connection is made
to power the smartphone externally. We set up this connection
to disconnect the battery’s power interface, but keep the data
interface connected to the smartphone. To avoid the power
saving mode and for accurate results, the smartphone’s bat-
tery is kept fully charged [13].

B. POTENTIAL CAUSES OF ATEBs

An ATEB can be caused by various programming faults.
Programmer errors in coding create a flaw in the app,
which could activate an ATEB. It is reported in more
than one place that wakelocks and Services mishandling
are the main source of bugs that can lead to ATEBs in
Android devices [14]. In this work, we further investigate
the interaction of wakelocks and Services with user actions
and we identify test scenarios that may lead to ATEBs.
We focus on programming errors that affect the life cycle
of the two main components of Android apps: Activities and
Services.

C. USER ACTIONS

Testing for ebugs is challenging due to the difficulty of ver-
ifying the output of test cases (test oracles [15]). Therefore,
in this work, we focus on the type of ebugs that sustain after
closing the app, utilizing the fact that the mean difference
in power consumption after closing the app should return
back to the mean difference in power consumption before
launching the app if there is no ebug. In Android devices,
there are five actions that can close the app and thereby help
in detecting ATEBs. They are:

« pressing the home button,

« pressing the back button,

« using the swipe-out gesture,

« using the force-stop option from the settings, and
« using the exit button if available.

The home and back buttons on the virtual task bar may
seem to close apps quickly, but in fact, they actually just
minimize them. The minimized app is still technically run-
ning (usually in some sort of “paused” state), and there-
fore, it can be reloaded quickly. It is recommended to avoid
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FIGURE 3. A power trace of the Radio FM app with a wakelock ATEB.

using the home and back buttons when the goal is to end
processes and conserve device’s resources. The force-stop
option is handled by the OS. It closes the app completely
including Activities and Services and it releases all types of
wakelocks.

D. VALIDATION

In this section, we show how ATEBs can be triggered if
the app is ended using one of the actions in Subsection C.
By conducting ten experiments, we find that certain user
actions can help in triggering certain types of ATEBs. In
the remaining part of this section, we explain each of these
scenarios by means of real power measurements. We quan-
tify the difference in power consumption (Pr) between the
buggy behavior and the ideal behavior using the following
relationship:

Pp = ((P2 — P1)/P1) * 100% 3

where P is the power consumption of the buggy behavior and
Py is the power consumption of the ideal behavior. We use
for this purpose two Android apps. To check for wakelock
related problems, we have selected Radio FM app of version
5.6. It is an Internet based radio service. To check for Service
related problems, we have selected the Aripuca GPS tracker
of version 1.3.4. It is a free and open source GPS tracking
app for Android.

1) SCENARIO 1 (ATEB DUE TO WAKELOCKS MISHANDLING)
We have observed an ATEB with Radio FM app due to
wakelocks. When the user tries to close the app using
the swipe-out gesture, audio service is not stopped com-
pletely due to an active partial wakelock. Mostly, users like
to play with multiple apps while using a music or radio
app. Later on, they forget to close it completely assuming
that when they close the radio or music app the audio service
would have been stopped as well. In reality, audio services
never stop by itself and drain the battery power in few
hours.

Figure 3 shows the actual power consumption behavior
of the Radio FM app and Figure 4 shows the averaged
power consumption behavior for the same app. We will
only show the averaged power consumption in the subse-
quent experiments. The test scenario is the following. At the
beginning, the smartphone is in the sleep mode. At TI,
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we press the power button to start the phone. At T2, we launch
the app. At T3, we select a radio station and the radio
service starts. To keep the audio services running contin-
uously, a partial wakelock is acquired. At T4, we stop the
app using two ways. For the buggy behavior, we close the
app by pressing the home button and then the swipe-out
gesture. For the ideal behavior, we end the app using the
force-stop option. As shown in Figure 4, there is a differ-
ence in power consumption due to that the audio service
is still running in the buggy behavior. Using Equation (3),
the mean difference in power consumption Pz is 10.5%.
In the ideal behavior, the device goes into the sleep mode at
T5 when the app is completely closed using the force-stop
option.

FIGURE 4. The smoothed power traces of the Radio FM app.

2) SCENARIO 2 (ATEB DUE TO SERVICES MISHANDLING)
We have observed an ATEB with Aripuca GPS tracker due
to mishandling of Services. When the user tries to close
the app using swipe-out gesture, location services are not
stopped. An active listener is keeping the location services
running in the background. We conduct an experiment to
check the power consumption behavior of the app especially
once the app is not visible. In order to check any deviation
from the ideal behavior, we have tested two versions of the
same app (1.3.4).

Figure 5 shows the power consumption behavior of
Aripuca GPS tracker app. The test scenario is the following.
At the beginning, the smartphone is in the sleep mode. At T1,
we press the power button to start the phone. At T2, we launch
the app and select a waypoint ‘“Niagra fall” from the way-

FIGURE 5. Power traces of Aripuca GPS tracker.
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points screen. At T3, we stop the app using two ways. For the
buggy behavior, we close the app by pressing the home button
and then the swipe-out gesture. For the ideal behavior, we end
the app using the force-stop option. As shown in Figure 5,
there is a difference in power consumption due to that the
location services are still running in the buggy behavior. The
mean difference in power consumption Py is about 53%.
In the ideal behavior, at T4, the device goes into the sleep
mode when the app is completely closed using the force-stop
option from the settings.

V. USE CASES TO SIMULATE ATEBs

To further explore whether there are more scenarios that can
lead to ATEBs, we design a testing Android app and conduct
32 experiments. Figures 6 and 7 show the GUIs and the
control flow of the testing app, respectively. The app has
two Activities and one Service. Each Activity corresponds
to a screen. In one screen, we can acquire and release four
types of wakelocks. Table 1 shows the four supported types
of wakelocks and the associated resources when the wakelock
is active. Thus, we can study the interaction between the
Activity component and wakelocks. In the second screen,
we launch a Service to download a file. We can also acquire
and release wakelocks to complete the download task. Thus,

FIGURE 6. The two GUISs of the testing app, where PRW, SDW, SBW, and
FLW are abbreviations for partial wakelock, screen dim wakelock, screen
bright wakelock and full wakelock, respectively.

FIGURE 7. The flowchart of the testing app, where PRW, SDW, SBW, and
FLW are abbreviations for partial wakelock, screen dim wakelock, screen
bright wakelock and full wakelock, respectively.
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TABLE 1. Wakelock types.

\ Wakelock type | CPUJ Screen| Keyboard |
Partial wakelock Yes No No
Screen dim wakelock Yes dim No
Screen bright wakelock Yes | bright No
Full wakelock Yes | bright Yes

we can investigate the interaction between the Service com-
ponent and different types of wakelocks. Google has provided
PowerManager API to control smartphone sleeping behavior
using wakelocks. Each wakelock type has a different impact
on the system power consumption. The partial wakelock is
the most critical one because its effect is not visible to the
user. Moreover, in the partial wakelock, the user cannot force
the system to go to the sleeping mode by pressing the power
button as in the other types of wakelocks. Using 32 test cases,
we investigate the impact of mishandling of four types of
wakelocks in an Activity or Service component on the power
consumption behavior. The app is ended by pressing the home
button, back button, swipe-out gesture, or force-stop option.
There are two test cases with Activity and three with Service
that exhibit ATEBs. A summary of the experiments is shown
in Table 2 and Table 3. The third column represents the
action used to end the app. For some experiments, such as
experiments three and four in Table 2 and Table 3, the mean
difference in power consumption (Pr ) is significantly higher
than other experiments due to mainly the energy cost of
keeping the screen bright.

TABLE 2. Summary of results for the activity component with Wakelocks.

Ij‘\){cg Wakelock type User action Pfov;/:‘r
1 Partial home button 4.7%
2 Screen dim home button 26.7%
3 Screen bright home button 838.1%
4 Full home button 955.7%
5 Partial back button 5.0%
6 Screen dim back button 26.7%
7 Screen bright back button 838.1%
8 Full back button 955.7%
9 Partial swipe-out gesture 0%
10 Screen dim swipe-out gesture 0%
11 Screen bright swipe-out gesture 0%
12 Full swipe-out gesture 0%
13 Partial force-stop 0%
14 Screen dim force-stop 0%
15 Screen bright force-stop 0%
16 Full force-stop 0%

In the remaining part of this section, we explain each
of these scenarios by means of real power measurements.
Activities do not show ATEBs in the absence of wakelocks.
However, in the case of Services, there is a possibility of
an ATEB if the app is designed to keep the service running
in the background while the app user does not know this
requirement. This kind of mismatch between user expectation
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TABLE 3. Summary of results for the service component with Wakelocks.

%5 Wakelock type User action Pfomsfr
1 Partial home button 5.0%
2 Screen dim home button 26.7%
3 Screen bright home button 838.1%
4 Full home button 955.7%
5 Partial back button 5.1%
6 Screen dim back button 26.7%
7 Screen bright back button 838.1%
8 Full back button 955.7%
9 Partial swipe-out gesture 5.0%
10 Screen dim swipe-out gesture 26.7%
11 Screen bright swipe-out gesture 838.1%
12 Full swipe-out gesture 955.7%
13 Partial force-stop 0%
14 Screen dim force-stop 0%
15 Screen bright force-stop 0%
16 Full force-stop 0%

and design specifications might lead to energy wastage which
can be considered as ATEBs.

3) SCENARIO 1

In this scenario, we investigate the impact of a mishandled
partial wakelock in an Activity component on the power
consumption behavior. The app is ended using the home
button. The test scenario is the following. At the beginning,
the smartphone is in the sleep mode. At T1, we press the
power button to start the phone. At T2, we acquire the
partial wakelock by pressing the “ON” button in the first
screen. At T3, we stop the app using two ways. For the
buggy behavior, we close the app by pressing home button.
For the ideal behavior, we end the app using the force-stop
option. As shown in Figure 8, there is a difference in power
consumption due to an unreleased wakelock. In the buggy
behavior, at T4, we observe the display is OFF which means
the app is closed but it is not the case. A partial wakelock
is still active and that is why the device does not go into the
sleep mode. The mean difference in power consumption P,
is about 4.78%. In the ideal behavior, the device goes into
the sleep mode at T4 when the app is closed at T3 using the
force-stop button.

FIGURE 8. Power traces of the testing app (Scenario 1).
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4) SCENARIO 2

In this scenario, we investigate the impact of a mishan-
dled partial wakelock in a Service component on the power
consumption behavior. The app is ended using the home
button. The test scenario is the following. At the begin-
ning, the smartphone is in the sleep mode. At T1, we press
the power button to start the phone. At T2, we launch the
app. At T3, we start the file download service by pressing
the Start button in the second screen. At T4, we stop the
app using two ways. For the buggy behavior, we close the
app by pressing home button. For the ideal behavior, we end
the app using the force-stop option. As shown in Figure 9,
there is a difference in power consumption due to an unre-
leased wakelock. In the buggy behavior, at T5, we observe
the display is OFF which means the app is closed completely,
but it is not the case. A partial wakelock is keeping the device
active and the Service to run continuously till T6 to finish
its job. At T6, the partial wakelock is still active and this
is why the device does not go into the sleep mode. The
mean difference in power consumption Py, is about 5.09%.
In the ideal behavior, the device goes into the sleep mode at
T5 when app is completely closed at T4 using the force-stop
option.

FIGURE 9. Power traces of the testing app (Scenario 2).

5) SCENARIO 3

In this scenario, we investigate the impact of a mishandled
partial wakelock in a Service component on the power con-
sumption behavior. The app is ended using the swipe-out
gesture. The test scenario is the following. At the begin-
ning, the smartphone is in the sleep mode. At T1, we press
the power button to start the phone. At T2, we launch the
app. At T3, we start the file download service by pressing the
Start button in the second screen. At T4, we stop the app using
two ways. For the buggy behavior, we close the app using
the swipe-out gesture. For the ideal behavior, we end the
app using the force-stop option. As shown in Figure 10, there
is a difference in power consumption due to an unreleased
wakelock. In the buggy behavior, at T4, the file download
Service is relaunched automatically. At T5, we observe the
display is OFF which means the app is closed completely,
but it is not the case. A partial wakelock is keeping the device
active and the Service to run continuously till T6 to finish
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FIGURE 10. Power traces of the testing app (Scenario 3).

its job. At T6, the partial wakelock is still active and this is
why the device does not go into the sleep mode. The mean
difference in power consumption Py is about 5.11%. In the
ideal behavior, the device goes into sleep mode at TS when
the app is completely closed at T4 using the force-stop
option.

In all the three scenarios, the power loss is relatively low
because the acquired wakelock is partial. In case of other type
of wakelocks, the mean percentage of power loss is much
higher as shown in Table 2 and Table 3.

VI. APPLICATION TAIL ENERGY BUGS DETECTOR

In this section, we demonstrate a Java based tool called the
ATEBs detector. This tool can be used to detect ATEBs
without the need of using the power meter. It also does not
require the availability of the app code. Then, we conduct
experiments to show the effectiveness of the tool using power
measurements as ground truth.

A. ATEBS DETECTOR DESIGN

To track the root causes of unexpected battery drain in smart-
phones and according to our definition of ATEBs, we need
to capture the system state two times. The first time is before
launching the app under test and the second time is after run-
ning the test scenario and closing the app. For device moni-
toring at runtime, Android platform has provided the Android
Debug Bridge (adb) to initiate system level commands such
as dumpsys, dumpstate and logcat. Due to security reasons,
system information is no longer available to in-device apps.
Starting from Android 4.4 KitKat, this information is only
available through a USB port when the smartphone is set into
the USB debugging mode. Because we do not want to break
the security of the device, we design the ATEBs detector as a
Java based desktop app.

Figure 11 shows the ATEBs detector block diagram. The
tool consists of two main blocks: Android debug bridge (adb)
and a parser. The input to the tool is a set of test scenarios.
Each test scenario is designed to stress a certain app function-
ality. The important aspect is that each test scenario should
start the app under test from scratch and close the app using
one of the reported actions to end the app. The outcome of
the tool is a report. This report contains a list of zero or more
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FIGURE 11. The ATEBs detector tool.

items. Each item is an indication of an ATEB. Therefore,
the developer has to investigate each item of this list indi-
vidually to detect whether it is triggered by the app under test
or it is a possible false alarm.

Android debug bridge (adb) is the most powerful tool
provided by Google to help developers for debugging and
monitoring purposes. It provides access to the Unix shell that
can be used to run a variety of commands in the device.
It consists of three components. The first component is the
client that runs on the development machine. The second
component is the daemon (adbd) that runs commands on
the device. The third component is the server that manages
communication between the client and the daemon. Once
the adb server receives system level kernel information from
the adb daemon, ATEBs detector saves daemon’s output as a
log file in the desktop. We run adb commands twice: before
running the app (pre-state file) and after closing the app (post-
state file).

The second main component of ATEBs detector is the text
parser. The main function of the parser is to compare pre-state
and post-state files line by line and find any difference that
could be an indication of something that still active and
causing an ATEB. In our test bench, we run ATEBs detector
on a laptop and the app under test on an Android smartphone
that is connected to the laptop via a USB cable as shown
in Figure 12. The power meter is used only to verify the output
of the ATEB detector. Figures 13, 14, 15, 16, and 17 are
examples of the output of the tool. The GUI of the tool is
divided into two main sections: a button plate on the top and

FIGURE 12. The test bench with the ATEB detector tool.
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FIGURE 13. ATEB detetcor’s report for Aripuca GPS tracker app.

FIGURE 14. ATEB detetcor’s report for Radio FM app.

FIGURE 15. ATEB detetcor’s report for GPSLogger app.

a result pane in the bottom. To check for a specific type of
ATEB, an individual button is provided for each type, such as
wakelocks and Services.

B. ATEBs DETECTOR TOOL EVALUATION

To show the effectiveness of the tool, we have con-
ducted experiments using five buggy Android apps. All the
reported ATEBs are acknowledged by our ATEB detector.
Figures 13 and 14 respectively show the output of ATEBs
detector for Aripuca GPS tracker and Radio FM apps that
are discussed earlier in Section I'V. Using Monsoon power
meter, we have detected the presence of an ATEB. However,
we could not find out the root cause of the ATEBs. The
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main advantage of our tool is that it provides the verified
in-depth system information to pinpoint the cause of the bug.
Then, we apply the tool to test three more apps: GPSLogger
app version 15, Kuwo app version 2.3.1.0, and Omnidriod
app version 0.2.2. GPSLogger provides route information
for the users and also tags photos with location coordinates.
Kuwo is a Chinese music player app. It allows to search
and play on-line music files. Omnidroid is an automated
event/action manager that allows users to automate system
functionality based on incoming application intents. It also
provides a general plug-in framework that allows any com-
patible application events to trigger any other applications’
actions. The results are shown in Figure 15, 16 and 17.
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FIGURE 16. ATEB detetcor’s report for Kuwo Music player app.

FIGURE 17. ATEB detetcor’s report for Omnidriod app.

In Figures 13 and 14, a service is still running because
a listener to location services is not released. It is a GPS
service that consumes very significant amount of power.
In Figures 17, a monitoring service is still running and con-
suming power. In Figure 14 and 16, a service is still running
because a partial wakelock is not released. This informa-
tion works as a guideline for the developer to rectify the
problem.

VII. DISCUSSION

Mobile devices have become an integral part of people life.
They offer a wide spectrum of services that range from
entertainment to healthcare [16], [17]. The main challenge in
detecting energy related software bugs is the absence of the
required test oracles. To overcome this problem, we intro-
duced the concept of app tail energy bug (ATEB). An app is
considered to have an ATEB in a smartphone when the mean
of power consumption (Pr) after closing the app is greater
than the mean of power consumption (Pi) before opening the
app. According to this definition, test scenarios are designed
so that buggy power consumption is easily identified without
the need to know in advance the expected power consump-
tion. Because power meters are not often available to software
developers, we designed and implemented a software based
ATEBs detector. To detect ATEBs in Android smartphones,
we used two different approaches: a hardware-based tool
(Monsoon power meter) and an in-house built software-based
tool (ATEBs detector). In the experiments, we ran both tools
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on the same laptop. However, all these solutions present their
own advantages and disadvantages. Hardware-based tools
are highly precise for power measurement, but they cannot
provide the insight of system activities. They can confirm the
existence of ATEBs, but they do not pin point the root causes.
ATEBs detector requires kernel level system information to
detect the root cause of ATEBs, but they cannot be used for
the quantification of the power loss. Mostly, software-based
tools require breaking device lock which is not permitted by
service providers. Our tool do not require the smartphone to
be unlocked.

VIIl. CONCLUSION

In this research, we introduced the concept of application
tail energy bugs ATEBs and provided an operational defi-
nition for it. Then, we discussed about the main potential
causes of ATEBs and the user actions that can trigger them.
To provide a proof of concept, we conducted experiments
using real Android apps. To identify different causes of
ATEBs, we developed a testing app and performed 32 experi-
ments to check app components such as Activity and Service
behavior in the presence or absence of four different types
of wakelocks. Then, we discussed the relationship between
software changes and energy consumption by tracing wake-
locks that keep a device awake and Services that might be
engaging the CPU silently. The power consumption of the
app was measured using the Monsoon power meter. In addi-
tion, we designed a tool to detect ATEBs. This tool utilized
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the Android debug bridge commands to extract system related
information. The tool effectiveness was evaluated using five
Android apps. Compared to power meters, our tool can pin-
point the root cause of the energy bug. Furthermore, it can
help in detecting hidden energy bugs when power measure-
ments are not enough alone as in test scenarios 1-3.

For the future, we are planning to fully implement the tool
to support other types of app components such as listeners,
audio, and wireless services. Also, we are planning to develop
light inexpensive models to estimate energy cost for different
types of ATEBs. The objective is not to give an accurate
estimation of power loss, rather, the idea is to enable the
app developer to prioritize fixing ATEBs according to their
severity on user experience.
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