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ABSTRACT It has been shown that deep convolutional neural networks (CNNs) reduce JPEG compression
artifacts better than the previous approaches. However, the latest video compression standards have more
complex artifacts than the JPEG, including the flickering which is not well reduced by the CNN-based
methods developed for still images. Moreover, recent video compression algorithms include in-loop filters
which reduce the blocking artifacts, and thus post-processing barely improves the performance. In this paper,
we propose a temporal-CNN architecture to reduce the artifacts in video compression standards as well as
in JPEG. Specifically, we exploit a simple CNN structure and introduce a new training strategy that captures
the temporal correlation of the consecutive frames in videos. The similar patches are aggregated from the
neighboring frames by a simple motion search method, and they are fed to the CNN, which further reduces
the artifacts. Experiments show that our approach shows improvements over the conventional CNN-based
methods with similar complexities for image and video compression standards, such as MPEG-2, AVC, and
HEVC, with average PSNR gain of 1.27, 0.47, and 0.23 dB, respectively.

INDEX TERMS Advanced video coding (AVC), compression artifacts, convolutional neural networks
(CNN), high efficiency video coding (HEVC), video compression.

I. INTRODUCTION
The standards for image and video compression such
as JPEG [1], H.262/MPEG-2 [2], H.264/AVC [3], and
H.265/HEVC [4] are widely used to save transmission band-
width and storage space. They include lossless and lossy com-
pressionmodes, where the lossy compressed image and video
suffer from various compression artifacts, namely blocking,
ringing, blurring, mosquito, contour, flickering, etc. Hence
there have been a large number of methods for the restoration
of the original image from the compressed ones, which is an
ill-posed, non-invertible problem due to the quantization pro-
cess. Many works were mostly focused on the JPEG artifacts
because it is the most widely used method for the still image
compression [5], [6].

Recently, CNNs have shown great success in high-level
vision tasks such as image classification [7]–[9], object
detection [10], [11], and semantic segmentation [12], [13].
Additionally, inspired by the great success in high-level

vision tasks, CNNs were also adopted for low-level vision
tasks, which is to find a mapping from the degraded image
to the desired one, such as super-resolution [14]–[16] and
denoising [17]. Also, some CNN architectures were devel-
oped for the JPEG artifact reduction [6], [18], [19].

Since the dominant artifact with the JPEG is the blocking
artifacts, it seems that the CNN-based methods easily learn
the filters for the blocking artifacts reduction and improve the
PSNRmore than 1 dB in a wide range of compression quality
factor. In contrast, the state-of-the-art compression algorithm,
HEVC yields more complex artifact patterns because it has
many compression modes and different sizes of coding units
(CUs). For example, FIGURE 1a shows the artifacts in an
HEVC intra-coded image, where the directional patterns
caused by the intra-prediction are visible. Additionally, in the
case of video compression, there are fluctuations or discon-
tinuities in the quality and artifact patterns of consecutive
frames, which appear to be flickering artifacts when playing
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the compressed videos. Eventually, dealing with the artifacts
in videos is much more complicated than the case of still
images.

In block-based coding methods, one of the most notice-
able artifacts may be the blocking artifacts as shown in
FIGURE 1b and FIGURE 1c. To alleviate such artifacts,
recent compression standards such as AVC and HEVC intro-
duced in-loop deblocking filter [20]. In addition, the HEVC
introduced the sample adaptive offset (SAO) [21] to relieve
general compression artifacts. These methods not only
enhance the quality of each frame but also contribute to
improving the compression performance. When the deblock-
ing filter and SAO are applied, it becomes more difficult to
obtain the gains by the post-processing because the deblock-
ing and SAO can sufficiently reduce many kinds of arti-
facts. Hence, as will be shown in the experiments, applying
the existing artifact removal CNNs to each frame does not
much increase the PSNR of HEVC/AVC-decoded videos,
and also does not alleviate the flickering as the frames are
independently processed. In this respect, few works tried to
improve the HEVC coded images using the CNN. Specifi-
cally, Dai et al. introduced a CNN for the artifacts removal
of HEVC decoded frames [22], but it was limited to the
restoration of intra-compressed images without using the
deblocking filter and SAO. There are also some methods
to replace the deblocking filter and SAO by CNN, which
is shown to improve the PSNR compared to the original
HEVC [23]. Recently, Yang et al. proposed a CNN for
enhancement of HEVC compressed frames regardless of
the encoding modes [24]. However, they did not exploit the
temporal correlation between adjacent frames.

FIGURE 1. Examples of compression artifacts. (a) HEVC directional
pattern artifacts (b) JPEG blocking artifacts (c) HEVC blocking artifacts.

In summary, there have been some post-processing CNNs
for the reduction of artifacts in the decoded videos, but
they have some limitations. Specifically, the post-processor
proposed in [22] is applied to HEVC, but it was limited
only to the intra-coding mode with the deblocking filter
turned off. There is another post-processor that considered
various coding modes [24], but it does not consider the tem-
poral correlation between the adjacent frames and requires
two networks to handle intra and inter frame separately.
In this respect, we propose a new approach that can alleviate
the above stated limitations. To be precise, we develop a
CNN-based post-processor, and apply it for various kinds
of image/video codecs working on various coding modes.

Also, in addition to frame by frame information, our model
exploits temporal information by applying the input with
motion estimated patches.

II. RELATED WORK
A. ARTIFACTS REMOVAL NETWORKS FOR JPEG
The first work that used the CNN for the JPEG artifacts reduc-
tion is the Artifacts Reduction Convolutional Neural Network
(AR-CNN) [6] which stacked four convolution layers with
mean squared error (MSE) loss function. Svoboda et al. [18]
used a deeper network and residual learning with additional
loss function for the artifacts removal. In [19], they developed
dual domain convolutional network (DDCN) which adopted
the DCT domain prior as an additional input. Cavigelli et al.
introduced the CAS-CNN [25] which adopts a deep network
with multi-scale MSE losses for JPEG artifact reduction.
Also, Kim et al. [26] modified the Inception module [8]
for some low-level vision tasks, and showed that it is also
effective and efficient for the JPEG artifacts reduction.

B. SPATIAL-TEMPORAL NETWORKS FOR VIDEO
APPLICATIONS
There have been some deep networks that take multiple
frames of a video sequence as the input for the CNN. By using
the sequential frames as a tensor input, the CNN can capture
the temporal as well as the spatial information from a video.
Specifically, the deep temporal linear encoding network [28]
and the temporal segment network [29] exploit the tempo-
ral information for enhancing the action recognition perfor-
mance. Also, multiple frames are used for video denoising,
prediction and video super-resolution by using the recurrent
networks [30]–[33]. Also, the spatial-temporal network is
proposed for replacing the in-loop filter in the video encoder
for improving the compression performance [34]. A CNN
structure for video super-resolution is proposedwheremotion
compensated consecutive frames are fed to obtain super-
resolved frames for videos [35].

C. CNNs FOR HEVC
In addition to the spatial-temporal networks [34] referenced
above, there are also several methods that applied the CNN
to the HEVC artifacts reduction. Specifically, Park and Kim
replaced the in-loop filter and SAO in the encoder by a
CNN [23] and obtained significant gains over the encoder
with the in-loop filter. In the case of [22], they used a CNN as
a post-processor to the decoded image, but it was limited to
the intra-coded images and the test was done without turning
on the in-loop filter in the encoder. Also, Yang et al. proposed
a CNN to handle different properties of I and B/P compressed
frames [24], but it does not exploit temporal correlation and
requires separate CNNs to handle intra and inter frames.

III. DEEP TEMPORAL NETWORK
For the deep network that maps an input X to the output
F(X; θ ), its training is to find the set of parameters θ of the
network thatmakesF(X; θ ) as close to as the desired signalY.
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FIGURE 2. The overall framework of the proposed network, where k , n, s above the convolution layers denote the kernel size, the number of output
feature maps, and the convolution strides, respectively.

In our case, the input is the set of three consecutive frames
X(t−1),X(t), and X(t+1), and the desired output denoted as
Y(t) is the original (uncompressed) frame. That is, we exploit
the temporal dependencies of consecutive frames to find
the current frame, which reduces the artifacts in the frame
and also suppresses the temporal artifacts such as flickering.
The overall architecture is shown in Fig. 2 which extracts
the features from the consecutive frames by deploying three
branches of convolution layers which are fed with the related
patches from X(t−1), X(t), and X(t+1) respectively. These
are named as ‘‘temporal branches,’’ whose outputs are then
concatenated and fed to the following ‘‘aggregation branch.’’
In the rest of this paper, we refer to our network as Artifact
Reduction Temporal Network (ARTN).

A. TEMPORAL BRANCH
Each temporal branch in Fig. 2 consists of three convolution
layers, each of which is followed by a rectified linear units
(ReLU) [36]. The role of a temporal branch is to extract fea-
tures from the corresponding frame and so it is constructed by
simple convolution layers. As shown in the figure, the number
of feature maps for the current frame is twice larger than
that of the previous or next frame (64 vs. 32) for stressing
the current frame and also for some possible mismatch of
previous/next frames from the current one.

The artifacts reduction is processed patch by patch where
the patch size is determined as 64 × 64 with the stride of 48
(which is 32+16 so that 1/4 of block length/width overlap
with the neighboring ones), which is determined from the fact
that the largest size of the coding unit in HEVC is 64×64. For
the given patch from the current frame, the patches from the
previous and next frames are chosen to be the close ones from
the current one. Full search motion estimation (ME) can be
used for finding the closet matching patches, but we just use
the simple three step search (TSS) algorithm [37] for saving
the computations.1 Also, to cope with the case of abrupt scene

1From the experiments, it is found that using the TSS gives almost the
same performance as using the full search method.

change and the failure of ME, the previous (or next) frames’
patches are discarded and replaced by the current frame’s
patch when the mean absolute difference between the patches
exceeds a certain threshold (In the experiments, the threshold
is set to 25,500 in every experiment).

B. AGGREGATION STAGE
The role of aggregation stage is to merge the extracted fea-
tures from the temporal branches and enhance the features.
We use the Inception-based network proposed in [26] which
is shown to provide comparable denoising performance to the
state-of-the-art methods with less number of parameters. This
architecture is the modification of Inception module from
GoogLeNet [8] which is shown in Fig. 3 for comparison.
According to [8] the network-in-network structure in the
Inception module helps to extract rich features by using var-
ious size kernels while requiring less number of parameters.
The modified network-in-network in [26] is to remove the
max-pooling of original architecture and, instead, add a larger
7 × 7 kernel filter. This helps to keep the features that are
needed for the JPEG artifacts removal or skin detection as
shown in [26] and [27].

FIGURE 3. Comparison of network-in-network structure from the
(a) original Inception and (b) the modification for artifacts removal.
(a) Original. (b) Modified.

In this paper, we use just two Inception modules fol-
lowed by one convolution layer as the aggregation stage.
Stacking more modules in this stage (and also stacking more
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TABLE 1. Parameters of ARTN.

convolution layers in the temporal branches) may increase
the performance of the system, but we choose to use the
numbers of Inception modules and convolution layers as
in Fig. 2 to keep the overall number of parameters close to
that of baseline AR-CNN [6] that we compare. Specifically,
Table 1 summarizes the number of parameters needed for
our architecture, which is shown to be about 123K that is
comparable to 106K of baselineAR-CNN.Compared to other
recent artifacts removers such as L8 network [18] (220K) and
CAS-CNN [25] (5,144K), the proposed method needs fewer
parameters while providing better results as will be shown in
the experiments.

C. MERGE STAGE
The final output frame is merged as the weighted sum of out-
put patches. As stated previously, 1/4 of horizontal/vertical
part of a block overlapwith the neighboring ones. Hence there
are some parts in the image which are the overlap of two
blocks (horizontal or vertical), and also there are some parts
which are the overlap of neighboring four blocks (horizontal,
vertical and diagonal). For these overlapping parts, we define
the Gaussian weights from the block center, multiply them to
the pixel values, add the overlapping pixels and then divide
by the sum of weights for normalization. To be precise,
the weight for a patch is defined as

W (i, j) =
1

√
2πσ

exp
(
−
d(i, j)2

2σ 2

)
(1)

where d(i, j) is the Euclidean distance from the center of
patch defined as (0,0) to the coordinate (i, j). For each patch,
the pixels that contribute the overlapping region are multi-
plied by the weights. Then all the weighted pixels in the
overlapping regions are added and divided by the sum of
weights.

D. NETWORK TRAINING
1) DATASET PREPARATION
In the next section, we will show the experimental results for
all the widely used video codecs, i.e., MPEG-2, AVC, and
HEVC. But we explain the training method only for HEVC
due to the limited space and also because the trainingmethods
for other codecs are almost the same.

To train the network for the HEVC compression arti-
facts reduction, we prepare a dataset from HEVC common

TABLE 2. Sequences for the training set.

TABLE 3. Sequences for the test set.

test sequences of JCT-VC and also from some additional
sequences. The sequences are encoded by HM 16.9 software
with the random access main profile with GOP of 8. The
quality factors of QP = 34, 37, 42, and 47 are used for the
compression, i.e., we train four models for the corresponding
QPs. As addressed in the existing work [18], a single model
that covers all the QPs (for the blind case that we do not
know the QP of the encoder) performs worse than the mod-
els that are specifically trained for the given QP (non-blind
case). We assume that we can have QP information from the
decoder or we can estimate it by using the CNN-based QP
estimator reported in [38].

Our main target resolution is FHD (1920 × 1080), and
hence we prepare high-resolution training sets. Specifically,
among the videos in the HEVC common test set, the low-
resolution ones are excluded, leaving 20 as the training
sequences. The network is trained with Y channel only. For
constructing the training set, we conduct two steps:

• Base Step: Basic patch extraction for training.
• Refining Step: Refining extracted patches for enriched
dataset.
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TABLE 4. Average PSNR and SSIM results for the test set.

FIGURE 4. PSNR gain comparisons between AR-CNN and our ARTN for each compression method, at low- and
high- compression rates.

The 64 × 64 patches are extracted with the stride of 40,
from every 50 frames of the training sequences. The
TSS parameter is set as p = 15. At the base step,

the sequences used for the training, their resolution,
and the total number of extracted patches are listed in
TABLE 2.

63098 VOLUME 6, 2018



J. Woong Soh et al.: Reduction of Video Compression Artifacts Based on Deep Temporal Networks

FIGURE 5. Visualization results on the sequence ‘‘BasketballDrive’’ of QP 42 (HEVC). (a) HEVC. (b) AR-CNN. (c) VRCNN. (d) VSRNet. (e) Baseline.
(f) ARTN. (g) Ground Truth.

According to our extensive experiments, it is noted that
the randomly extracted patches are not good for the training
because there are some low-rank patches (e.g. flat regions)
which do not contain the examples of compression arti-
facts. On the other hand, the patches with high variance
contain many artifacts so that they can be good training
samples. Hence, we refine the extracted patches by removing
the unnecessary ones that have low variance. Specifically,
the patches with variance less than 0.002 (when the pixel val-
ues are normalized into [0,1]) are removed from the dataset.
TABLE 2 also shows the number of refined patches of each
sequence. Since we remove some patches, we augment the
data by rotation and flip (×8).

2) TRAINING DETAILS
We train our networks using L1 loss function instead of L2,
based on the experiments in [39] that the L1 loss provides
better results than the L2 in terms of PSNR. We implement
the ARTN with Caffe framework [40] and use ADAM [41]
optimizer. The batch size is 128, and the learning rate is
given as 10−4 for the entire training. We train four models
for HEVC: QP = 34, 37, 42, and 47; four models for
AVC: QP = 34, 37, 42 and 47; and two models for MPEG-2:
QP = 20 and 30.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENT SETUP
We test our model with five sequences with FHD
(1920 × 1080) resolution listed in TABLE 3. To accelerate
the running time of our network, we put as many patches
as possible to GPU memory, as a batch for the test environ-
ments. The peak signal-to-noise ratio (PSNR) and structure
similarity (SSIM) [42] are measured for each of the frames
reconstructed from the CNN, and the averaged values of all
the frames are compared. For the evaluation of flickering
artifacts, we define a flickering score (FS) based on the sum
of squared difference (SSD).

To evaluate the effectiveness of temporal branch that we
propose, we also implement a network without the temporal
branch as an ablation study. Specifically, the branches that
receive the pre- and post-patches in Fig. 2 are removed, which
is called the ‘‘baseline,’’ for the comparison. We also com-
pare the proposed ARTN with the AR-CNN [6] by defining
our network’s complexity to be similar to AR-CNN. Also,
in the case of HEVC, we compare our network with the
VRCNN [22] which is proposed for the artifacts reduction
in HEVC intra-coded image with the deblocking filter turned
off. Additionally, for comparing our method with the exist-
ing network that uses temporal information, we modify the
Video Super-Resolution Network (VSRNet) [35] which was
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FIGURE 6. Visualization results on the sequence ‘‘Pedestrian’’ of QP 47 (HEVC). (a) HEVC. (b) AR-CNN. (c) VRCNN. (d) VSRNet. (e) Baseline. (f) ARTN.
(g) Ground Truth.

originally developed for video super-resolution. We set the
number of parameters of this network similar to ours, and also
train and test it on the same condition as ours. Also, we re-
train the AR-CNNwith the same datasets as ours, because the
original AR-CNNwas trained only for the JPEG compression
artifacts reduction.We also train the VRCNNwith our dataset
(with the deblocking filter turned on), because the original
VRCNN is trained only for the intra-coded frames without
turning-on the deblocking filter.

B. OBJECTIVE AND SUBJECTIVE COMPARISONS
The average PSNR and SSIM results on the test sequences are
shown in TABLE 4. The best PSNR and SSIM results for each
QPs are highlighted in bold. As shown, the ARTN achieves
the best performance in both PSNR and SSIM compared to
the others. We can see that although the VRCNN is effective
for reducing the artifacts in intra-coded images according
to [22], it is not in the case of turning on the deblocking
filter and also in the case of inter-coded frames so that the
overall performance is not improved. It is also noticeable that
our baseline is better than the AR-CNN, which may demon-
strate the effectiveness of our architecture while aggregating
the temporal information gives additional gains. It is also
seen that the importance of exploiting temporal dependencies

between adjacent frames. Our ARTN shows better PSNR and
SSIM gain than the VSRNet, while the VSRNet also achieves
considerable performance gains by exploiting the temporal
information between frames.

Fig. 4 is a graph that shows the PSNR gains of AR-CNN
and ARTN for each of encoding methods, at low- and high-
compression rates. It can be seen both methods show larger
gain in the order of HEVC, AVC and MPEG-2, which also
reveals the effectiveness of HEVC compared to MPEG-2.
That is, the HEVC is effective enough that further post-
processing does not much help whereas there are much to
be improved in the case of MPEG-2. It is also observed that
the AR-CNN gets a larger gain at a higher QP, whereas the
proposed ARTN shows the consistent gain.

Finally, we visualize the results for HEVC images in
FIGURE 5 and FIGURE 6, AVC in FIGURE 9 and
FIGURE 10, and MPEG-2 in FIGURE 11 and FIGURE 12.
Bymagnifying the images, we can see that the ARTN reduces
the artifacts very well as compared to the others.

C. COMPARISONS WITH RECENT CNN-BASED HEVC
POST-PROCESSOR
We additionally compare our ARTN with DS-CNN [24]
which is a recent CNN for HEVC quality enhancement. Since
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TABLE 5. 1 PSNR (dB) comparisons between DS-CNN and ARTN. The best
results are highlighted in bold face.

the author code is not available, we compare the methods in
TABLE 5 only for the common test sequences that appear
in the paper, specifically for the BasketballDrive and BQTer-
race. That is, the numbers for the DS-CNN and AR-CNN are
from the original paper of DS-CNN [24]. As shown in the
table, our ARTN achieves better 1 PSNR than the others.

D. MEASUREMENTS OF FLICKERING
Since we are dealing with video, we also measure the tem-
poral artifacts, i.e., the degree of flickering which is caused
by the fluctuation of image quality and artifacts patterns
between the consecutive frames. There have been some
studies to objectively measure the flickering for developing
a post-filter or better encoding modes [43], [44] based on
the sum of squared difference (SSD). However, since both
works targeted on the AVC compression algorithm, the met-
rics in these studies are not adaptable to our other targets
(MPEG-2 and HEVC). Hence, based on these works, we also
define a similar measure which will be called the flickering
score (FS).

According to [43] and [44], and our observations, the flick-
ering artifacts are
• mainly caused by the changes in intra-prediction modes
between the successive frames

• perceived mostly in low motion areas, and between the
intra-coded and inter-coded frames

• occurred by the different loss of information between the
successive frames due to coarse quantization.

Hence we need to find the candidate areas first (low-motion
areas) and then calculate the frame differences in these areas.

1) CANDIDATE BLOCK SELECTION
We select the low-motion blocks by using mean absolute dif-
ference (MAD) between the consecutive frames. Specifically,
when the i-th block in the current (t-th) frame, denoted as
Ii(t), is not much different from the corresponding block (at
the same position) in the previous frame (i.e., Ii(t − 1)) then
the block is considered a candidate. Base on this, the set of
candidate blocks is defined as

I(t) = {Ii(t)|
1
S
||Ii(t)− Ii(t − 1)|| < τ }, (2)

FIGURE 7. Visualization of candidate blocks.

FIGURE 8. Feature maps of temporal branch. (a) First convolution layer.
(b) Second convolution layer. (c) Third convolution layer.

where S is the number of pixels in the block Ii(t) and τ is
the threshold. We use the block size of 64 × 64 which is
the largest CU size in HEVC. In all the experiments we set
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τ = 7.5, where FIGURE 7 shows an example of candidate
blocks selected with τ = 7.5.

2) METRIC FOR FLICKERING MEASUREMENTS
After selecting the candidate blocks, we measure the FS by
calculating the SSD between the target and the reference. The
basic idea is that if the temporal difference between the blocks
of original frames (denoted as ei(t) = |Ii(t) − Ii(t − 1)|)
is much different from the temporal difference of encoded
frames (êi(t) = |Îi(t) − Îi(t − 1)|) then it appears as the
flickering, based on the assumption that the original video has
no flickering.2 In summary, the difference between the êi(t)
and ei(t) appears as the flickering, and hence we define the FS
at the t-th frame as the sum of these differences in candidate
blocks:

FS(t) =
1
N

∑
i

(ei(t)− ei(t − 1))2 (3)

where N is the number of candidate blocks. Then, the overall
FS is calculated by averaging the FS(t) over the time:

FS =
1
L

L∑
t=1

FS(t) (4)

where L is the number of frames in the sequence.
TABLE 6 shows the FS of the videos, where it can be

seen that our baseline network (without temporal branches)
reduces the FS, and the ARTN further reduces the FS as
expected. It can also be seen that the flickering artifacts tend
to increase as the QP increases. Focusing on high QPs, which
produce low quality sequences, our baseline model reduces
the FS approximately 3 to 5 percents and the ARTN by 4 to
9 percents.

2If the original video has flickering, then it would be meaningless to
measure the flickering of the compressed video.

TABLE 6. FS results for the test set.

E. DISCUSSION
1) EFFECTIVENESS OF TEMPORAL BRANCH
The effect of our temporal branch is also analyzed by visu-
alizing the feature maps as shown in FIGURE 8. Upper-left
32 feature maps are the ones from the upper branch (from the
previous frame), lower-left 32 from the lower-branch (next
frame), and the right 64 are from the center branch (current
frame). The depth of convolution layers is in the ascending
order from the top to bottom. As can be seen, the features
from the previous/next frames are correlated with the current

FIGURE 9. Visualization results on the sequence ‘‘GTAV’’ of QP 42 (AVC). (a) H.264/AVC. (b) AR-CNN. (c) Baseline. (d) ARTN. (e) Ground Truth.
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FIGURE 10. Visualization results on the sequence ‘‘Pedestrian’’ of QP 47 (AVC). (a) H.264/AVC. (b) AR-CNN. (c) Baseline. (d) ARTN. (e) Ground Truth.

FIGURE 11. Visualization results on the sequence ‘‘Kimono’’ of QP 20 (MPEG-2). (a) MPEG-2. (b) AR-CNN. (c) VSRNet. (d) Baseline. (e) ARTN. (f)
Ground Truth.

one, which means that the temporal branch networks success-
fully find additional features that help to enhance the current
frame further.

To analyze the effect of motion estimation (ME) quantita-
tively, we conduct an additional experiment that we feed three
successive patches in the same spatial position without ME.
We tested on the case of QP 20 with MPEG-2 and obtained
33.92 dB, while the result with the ME is 34.23 dB as shown
in TABLE 4. Hence, the ME brings about 0.3 dB gain in this
case, and thus the ME has some effect on the performance.
When comparing this result (33.92dB, when using temporal
branch without ME) with others in TABLE 4, the ARTN

without ME is is still better than the AR-CNN (33.83dB) but
worse than our baseline model (34.07dB).

By referring to TABLE 4, ‘‘using temporal branch without
ME’’ is still better than the AR-CNN but worse than our
baseline model. Hence, we can conclude that when using the
patches from different frames, it is required to align them by
the ME.

As addressed in CNN-based non-local means denoising
[45], [46], using more related patches enhances the restora-
tion performance, and we believe this is not the excep-
tion with the compression artifacts reduction problem. Also,
we believe that using the temporally correlated features (not
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FIGURE 12. Visualization results on the sequence ‘‘Pedestrian’’ of QP 30 (MPEG-2). (a) MPEG-2. (b) AR-CNN. (c) VSRNet. (d) Baseline. (e) ARTN. (f)
Ground Truth.

the spatially related ones within a frame as in the non-local
means denoising methods) mitigates the temporal differences
in enhancement performances, which leads to reduced flick-
ering artifacts.

2) RUNNING TIME
We implement our ARTN and all the other networks with
MatCaffe [40] on a computer with NVIDIA Titan X GPU
and Intel i7-7700K CPU. The AR-CNN, VRCNN, and
our baseline network take the computation time of 0.11,
0.12, and 0.25 seconds respectively for processing an FHD
(1920×1080) frame. In the case of our ARTN, it takes about
2 seconds per frame where most of the computation time is
taken for the motion estimation (ME). For the VSRNet [35]
which also needsME in the pre-processing step, it takes about
55 seconds per one FHD frame in the same environment.
In both ARTN and VSRNet, the ME is executed on a CPU
without considering the parallelism. Hence, if we use the
parallel code for the ME and run it on the GPU, we believe
that the computation time of ARTN andVSRNet can bemuch
reduced.

The results of original size images and videos are available
at http://github.com/JWSoh/ARTN for the comparisons of
image quality and flickering, where we will also make our
codes publicly available.

V. CONCLUSION
We have proposed a deep temporal network for reducing
the artifacts in video compression. The network consists
of three temporal branches of convolution layers which are
merged to a single Inception-based network. Each of the
temporal branches receives a frame, where we set three
branches to process three consecutive frames in a video
sequence. The temporal branches extract the features from the

corresponding frames which are then concatenated and fed to
the single network. The experiments show that the proposed
network yields higher gain over the conventional networks for
MPEG-2, AVC, and HEVC, by about 1.27 dB, 0.47 dB, and
0.23 dB respectively. It is also verified that using the temporal
information brings further gains. The flickering artifacts are
also measured in terms of our own measure, and it is shown
that the proposed method also reduces the flickering that is
commonly found in compressed videos.

Finally, although there have been many compression arti-
facts removal methods after the AR-CNN, we compared our
method mainly with the AR-CNN by setting our network’s
complexity as similar as the AR-CNN. We believe that we
can have more gains by using the recent deeper networks as
our main and/or temporal branches. Specifically, using the
temporal branches enabledmore gains than just using a single
deeper network with the same amount of parameters, which
also reduced the flickering artifacts.
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