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ABSTRACT The energy consumption (EC) estimation of a computing system is a primitive approach for
evaluating its energy efficiency and for further optimization. Existing studies adopt the runtime-dependent
approach to measure the EC of software; however, in this paper, the source-level and fuzzy estimation
approach are employed to measure the EC of software code, especially object-oriented code, before it is
executed. This approach is beneficial to source code quality improvement and EC static optimization. For
runtime independence, a fuzzy energy consumption (FEC) model is proposed, in which the code and the EC
model, as well as the mappings between them, are first defined; then, the process for estimating the FEC of
an arbitrary statement is described, including the statement features, data preparation, fuzzy comprehensive
evaluation, and fuzzy pattern matching. Finally, experiments are performed, including the regularities
verification, the statement features analysis, the EC and FEC comparison, and the FEC application. The
experimental results show that the mean values of EC/FEC for the selected test cases are stable, their
standard deviation is approximately 0.00064, and their mean is approximately 0.0059. By FEC, it is feasible
to compare the ECs of code statically with reasonable accuracy.

INDEX TERMS Fuzzy model, energy estimation, fuzzy energy consumption, object-oriented code.

I. INTRODUCTION
As the energy crisis grows, the techniques for energy-saving
and emission reduction are attracting more attention from
academia, business researchers and IT professionals [1]. The
high energy cost of computing devices has led to green IT
as a new research area. Energy consumption (EC for short)
estimation and optimization of computing systems are two
popular topics in this new research area, which can be studied
at the resource level, platform level (middleware) or appli-
cation level. Application-level EC optimization reduces the
energy consumed by the consumer (applications), which
is one effective approach [2]. Therefore, there are many
existing studies on software-oriented EC estimation and
optimization [3].

Software is composed of code, and object-oriented pro-
gramming languages are the dominant type of programming
language; therefore, the energy estimation on object-oriented
(OO for short) code, which is treated as a static energy
estimation, is an efficient approach in the application layer.

Code EC is defined as the electrical energy cost by hard-
ware while the code is executing. In OO code, the features
of code include operation types (calculation, assignment,
method calls, etc.), statement structure (sequence, branch,
loop, etc.) and the OO features (encapsulation, inheritance,
polymorphism, etc.). We defined the features above as code
features. Code with the same semantics but different features
have different EC. When the power of the CPU changes
dynamically, the working state of the CPU is directly affected
by the code features, and the power of the storage devices
also changes dynamically. Code features directly affect the
accessed location and the amount of accessed data.

Currently, research on source level EC estimation is con-
sidered in three different granularities: instruction level, state-
ment level and module level. Instruction level estimation
simply adds together the EC of each instruction, statement
level estimation studies the effect of statement features to the
EC, andmodule level studies the relationship among software
modules (method, or class, as the estimation unit) and their
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effects on EC. Existing studies on instruction level EC esti-
mation has the limitation of applications; they aremainly used
in embedded software. The estimation approach, which more
accurately estimates the hardware, has worse universality.
In contrast, the more abstract approach has a larger error
but better universality. It is difficult to accurately determine
the execution paths of code with complex structures, such as
choosing a branch, or the number of times a loop executes,
without executing the code. The EC estimation does not aim
to replace the measuring instrument but to locate the high EC
code, optimizing the EC or evaluating the optimization effect.
Thus, the near accurate estimation approach is acceptable,
and a reasonable simplified, fuzzy logic-based, and code
features highlighted approach is more applicable.

The fuzzy energy consumption (FEC) of software code
defined in this paper is a measurement that is retrieved by
comparing the target code with the benchmarked code with
fuzzy comprehensive evaluation and pattern matching. While
assuming the EC of a statement with specific features as the
unit, FEC of the code ignores the runtime situation of code,
i.e., it is an aggregation of theoretical and the static EC of the
statements.

In this paper, we study the FEC of OO code, which is
the abbreviation for source code written in an object-oriented
programing language such as Java. The proposed FEC is an
estimation model of OO code. We define the FEC model,
explain the estimation approach, and validate it by experi-
ments. The code’s FEC is analogous to code performance.
In performance optimization, runtime performance of the
code is related to not only the code but also to the amount of
data, the data structure and the hardware environment; these
comprehensive factors should be well considered. Static code
optimization tools such as PC-lint can evaluate and optimize
static performance according to the code features, which is
also significant in avoiding low-performance programming.
Similarly, the FEC of the code in this paper is also a static
measurement; thus, runtime EC may differ from FEC, but
FEC can evaluate the difference in code EC or the optimiza-
tion effects. FEC also has the benefit of summarizing code-
level EC optimization approaches.

Our solution is different from existing approaches on EC
estimation; we focus more on the features of OO code, adopt
fuzzy logic to implement the static estimation, and study
the effects of OO statement features on statement EC. The
definition of FEC is an abstraction; it is widely suitable for EC
optimization in the application software environment. In pro-
gramming phase of development, evaluation of the EC related
features of the code and code refactoring can effectively avoid
redesign and recoding caused by energy problems that may
occur in later phases of the software life cycle.

The remainder of this paper is organized as follows:
Section II introduces the state of the art and analyzes the
advantages of our solutions. Section III proposes a theoretical
model for EC estimation, i.e., the FEC model of OO code.
SectionVI proposes the fuzzy estimation approach. SectionV
validates the code EC features and the accuracy of FEC.

Finally, Section VI concludes the paper and proposes future
work.

II. STATE OF THE ART
The studies of EC estimation on computing systems are cat-
egorized into two aspects: hardware and software. Studies at
the hardware-level consider the EC characteristics of CPUs,
memory and disks to evaluate consumed energy or to design
more energy-saving hardware components; the solutions are
mature with years of development [4]. On the other hand,
there are many studies in EC estimation and optimization of
software, which are grouped into instruction level, statement
level and module level [5]–[7]. The dominant approach in
these studies is cumulatively mapping the EC of the hardware
unit to the software unit, considering the perspective of the
latter, such as the instructions, statements and modules, to
study the EC estimation and optimization.

A. INSTRUCTION LEVEL
The instruction-level energy estimation first collects the run-
time EC of the instructions generated by the code on the
target hardware (such as the processor) and estimates the
EC of the code by aggregating the EC of the instructions.
This approach is treated as a ‘‘white-box’’ approach because
predefined hardware information is required. The advantage
of the white-box approach is a high estimation accuracy, but
the disadvantage is the tight coupling to the hardware environ-
ment, as well as the lack of availability of instruction simula-
tors with accurate cycles in many hardware environments, or
environments for interpreting the execution of programming
languages. Therefore, instruction-level estimation has been
widely applied to embedded software [5].

Some researchers have noticed that the difficulties of the
white-box approach lie in mapping the EC of code to the EC
of the instructions. It is much easier to simplify the execution
of the corresponding instructions if the code is treated as a
black box. The parameters provided by the operating system
represent the execution of instructions, by which the EC is
‘‘measured’’ or ‘‘predicted’’. For example, in [7], the different
test cases such as the Burn CPU, MemLoop, Network, Tar
Kernel, Disk Read, Disk Write, were used to analyze the
relationship between the instruction and the EC and to predict
the code EC. In [8], a set of process-level power measurement
tools were developed that accurately evaluate the energy
usage of every process running on Linux, and then evaluated
the EC of the software system.

B. STATEMENT LEVEL
Compared with the instruction level, the statement-level EC
estimation is more coarsely granular since a statement may
contain many instructions. Most statement-level approaches
evaluate the code EC by executing it or building a tool for
evaluating EC during code execution [9], such as Eprof [10]
designed by Noureddine et al. [11], and process-level and
device-level monitoring frameworks, as well as [6] and [12],
which are also similar studies. To compare with our solution,
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FIGURE 1. Statement-level EC estimation.

in this section, we focus on the approaches that use static anal-
ysis. The approach divides the code into the form of statement
blocks and evaluates the EC of each block. Statement-level
energy estimation considers the logical relationship between
the statements, that is, the impact of the statement structure on
EC. The general approach of statement-level EC estimation
is shown in Figure 1.

Brandolese [13] followed the approach shown in Figure 1
and built a ParseTree by source code analysis. Each node
is an atomic unit consuming energy, and the edges of the
tree represent the assembly relations to characterize the fea-
tures of the structure of the source code and the statements.
Zhou et al. [14] proposed a code EC model for C language.
They argued that the execution of an instruction contains three
phases: instruction acquisition, decoding and execution so
that the EC estimation should take the instructions of the for-
mer two phases into consideration, not only the instructions
of the latter phase.

C. MODULE LEVEL
From a code perspective, code units with appropriate cohe-
sion and weak coupling are called modules. Module-level
software EC evaluation not only considers the statement
of the EC and the impact of the statement structure on
the EC but also considers the dependencies between mod-
ules on EC [15]. To compare with our solution, the object-
oriented programming related approaches are explained in
this section. In object-oriented programming languages, the
method can be treated as the smallest module, while the class
or package is treated as a module with a fair granularity.

Seo et al. [16] proposed the EC estimation approach of
Java code from the perspective of software modules, includ-
ing code EC corresponding to the CPU operations, memory
accesses, and I/O operations. Different than [16], FEC is
based on a fuzzy model but not the concrete codes. Similarly,
some studies adopt abstract modules rather than OO code,
such as flowcharts [17] whose elements encapsulate mod-
ules categorized into processes, I/O and process control,
a ‘‘flowchart of concurrent software modules’’ [18], or UML
and Petri nets, which characterize the invocation relationship
among modules to estimate the EC of the code [19].

D. OUR SOLUTION
Based on the above discussion, the code-oriented software
EC is considered from the three different granularities of the
instruction level, the statement level and the module level.
The estimation that is closer to the hardware platform has
more accuracy but poorer universality. In contrast, the more
abstract estimation has a larger error but better universality.
In our solution, the latter is applied for two reasons: first,
the purpose of EC estimation is not to replace the instrumental
measurement but to locate high EC code to optimize EC or to
evaluate EC optimization effects, so that the static approach
is definitely required though an accurate estimation may
not be necessary. In addition, accurate estimation cannot be
achieved if the code is not executed because it is difficult to
accurately determine its execution path, such as the choice of
the branch, the loop execution times, and the size of the data
structure, without execution. Therefore, accurate estimation
is difficult to achieve. Consequently, an appropriate simpli-
fied approach that highlights the characteristics of the code
is another option since the estimation cannot achieve high
accuracy.

In this paper, fuzzy theory is adopted to evaluate the code
EC statically. We neither expect exact and actual values, nor
expect a coarse qualitative assessment of ‘‘good’’, ‘‘normal’’,
‘‘bad’’, but instead, a fuzzy quantitative value. The code
model and the EC model are first established, then the fuzzy
sets are established for the EC values of the statement fea-
tures, and the comprehensive evaluation method evaluates
the statement EC as the criterion; next, the fuzzy pattern
recognition evaluates the EC of the target code statement-
by-statement, and the aggregated EC values are finally
obtained.

Compared with the state-of-the-art on software EC estima-
tion, the hardware independent, instruction-level approaches
have good accuracy, fine granularity and high estimation
costs; thus, it is difficult to extend this method to high-level
statement features. The module level approach is from the
system architecture point of view so that it is coarse-grained,
cannot show the statement features and cannot benefit code
optimization. The statement level approaches focus on the
procedure-oriented code which limits this approach to special
systems and lacks universality. Our solution is also a state-
ment level approach but for object-oriented programs and
with wider applicability.

III. MODEL
In this section, the estimation model for the EC of OO code
is introduced. The EC estimation is not a replacement of
equipment-based EC measuring because the former method
is a ‘‘white-box’’ approach and the latter method is a ‘‘black-
box’’ approach. By the latter approach, the EC value is
obtained accurately; however, the EC regularities of the code
cannot be further analyzed; also, the measurement is tied to
the power meters and runtime environment. The software-
based EC estimation has significant value in both theory
and practice. Essentially, software estimation is the mapping
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between code and EC, and then the code and the EC model,
as mentioned in this section, should be defined first.

A. CODE MODEL
This section defines the code model including statements,
methods, classes and modules.
Definition 1 (Statement): The statement S is the unit with

the finest granularity for FEC estimation. The statement FEC
is independent of its runtime environment. The same state-
ments have the same FEC values, while the ratio between
FECs for different statements is also constant.

From the aspect of their functions, the statements are
categorized into arithmetic and logical expressions, jump
statements, loop statements, call statements, dynamic storage
management statements, etc. However, according to both the
functions and the energy consumption characters, we divided
the statements into three categories as follows.
• Operation Statement:Operation statement refers to the
statement that performs arithmetic and logical opera-
tions on the data or the flow control operation, which
characterizes the internal structure of the code, such as
sequence, branch, and iteration.

• Storage Statement: Storage statement refers to state-
ments that create, acquire, modify, and destroy objects,
arrays, etc. in code. In addition, it characterizes the
dynamic data management and storage of code.

• Call Statement: Call statement refers to the statement
for invoking methods or functions. A call statement is
normally short but requires a huge energy cost, and it
characterizes the interclass structure of the code, i.e., the
relation between classes. As an explanation, the depen-
dence, polymorphism, and inheritance are represented
as different call statements, such as normal call, virtual
call, and constructor call, respectively.

Definition 2 (Method): The FEC estimation, method statis-
tically contains the ordered statements. Methods are catego-
rized as the follows:

• Explicit method:Explicit methods are methods whose
definitions are contained directly in the code.

• Implicit method: Implicit methods are those that actu-
ally exist but have no code definition or are defined
in a special format. For example, object creation and
destruction implicitly call all of the superclass’s con-
structors and destructors, or calling the virtual method
would implicitly call the ‘‘virtual method lookup’’
method.

• Interface method:Interface methods are methods
whose definitions are not contained in the code, but in
an external program, such as a system library or third
party components.

Definition 3 (Class): From the aspect of FEC estimation,
a class is a natural container for methods; that is, not only the
explicit methods defined in the class but also the noninterface
methods called from the in-class methods, level-by-level until
all noninterface methods have been included.

Definition 4 (Module): From the aspect of FEC estimation,
the module, as a collection of multiple classes whose code are
available, is the estimation target.

For example, in Java, a module represents the package.
Programmers generally implement their modules for business
functions and invoke the APIs provided by the libraries for
basic services. The code in the libraries is unavailable, and
their EC is fixed and cannot be optimized. This is why
the interface method is defined, and by which the module
excludes the methods in the libraries from its FEC. We will
explain in the next section that the interface methods are
contained in the code, but their definitions are unavailable,
and their energy consumption is ignored.

B. ENERGY CONSUMPTION
A program consists of continuous statements. Thus, studying
source-level EC estimation usually starts with defining the
EC of each statement. However, we cannot trace the execution
of all statements, or statically analyze the EC of all statements
exhaustively. As a solution, we define the concept of fuzzy
energy consumption (FEC).

The runtime EC of a statement is the amount of energy con-
sumed by the hardware during the execution of the statement.
Runtime EC can be measured by equipment. In contrast,
the FEC of a statement is the amount of consumed energy
represented by the static features of the source code. It is
independent of the hardware and runtime environments so
that it may differ from, but should be in accord with the
runtime EC.
Definition 5 (Fuzzy Energy Consumption) (FEC): FEC is

an EC with an uncertain value. It is employed to handle the
concept of a partial true value of the EC, where the true
value may range between completely true and completely
false. FEC is measured by fuzzy pattern matching with the
criteria that are abstracted from the statement features. FEC
is estimated through the static analysis of the code, with joules
as the unit.
Definition 6 (FEC of Code): Given a section of OO code,

its FEC is defined as the sum of the FEC of the classes it
contains, and the FEC of the class is the sum of the contained
none-interfacemethods (see Definition 7) and statements. Let
O be a finite set of classes contained in moduleM , andW be
a set of statements of the module’s method, and ϒ is a finite
set of interface methods in the statement.w is a statement The
function F(s) represents the EC of a statement evaluated by
fuzzy estimation, then:

fec(M ) =
∑

fec(O) =
∑∑

fec(W − ϒ)

=

∑∑∑
F(w|w ∈ W − ϒ)

When measuring the FEC of a section of code, we first
traverse through all the classes of the code one by one and
determine the explicit and implicit methods in each class;
second, the statements in each method are traversed, and
the statement features are compared with the features of the
criteria. Next, the fuzzy pattern matching approach is adopted
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to determine which criteria the statement belongs to so that
the statement FEC is obtained. Finally, method-by-method
and class-by-class, the static and environment-independent
FEC of the code is obtained by summing the statement FECs.

IV. FUZZY ESTIMATION
In this section, the approach and process to estimate the EC
level of an arbitrary statement are described, including the
statement features, data preparation, fuzzy comprehensive
evaluation and fuzzy pattern match.

A. STATEMENT FEATURES
In the paper, the statement is the atomic unit of code EC and
the statement features that should be quantitatively analyzed.
The statement features are a finite set. Let the set U be all
features, where U = {U1,U2, . . . ,Uk ,}. Each element in the
set Ui is one of the feature group. Different feature groups
contain different features. Therefore, when describing the
set of statement features, the elements in the set need to be
analyzed according to the code.
Definition 7. (Statement Feature): Statement features are

properties of a statement that represent its EC characteristics.
Let set U be the statement features, and it contains a subset
as the group of these features. The features in the same group
are exclusive; thus, a statement may satisfy the features in
different groups but not the features in the same group.We set
up the set U as follows:

U={Operator, I /O,Method,Data,Virtualcall, Inheritance}

Where: Operator group has the features of bitwise, rela-
tion, logic, arithmetic, assignment, condition, loop; I/O
group has the features of read and write; Method group has
the features of explicit, implicit and interface, in which the
explicit method is the common method, implicit method is
the method invoked by the runtime environment, such as con-
structors and finalizers, andinterface method is the method of
a three-party library whose EC is not included;Datagroup has
the features of primitive, primitive array, object, and object
set; Virtual call group has the features of v-none, v-single
and v-multiple, which means a method has no virtual ver-
sion, one virtual version and multiple versions, respectively;
inheritance group has the features of h-none, h-single, and
h-multiple, which means a statement is in a constructor of a
class that has been inherited from no class, one class or mul-
tiple classes, respectively.

B. DATA PREPARATION
We defined the feature set U . In this section, the EC value
set V (comment set), which represents the levels of EC,
is defined in Definition 8. In addition, the relation matrix
R, which is known as the importance of the features to the
EC expressing the relationship between features and EC,
is defined in Definition 9. With the prepared dataU , V and R,
fuzzy comprehensive evaluation is performed next.

People usually evaluate things by ‘‘very good’’, ‘‘good’’,
‘‘general’’, ‘‘bad’’ and so on. Our comment set is made up

of similar kinds of elements but in the finest granularity.
FEC adopts linguistic variables such as positive big, nega-
tive small, very small, and very large instead of numerical
values. Through experience and experiments, the EC of Java
operations and storage statements is nJ order of magnitude
(10−9J) in most hardware environments. We divide EC under
4000 nJ into 20 levels, each level represents 200nJ distance,
as i-th level is equal to i × 200 nJ, and we express this in
‘‘levels’’.
Definition 8 (EC Values): An EC value is a set that consists

of the levels of the EC values. The continuing EC values from
0 to 4000 nJ are partitioned into 20 equal-width levels with
the step of 200 nJ, and denoted as V = {1L, 2L, . . . , 20L},
where ‘‘L’’ represents ‘‘level’’. Elements of V correspond to
the EC level of 1L to 20L.
Definition 9 (EC Relation Matrix): An EC relation matrix

R which represents contributions of statement features to the
EC, the elements rij in R means the EC contribution of the
statement features ui on the values vj.

The relation matrix R is determined by data statistics after
obtaining a larger number of basic data. We modify the
SPECJVM2008 test suite and design 20 sets of test cases.
Each test case has a large number of statements and related
features, and the statements are tested one-by-one. The results
are as shown in Figure 2. Then, the contributions of these
features to the EC are determined.

FIGURE 2. Contributions of the statement features to the EC.

In each chart of Figure 2. The x-axis is the level of the
FEC from 1L to 20L, and the y-axis shows the contributions
of statement features (chart name) to the level of the FEC
in the range of 0 to 1. For example, the contribution of
bitwise to FEC 1L, 2L, 3L, . . ., 20L are 1, 0, 0, . . ., 0,
respectively.

Aforementioned:

U = {U1,U2, . . . ,U6} = {u1, u2, u3, . . . , u22},

V = {1L, 2L, . . . , 20L}.

For each ui, rij represents the degree of membership on
ui to vj, (i = 1, 2, . . . , 22, j = 1, 2, . . . , 20), where rij ∈
[0, 1]. R is denoted as the fuzzy matrix of feature ui on
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level vj:

R =


r11 r12 r13 . . . r1(20)
r21 r22 r23 . . . r2(20)
r31 r32 r33 . . . r3(20)
...

...
...

...
...

r(22)1 r(22)2 r(22)3 . . . r(22)(20)

.

C. FUZZY COMPREHENSIVE EVALUATION
In fuzzy evaluation, every evaluation element has a different
contribution to the statement EC. Thus, for a specific state-
ment s, we have to obtain the weight coefficient vector A,
namely, the property values of the code of the statement:

A = {a1, a2, . . . , a(22)}

Then, we can use the weight coefficient vector A of s and
fuzzy relation matrix R to evaluate our specific statement.
We compute the comprehensive evaluation matrix (vector) B
as follows:

B = A ◦ R = {a1, a2, . . . , a(22)}

◦


r11 r12 r13 . . . r1(20)
r21 r22 r23 . . . r2(20)
r31 r32 r33 . . . r3(20)
...

...
...

...
...

r(22)1 r(22)2 r(22)3 . . . r(22)(20)

,

where B is a fuzzy set on V , which is denoted by B ∈ F(V ),
B is a fuzzy vector which not only represents all evaluation
elements contributions but also reserves all degrees of mem-
bership of every level.

There are two typical models for fuzzy comprehensive
evaluation. Namely, the operator ‘‘©’’ can represent two kinds
of composited operations, M (∧,∨), and M (•,⊕), where
operator a ∨ b = min(a, b), a ∧ b = max(a, b), a • b = ab,
and a ⊕ b = min{1, a + b}. Yang et al. [20] identified
these typical fuzzy composite operators and how they are
selected. Basically, the former composite operator is major-
factor-dominated composition, and the latter is weighted-
mean composition. In addition, the latter operator is more
comprehensive than the former operator is. In this paper,
we prefer that the EC related statement features of a statement
both contribute to the EC of the statement, and the more com-
prehensive information can be utilized. The features defined
in Definition 7 are dominated one. Due to these reasons, M
(•,⊕) is chosen, and before evaluating, we must adjust the
weight coefficient vector A and the relation matrix R such
that:

22∑
i=1

ai = 1,
20∑
j=1

rij = 1.

Assuming that there are 22 statements and each of them
satisfies only one distinct feature, the F(V ) of them is shown
in Figure 3. In each chart of Figure 3, the x-axis is the level
of the FEC from 1L to 20L, and the y-axis is the degree of
membership.

FIGURE 3. F (V ) of 22 distinct features.

As described in definition 7, a statement may have many
features in different feature groups, so that a benchmarked
statement is selected, and each of them has a typical weight
coefficient matrix A by which its FEC is evaluated. These
statements are treated as criteria.

D. FUZZY PATTERN MATCH
Through the above discussion, we can use the multilevel
fuzzy comprehensive evaluation to obtain the final evaluation
matrix (vector) B ∈ F(V ). Then, the Hamming closeness
degree is selected to recognize the weight coefficient vector
of an arbitrarily given statement. Let A and A′ be fuzzy sets
on U , then

N (A,A′)1−
1
n

k∑
i=1

∣∣ai − a′i∣∣
is named the Hamming closeness degree between fuzzy sets
A and A′.

After all the fuzzy rule bases for all the features are
deduced, we can immediately compare a new given weight
coefficient vector with our fuzzy rule base to find a minimum
value of the Hamming closeness degree representing that
these two vectors are the most similar. In addition, we can
take this corresponding EC level as the EC level of the new
given statement.

V. EXPERIMENTS
In this section, we design a group of experiments to verify
the basic regularities between the EC and the statements,
the statement features analysis, the comparison between the
EC and the FEC, and the application cases of the FEC.

A. SETUP
We perform experiments in a real environment and mea-
sure the EC of the computer during the execution of
the program. The experimental environment, as shown in
Table 1 and Table 2, includes the experimental computers,
monitoring computer, algorithms and procedures as cases.
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TABLE 1. Testbed description.

TABLE 2. Description of test cases.

B. PERFORMANCE AND EC
We first discuss the fact that the execution time of a program
does not correspond with its EC; thus, we cannot estimate the
latter by the former. In this experiment, we proved that the
relation between the code execution time and the EC is not
consistent. We compared the EC of four use cases: Insertion
Sort, Merge Sort, Floyd, and LCS. By adjusting the input
scale to the algorithms, we ensured that the execution times
of the use cases were almost equal. Comparing their ECs,
we proved that ECs of the same execution time but of different
algorithms are not the same. Figure 4 shows the result of this
experiment.

In Figure 4, although the execution times of the four use
cases were approximately the same, their EC differences
were obvious. When the execution time was approximately
30 seconds, the EC of LCS was 29.9% higher than that

FIGURE 4. The EC comparison of different use cases when execution
times are equal.

of Floyd. Similarly, the EC of the Insertion Sort was 16.6%
higher than the EC of the Merge Sort. Reducing the input
scale of the four algorithms above making the execution
time approximately 15 seconds, this time, EC patterns of
four algorithms remained unchanged, but the EC differences
changed. The EC of LCS was 22.1% higher than that of
Floyd. Similarly, the EC of the Insertion Sort was 12.3%
higher than that of the Merge Sort. As a result, we can
conclude that first, codes with the same execution time do
not necessarily have the same EC, and we cannot simply take
code execution time to represent the execution EC. Second,
the EC differences of different pieces of code are unstable and
vary with the input scale although the algorithm execution
times are the same, but the EC differences still change.

C. FEATURES ANALYSIS
The experiment analyzes the effects of statement features
on the EC. By comparing the EC of the statement features,
the features are abstracted properly if their EC differences are
obvious. Feature are grouped as follows:
• Operator: bitwise, relation, logic, arithmetic, assign-
ment, condition, loop;

• I/O: read, write;
• Method: explicit, implicit, interface;
• Data: primitive, primitive array, object, object set;
• Virtual call: none, single, multiple;
• Inheritance: none, single, multiple.
We analyzed the statements of the test cases in Table 2,

associated them with the elements of the features mentioned
above, and measured their EC consumed by the experimental
computer on which the test cases were executed.Many results
were collected for each feature, and the five data summaries
are shown for comparison. Figure 5 shows the boxplots of
these results.

Overall, the ECs of the statements with different features
are distinctive. In the test cases, a statement may match
several features in different groups, so that the EC regularity
of each feature may overlap. For example, a read(I/O group)
statement may also be an object (data group) statement.
However, due to the larger number of statements that were
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FIGURE 5. The boxplots of the statement EC with different feature values. (a) Operator. (b) I/O. (c) Method. (d) Data. (e) Virtual call.
(f) Inheritance.

FIGURE 6. In different algorithms and input scales, the values of EC, FEC and EC/FEC.

investigated, such overlap is offset by the data summarization.
For abbreviation, the details of each feature are not analyzed
in this section. Notice that in Figure 5 the scales of the
y-axis in different charts are not the same. For example,
the difference between none-virtual-call and single-virtual-
call, as shown in Figure 5-(b), looks similar to that between
read-I/O and write-I/O, as shown in Figure 5-(e). However,
the former (approximately 500 nJ) is larger than the latter
(approximately 10 nJ).

D. FEC AND EC
To verify whether the FEC is consistent with the EC, we com-
pared the measured ECs and estimated the FECs of five
cases when the input scale increased. The FEC represents
the EC of the code correctly if the tendency of the FEC and

the EC were consistent, and the ratios of the EC and the
FEC were relatively stable. Search, Insert Sort, Merge Sort,
LCS, and Floyd were selected as the test cases, and their EC,
FEC, and EC/FEC values were compared with different input
scales (number of data items x = 100, 200, 300, . . . , 1000).
We expected that the values of the EC/FEC of the same case
under different scales would be approximately equal, or their
variances would be small.

Comparing Figure 6-(a) and 6-(b) (logarithmic coordi-
nates), the tendencies of both the EC and FEC values for the
five cases were consistent1 regardless that their values were

1In fact, measured EC fluctuates, but the fluctuations are not obvious
on the logarithmic coordinates, while the FEC curve corresponds with the
function curve.
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not equal. The EC and FEC represented the differences of
five algorithms consistently. In Figure 6-(c), the curves are
almost stable. The mean values of EC/FEC for Search, Insert
Sort, Merge Sort, LCS, Floyd are 0.0032, 0.0077, 0.0050,
0.0078 and 0.0059, 0.0059, respectively, and the standard
deviation of them is 0.00036, 0.00071, 0.00055, 0.00084, and
0.00073. The experimental results show that the proposed
FEC is relatively accurate and not only statically estimates
but also compares the EC of the algorithms.

E. APPLICATION CASES
In these experiments, we apply the FEC in two groups of test
cases, i.e., sort algorithms and Java collections, to verify the
accuracy of the estimation; the selected test cases have a com-
mon ground, that is, the statement complexity is increased
with the input scale, but such complexity is difficult to be
determined by code statistical analysis. Thus, FEC may be
far from the actual EC.

FIGURE 7. The comparison of the real and estimated EC values of the sort
algorithm.

Figure 7 shows a perfect match of the FEC and the EC
under the various sorting algorithms while sorting a small
number of data items (100 randomly ordered items). The
primary y-axis is the EC (wide bars), and the secondary y-axis
is FEC (narrow bars), since the scale of the two axes, as well
as the values of the FEC and EC, are different, but their
tendencies2 are almost the same.

We adopt a loop-unrolling-similar technique [20] to deal
with the input scales of the sorting algorithm. Take the
Merge Sort as an example, we infer the executed times of
the loops approximately and estimate the FEC on the loop-
unrolled code. This is why the FEC and EC are well matched.
However, it is difficult to statically infer the executed times of
the loop so that errors are unavoidable. However, the sorting
algorithms have relatively uncomplex code, and the input
scale is also small; therefore, the errors are not obvious.

Next, we adopt the relatively complex algorithms with
a larger scale input. The test cases are Insertion, Find and
Deletion operations on Java collections, including Vector,
ArrayList, LinkedList, HashMap, TreeMap, HashSet and
TreeSet. The initial items in the collections are 10000.

2polynomial regression, from energy efficient algorithm to energy con-
sumed algorithm

FIGURE 8. The test results of the EC of seven sets in the Java language.

The EC and the FEC of the three operations on
7 collections are shown in Figure 8. In the paper, the advan-
tages or weaknesses of these collections are not analyzed, but
the estimation accuracy of the FEC should be highlighted.
Comparing Figure 8-(a) and Figure 8-(b), the FEC is not
accurate enough under the given experiment. The FECs,
regardless as to whether they are larger or smaller, are almost
similar to the ECs, but their tendencies are inconsistent. The
primary errors are at the Find and Deletion operations on
Vector, ArrayList and LinkedList because the performance
of the three operations is highly related to the input scales,
i.e., more elements in the collections results in more com-
plexity in finding the special element. The loop-unrolling-
estimation mentioned above does not benefit the estimation
because it is impossible to statistically infer when the loop
for the collection traversal is exited. In contrast, there is
not such an issue in the look-up-based collections such as
HashMap and HashSet (hash table), as well as TreeMap and
TreeSet (red-black tree).

Likewise, there is a collection traversal when inserting an
element to the TreeMap and TreeSet, so that the FECs of the
Insertion operations on TreeMap and TreeSet are relatively
higher than others. However, the FECs of these two are
proportionally underestimated. Comparing Figure 8-(a) and
Figure 8-(b), such error is not obvious because it is hidden by
the extremely underestimated FECs of the Find and Deletion
operations on the preview of the three collections.

In conclusion, since the accuracy of the FEC is perfect in
some situations, it is still a statistical estimation and cannot
forecast the complex runtime situation. Therefore, the error
is unavoidable. However, the intentions of the FEC and the
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statistical estimation are for locating the energy inefficient
statements, and further improving them, but not the replace-
ment of the measured approaches. From this point of view,
the errors are acceptable.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposes a static EC estimation model and
approach for the OO code. First, the fuzzy EC model, named
the FEC, is proposed as a simplified sources-level EC model.
Then, the EC related features of the statements are defined.
Based on the model, the fuzzy estimation approach is intro-
duced to quantify the effects of the statement features on the
EC. Finally, the effectiveness of the FEC is verified through
the designed experiments. In conclusion, the FEC has the
following advantages:
(1) Independence: It does not depend on the compiling envi-

ronments and runtime environments.
(2) Rich features of statements: The energy-related statement

features are well abstracted and modeled.
(3) Static estimation: Compiling or executing the procedure

is unnecessary. Instead, it can measure EC only by ana-
lyzing the source code.

(4) Reasonable accuracy: The accuracy requirement is
appropriately relaxed by considering the consistency of
the estimated values and the actual values as well as the
variation trend.

(5) Fairness: The runtime environment does not affect the
fairness of the FEC. In the same context, the differences
of the FEC among tasks should be almost consistent with
the differences of the actual EC, or they should satisfy a
stable ratio.

(6) Object-Oriented: the estimation model takes the fea-
tures of object-oriented programming languages into
consideration.

However, as a static EC estimation model of code, the FEC
does not fully consider the relationship between statements,
i.e., the code structure, which will be extended in our future
work.
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