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ABSTRACT This paper proposes an optimal coordinated method for electric vehicles (EVs) participating
in frequency regulation (FR) under different power system operation states (PSOSs). In the proposed
methodology, the FR power of EVs and generators is coordinated with different optimization objectives for
power system secure and economic operations. When a power system operates in normal state, the minimum
FR cost is used as an optimization objective considering the battery degradation cost. In the abnormal state,
the minimum frequency restoring time is considered in the optimization objective. Based on the optimized
results in different scenarios, the output power coordinated control rule between EVs and generators is drawn.
Simulations on an interconnected two-area power system have validated the superiority of the proposed
optimized coordinated control strategy.

INDEX TERMS Electric vehicles, frequency regulation, operation state, coordinated control,
vehicle-to-grid.

I. INTRODUCTION
In order to reduce exhaust emissions and protect environ-
ment, many countries encourage renewable energy gener-
ation [1]. In the future, renewable energy sources will be
massively integrated into power grids and the power system
will face serious challenges. Due to the intermittency and
uncertainty of renewable energy sources, it is difficult to
meet the supply-demand match by only relying on the tradi-
tional FR resources [2]. EVs are considered as energy storage
devices [3], [4]. Based on vehicle-to-grid (V2G) technology,
EVs could charge/discharge from/to power grids [1]. The
V2G power in United States, UK, Germany, Italy, etc. may
reach 6.8-10 times of their average national load [5], [6],
and the number of EVs in the United States has reached
1 million [7]. The increasing number of EVs will bring new
opportunities to FR of power system.

There are three ways for EVs participating in FR. The first
way is the localized decision-making, for which, each charger
determines how much charging/discharging power is based
on local information, such as load fluctuations, the arrival
time of each EV and the local frequency information [8], [9].
The second way is the decentralized decision-making. In this
case, the FR signals are sent to the aggregators by control
center for controlling each charging device based on the
operating voltage, power loss and so on [6], [10], [11]. The
last way is the centralized decision-making. With the support
of the communication system, the chargers are controlled by
the control center [7], [12].

In the current literature, there are different optimization
objectives for EVs participating in FR such as reducing
frequency deviation (FD), improving FR revenue and EV
owners’ satisfaction [13]–[18]. In order to reduce the FD,
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the coordinated control strategies of different FR resources
are proposed and have better performance [19], [20]. This is
because these strategies can utilize the complementarity of
different FR resources efficiently. When an operation power
system is safe enough, the FR revenue could be improved.
The charging/discharging time of EVs could be optimized,
for example, EVs charge/discharge from/to grid when the
electricity price is low/high [20]–[22]. FR cost reduction,
such as reducing the battery degradation cost, also could
improve FR revenue [9], [23]. From the EV owners’ point
of view, their driving requirements are important and should
be satisfied. Therefore, the state-of-charge (SOC) of EV bat-
teries is necessary to be maximized [24], [25].

The PSOSs could be divided into five states based on
the security level [26]–[28]. The optimization objectives of
power system depend on the PSOS [29]–[31]. For different
optimization objectives, the utilization of each FR resource
is different. This is because some characteristics of resources
are complementary. For example, the response speed of EVs
could reach the millisecond level, the thermal power genera-
tors and hydroelectric generators just could reach the seconds
level. The response speed of EVs is much faster, but the
FR cost of them is higher. In our previous research in [13],
the response priorities for EVs participating in FR under
different PSOSs are involved. EVs participate in FR under
different PSOSs is investigated, but the optimal model is not
yet established.

In this paper, an optimal coordinated method for EVs
participating in FR under different PSOSs is proposed. In the
proposed methodology, the FR power of EVs and genera-
tors is coordinated with different optimization objectives for
power system secure and economic operations.When a power
system operates in normal state, the minimum FR cost is used
as an optimization objective considering the battery degra-
dation cost. In the abnormal state, the minimum frequency
restoring time is considered in the optimization objective.
In simulation, a series of random load and step load are added
in the normal state and abnormal state respectively. Based on
the proposed optimization method, the coordinated control
rule between EVs and generators is drawn. The remainder
of this paper is arranged as follows. The optimized model
is established in Section II. The particle swarm optimiza-
tion algorithm and the fuzzy set theory are employed to
resolve the optimal model in Section III. In Section IV,
the proposed coordinated control strategy between EVs and
generators is validated. In Section V, the conclusion is
made.

II. PROBLEM FORMULATION
An operation power system should maintain balance between
generation and load. Any generation-load mismatch will
result in FD. When the system operates in a relatively safe
state, the FD is within a certain small range. As the operation
power system is divided five states, only normal state is
considered relatively safe [27]–[29]. In this paper, the normal

state is classified as normal state, and the others are classified
as abnormal state.

A. OBJECTIVE FUNCTION
The formulas on FD is adopted from [6] and [30], as shown
in (1).

1ḟ =
1
M
(1PV2G +1PFRR −1PL − D1f ) (1)

1PV2G =
N∑
i=1

1PEV ,i (2)

where1 denotes the deviation from the initial steady state; f
is the system frequency; M is the angular momentum; PV2G
is the aggregated V2G power of all EVs; PFRR is the output
power of other FR resources;PL is the frequency nonsensitive
load power; D is the load-damping coefficient; PEV ,i is the
V2G power of the ith EV; N is the number of the EVs. In this
paper, the EVs are assumed stay in the charging station for the
most of time every day. The number of EVs participating in
FR could be ensured through incentive measures or policies
such as economic incentive. It is similar to demand response
(DR). DR is often a cost effective technique that can provide
the flexibility required to time shift loads either through prices
or incentive policies [21].

The FR cost is formulated as follows:

C = CEV + Cm (3)

CEV = Cdeg + Cchar + Closs (4)

where C is the FR cost; Cm is the FR cost of generators; CEV
is the FR cost of EVs, it consists of battery degradation cost
Cdeg, charging cost Cchar and power loss cost Closs; Cchar is
the cost for purchasing/selling the power from/to the power
grid; Closs is the cost for power transmission loss.
The battery degradation cost is result from the charg-

ing/discharging of EV batteries and it is calculated as (5) [12]

Cdeg =
∑
i∈I

∑
t∈W

αP2EV ,it+
∑
i∈I

|W |∑
t=2

β1P2EV ,it (5)

where α and β are the model parameters; PEV ,it is the charg-
ing power and 1PEV ,it is the charging power fluctuation of
the ith EV in interval t; W is the interval set; I is the set
of EVs; PEV ,it and 1PEV ,it could affect battery temperature
and active material of battery, they will result in more battery
degradation cost.

When a power system operates in a relatively safe state,
the FR cost can be considered to reduce. The objective func-
tion is shown as follows:{

min {1fmax,1faver ,C} , State = 0
min {1fmax,1faver , tF } , State = 1

(6)

where 1fmax and 1faver are the maximum and the average
FD values during FR process, respectively; tF is the time that
the FD restores to normal range; State is the PSOS, when
the system operates in normal state it equals 0, otherwise it
equals 1.
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B. FR CHARACTERISTICS
1) DYNAMIC CHARACTERISTICS
The dynamic characteristics of generators mainly depend on
the time constants of inlet steam chest, reheater and gover-
nor. The dynamic characteristics of EVs mainly depend on
time constant of battery power adjustment (it can reach up
to tens of milliseconds [6], [33]). The response speed and
FR accuracy advantages will be obvious if the number of
EVs is sufficient. Otherwise the output power of EVs will
be restricted by capacity constraint. The output power of
the generator is restricted by response speed and ramp rate,
compared with that of EVs.

2) COST CHARACTERISTIC
The FR cost of EVs includes battery degradation cost, charg-
ing cost and power loss cost. The charging cost is affected
by electricity price and charging power, which is expressed
as (7). It is a positive number when EVs are charging and a
negative number when EVs are discharging. In this paper, the
charging power and discharging power which are provided
for FR, are assumed to be equal. If the electricity price
for purchasing and selling are also assumed to be equal,
the charging cost will be zero. Therefore, the charging cost is
not considered in this paper. The power loss cost results from
transmission loss and is reflected in charging/discharging
efficiency, which is shown in (14) and (15).

CEVch arg e=
∑
i∈I

∑
t∈W

(
Pch arg e,itzpurchase,t−Pdisch arg e,itzsell,t

)
(7)

where Pcharge,it and Pdischarge,it are the charging power and
discharging power of the ith EV in interval t respectively;
Zpurchase,t and Zsell,t are the electricity price for purchasing
power from grid and selling power to grid in interval t respec-
tively.

EV battery has limited cycle life because of the fading
of active materials caused by the charging and discharging
cycles [36]. This cycle aging is caused by the growth of
cracks in the active materials, a process similar to fatigue in
materials subjected to cyclic mechanical loading [36], [37].
The influence factors can be summarized as ambient tem-
perature, cycle depth, charging/discharging power and so on.
In [12], [36], and [39], the variable of battery degradation
cost equations is V2G power. It could be presumed that the
equations are established for the ideal operating conditions
(for example, the ambient temperature is 25 ◦C). The rela-
tionships between battery degradation cost and V2G power
are shown in Fig. 1. The Model 1, Model 2 and Model
3 are battery degradation costs which are calculated based
on [12], [36], and [38], respectively. In Model 2, the cost
function is a piecewise function, the V2G power in each
segment is random. InModel 3, the correlation parameters are
the average values. In order to simplify the cost calculation,
the cost equation of Model 1 is applied in this paper.

The battery degradation cost, which is shown as (5),
is related to the total and the fluctuation of output power

FIGURE 1. The battery degradation cost of EVs.

FIGURE 2. Surface chart of battery degradation cost.

of EVs during t. Over-charging/discharging or over-frequent
charging/discharging will shorten service life of the battery.
The battery degradation cost is illustrated in Fig. 2, in which
charging power indicates FR power of EVs within time t.
It can be seen that the more EVs participate in FR, the lower
battery degradation cost is. In Fig. 2, battery capacity limit
is not considered, and it is assumed that the charging power
of each EV is the same no matter how many EVs participate
in FR.

FR cost of generators is shown in (8) [32].

Cm =
ge∑

g=gs

te∑
t=ts

Cgt +
ge∑

g=gs

te∑
t=ts

qpr,gtrpr,gt

=

ge∑
g=gs

te∑
t=ts

[
ugtCfix,gt + agGgt +

1
2
bg
(
Ggt

)2]

+

ge∑
g=gs

te∑
t=ts

qpr,gtrpr,gt (8)

where Cgt is the running generation cost of the gth generator
during time period t; ts is the start time of the generator partic-
ipating in FR; te is the end time of the generator participating
in FR; ugt equals to 1 if the gth generator is on during time
period t and to 0 if not; Cfix,gt is the gth generator fixed
generation cost during t; ag and bg are the generation cost
parameters; Ggt is scheduled generation of the gth generator
in the pre-contingency state during t; qpr,gt is the gth genera-
tor primary reserve rate during t; rpr,gt is scheduled primary
reserve of the gth generator during t . As can be seen from (8),
FR cost of generators is related to output power, generator
number and reserve capacity.
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C. CONSTRAINTS
1) SOCs of EVs
When EVs participate in FR, the SOC should be considered.
It affects the charging/discharging capacity of each EV.

SOCmin ≤ SOCini,i ≤ SOCmax (9)

Ec,i =
(
SOCmax − SOCini,i

)
E0,i (10)

Ed,i =
(
SOCini,i − SOCmin

)
E0,i (11)

where SOCmax and SOCmin are the maximum and minimum
SOC of the EVs respectively; These settings are used for
avoiding the batteries over-charging/discharging; SOCini,i is
the initial SOC of the ith EV; Ec,i is the energy of the ith EV
for charging; Ed,i is the energy of the ith EV for discharging;
E0,i is the rated capacity of the ith EV battery.

2) GENERATOR POWER OUTPUT
In order to avoid the output power of generators is too large
or too small, the constraint is shown as (12).

1Pminm,g ≤ 1Pm,g ≤ 1Pmaxm,g (12)

where 1Pminm,g is the minimum output power of the gth
generator participating in FR and 1Pmaxm,g is the maximum
output power of the gth generator.

3) EV CHARGING/DISCHARGING POWER
As the output power of generators, the constraints for output
power of EVs can be expressed as follows:

1PmaxD,i ≤ 1PV2G,i ≤ 1PmaxC,i (13)

1PV2GD,i = κ · KDown
i,k ·1P

′

V2GD,i (14)

1PV2GC,i = ζ · K
Up
i,k ·1P

′

V2GC,i (15)

Psti,down ≤
NEV∑
i=1

1PV2G,i ≤ Psti,up (16)

where1PmaxD,i is the maximum discharging power of the ith
EV during time period t;1PmaxC,i is the maximum charging
power of the ith EV during time period t; 1PV2GD,i and
1PV2GC,i are actual discharging power and charging power
of the ith EV; ζ and κ are the transmission loss efficiency
coefficients. They are both less than 1.KDown

i,k andKUp
i,k are the

discharging efficiency and charging efficiency coefficients,
respectively;1P′V2GD,i and1P

′

V2GC,i are the discharging and
charging power of the ith EV; Psti,down and Psti,up are the
lower and upper limit capacity of the stith charging station,
respectively. NEV is the number of EVs stay in charging
station. 1P′V2GD,i and 1P

′

V2GC,i are vary with the SOC of
the ith EV, which is formulated as (17) - (20) and shown as
Fig.3 [14].{

KDown
i,k = 1

KUp
i,k = 0

, SOCi,k ≤ SOCmin
i (17){

KDown
i,k = 0

KUp
i,k = 1

, SOCi,k ≥ SOCmax
i (18)

FIGURE 3. The output powers for different SOC EVs.


KDown
i,k =

1
2

(
1+

√
SOCi,k−SOC ini
SOCmin

i −SOC
in
i

)
KUp
i,k =

1
2

(
1−

√
SOCi,k−SOC ini
SOCmin

i −SOC
in
i

) ,

SOCmin
i ≤ SOCi,k ≤ SOC in

i (19)
KDown
i,k =

1
2

(
1−

√
SOCi,k−SOC ini
SOCmax

i −SOC ini

)
KUp
i,k =

1
2

(
1+

√
SOCi,k−SOC ini
SOCmax

i −SOC ini

) ,

SOC in
i ≤ SOCi,k ≤ SOC

max
i (20)

where SOCmax
i is the maximum SOC of the ith EV; SOCmin

i
is the minimum SOC of the ith EV; SOC in

i is the initial SOC
of the ith EV at plug-in time.

III. OPTIMIZATION ALGORITHM
After the comparison among particle swarm optimiza-
tion (PSO) algorithm, genetic algorithm (GA) and evolu-
tionary algorithms (EAS), the optimization result of PSO
is overall best. In this paper, the PSO algorithm is chosen.
The fuzzy set theory is employed in this paper to find the
best compromise solution. The solution procedures are shown
as (21) and (22) [34]. The eth objective function of a solution
in the set Fe is represented by a membership functionµe. The
flow chart of the optimization procedures is shown in Fig. 4.

µe =


1, |Fe| ≤ |Fe|min
|Fe|max − |Fe|
|Fe|max − |Fe|min

, |Fe|min < |Fe| <

0, |Fe| ≥ |Fe|max

|Fe|max

(21)

µθ =

Nobj∑
e=1

ξeµ
θ
e

H∑
h=1

Nobj∑
e=1

ξeµhe

(22)

where |Fe|max and |Fe|min are the maximum and minimum
value of the eth objective function respectively. For each solu-
tion θ , the normalized membership function µθ is calculated
as (22). H is the number of solutions. The best compromise
solution is the one with the maximum µθ . ξe is the weight
coefficient of the eth objective function.
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FIGURE 4. The flow chart of optimization procedures.

IV. SIMULATIONS AND RESULTS
In this paper, the proposed approach is an off-line optimiza-
tion to determine the optimal coordinated control strategy for
EVs and generators participating in FR. The off-line opti-
mization process should be implemented with a great variety
of load disturbances to experience enough power system
scenarios in a high-accuracy simulation environment, and
numerous explorations with EV charging/discharging strate-
gies should be sampled sufficiently in various system opera-
tion states. Consequently, the optimized control strategy can
then be implemented for on-site operation, and the optimal
charging/discharging power for each EV can be obtained to
meet the timeliness requirement based on the current system
operation state.

FIGURE 5. Block diagram of FR for two areas with generators and EV
charging stations.

TABLE 1. Parameters of the simulation system model.

The simulation model based on MATLAB/Simulink is
shown as Fig. 5. The FR resources of both area A and area
B include generators and EVs. The model parameters of the
two-area interconnected system are taken from [6] and [13],
as shown in Table I-III. The FR signal is based on the area
control error (ACE) under the TBC control mode, as follows

ACE = 1Ptie + B1f (23)

In order to simulate the load fluctuation in normal state,
a series of random load, which fluctuates within a certain
range, is added in area A and area B. As the unit of the
parameters in Table IV is hour, the random fluctuation time
of the load in normal state is set to 1 hour. Two step loads
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TABLE 2. Parameters of the EV charging station model.

TABLE 3. Parameters of EVs.

TABLE 4. The FR cost parameters.

are added in area A and area B respectively, for simulating
the disturbed load in abnormal state of power system, one is
-0.8MW the other is Pabnormal .

A. OPTIMIZATION AND ANALYSIS OF CONTROL STRATEGY
In this paper, the multiples of FR capacity allocated for EVs
and generators, express as the ace signals for EVs and gen-
erators, are the decision variables. The relevant parameters
are shown in Table IV [12]. The optimization objectives in
different states are formulated as (6).

1) NORMAL STATE
As shown in Fig. 6 and Fig. 7, the sum of output power of
EVs and generators in normal state fluctuates significantly
because of the random loads. The sum output power of EVs
and generators in normal state trends to increase with the
increase of Pnormal. The sum output power of EVs is small,
and the output power at each moment can be negligible.

2) ABNORMAL STATE
In the abnormal state, the operation power system is not safe.
In order to make the FD restore to the normal range as soon
as possible, the complementary of EVs and generators should
be utilized. As shown in Fig. 8 and Fig. 9, in abnormal state,

FIGURE 6. The sum output power of EVs under different scenarios in
normal state.

FIGURE 7. The sum output power of generators under different scenarios
in normal state.

FIGURE 8. The output power of EVs under different scenarios of
abnormal state.

the output power of generators increases with the increase of
Pabnormal and the output power of EVs is always the maxi-
mum. The output power is the final stable value. In abnormal
state, the optimized effect of any of these three objectives is
the same, the minimum FD. Therefore, the output power has
no rule with the ξabnormal-t.
In normal state, the output power of EVs can be negligible.

In abnormal state, the output power of EVs is the maximum.
The respond speed and FR accuracy of EVs, and the FR
capacity of generators, are effectively utilized. The FR cost
is considered.

B. SIMULATION AND DISCUSSION
The FR strategy, which is shown in area A of Fig. 5, is named
STRATEGY1. As shown in [13], the FR control strategy is
named STRATEGY2. In STRATEGY2, the response prior-
ities and control strategies for the FRRs vary with different
operating states. The FR control strategy optimized by the
proposed optimization method, which is shown in Table 5,
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FIGURE 9. The output power of generators under different scenarios of
abnormal state.

TABLE 5. The coordinated control strategy3.

FIGURE 10. Random loads fluctuation within one hour in area A (A) and
in area B (B).

is named STRATEGY3. In STRATEGY3, the number of EVs
is increased to two times, is named STRATEGY3+.

In order to evaluate the effectiveness of the FR control
strategies, the different indicators in different states are cal-
culated and listed in Tables VI.

1) NORMAL STATE
The random load is assumed to be under the normal distribu-
tion [40]–[42], and it is formulated as (24) and is simulated
as Fig. 10.

Prandom(t) = µ+ Pnormal · σ · randn (24)

where Prandom is the load fluctuation in normal state; µ and
σ are parameters of the normal distribution function, they
equal to 0 and 0.388. Pnormal is the maximum value of the
load fluctuation in the most of time, it equals to 0.06 MW
in Fig. 10; randn is a standard normal distribution random
number in [0,1].

The output power of different control strategies is shown
in Fig. 11. In STRATEGY1 and STRATEGY2, the EVs
and generators participate in FR. In STRATEGY3, only the
generators undertake the FR task. In STRATEGY3, the output
power of generators is the least.

Tie-line power of different control strategies is shown
in Fig. 12. In STRATEGY3, the tie-line power fluctuation is

FIGURE 11. The output power of EVs with STRATEGY1 (A1), of generators
with STRATEGY1 (B1), of EVs with STRATEGY2 (A2), of generators with
STRATEGY2 (B2), of EVs with STRATEGY3 (A3) and of generators with
STRATEGY3 (B3) in the normal state.

FIGURE 12. The tie-line power with STRATEGY1 (A), with STRATEGY2 (B)
and with STRATEGY3 (C) in the normal state.

FIGURE 13. The FD with STRATEGY1 (A), with STRATEGY2 (B) and
STRATEGY3 (C) in the normal state.

more dramatic than STRATEGY1 and STRATEGY2. This is
because the FR power in STRATEGY3 is the least.

The FD of different coordinated control strategies is shown
in Fig. 13. The FR power in STRATEGY3 is the least. How-
ever, the FD of STRATEGY3 is a little less than other strate-
gies. As shown in Table 6, the FR effect of STRATEGY3 is
the best, and the FR cost is much less than other strategies.
This is because the random load fluctuates constantly. The FR
cost of STRATEGY2 is less than that of STRATEGY2. This
is because the output power of generators in STRATEGY3 is
the less. The FR result of STRATEGY3+ is the same with
STRATEGY3, this is because EVs do not participate in FR.

2) ABNORMAL STATE
A −0.8MW load and an 1.6MW load are added in area A at
the 10th second and area B at the 15th second respectively.
The output power of different strategies is shown as Fig. 14.

62762 VOLUME 6, 2018



C. Li et al.: Optimal Coordinated Method for EVs Participating in FR under Different PSOSs

TABLE 6. Simulation results of different methods.

FIGURE 14. The output power of EVs (a) and generators (b) with
strategies in the abnormal state.

In STRATEGY2, EVs participate FR when the ACE reaches
response thresholds. In STRATEGY3, the output power of
EVs response faster than STRATEGY1 and STRATEGY2.

The tie-line power and FD of different strategies are
shown in Fig. 15 and Fig. 16 respectively. As shown
in Table 6, the performance of STRATEGY3 is the best, and
the performance of STRATEGY3+ is better than STRAT-
EGY3 because that there are more EVs participating in
FR and more quick response power. The performance of
STRATEGY3+ is a little better because of the capacity con-
straint of EVs.

In the normal state, the power system is operating in a
relatively safe state and the FD fluctuates within a certain
range. Therefore, the output power of FR resources could be
less for FR cost reduction. In the abnormal state, the only goal
is to improve system security. Therefore, the response speed
and FR accuracy advantages of EVs should be utilized. Based
on the optimized results, the output power of generators is

FIGURE 15. The tie-line power with strategies in the abnormal operating
state.

FIGURE 16. The FD with strategies in the abnormal operating state.

FIGURE 17. The output powers for different SOC EVs in abnormal state.

appropriately less and the output power of EVs is as less as
possible in normal state, and the output power of EVs is as
much as possible and the remainder of the FR power is the
output power of generators in abnormal state.
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V. CONCLUSION
In this paper, an optimal coordinated method for EVs par-
ticipating in FR under different PSOSs is proposed. In the
proposedmethodology, the complementarity of EVs and gen-
erators under different PSOSs is utilized. In normal state,
the power system is relatively safe, while in the abnormal
state, the FD must be restored to normal range as soon as
possible. When a power system operates in normal state,
the minimum FR cost is used as an optimization objective
considering the battery degradation cost. In the abnormal
state, the minimum frequency restoring time is considered
in the optimization objective. In this paper, the FR cost of
EVs is higher but the response speed is more rapidly. In the
simulation examples, a series of random load in an hour and
step load are added as disturbed loads. Based on the optimized
results in different scenarios, the optimal coordinated control
rule between EVs and generators is drawn. The output power
of EVs and generators is suggested to be less in normal state
and the output power of EVs is suggested to be more in
abnormal state. The simulation results have proved that the
FR cost is reduced in normal state and the frequency recovery
time and the FD are improved in abnormal sate with the
proposed coordinated method.
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