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ABSTRACT In this paper, a novel circularly polarized end-fire septum antenna based on substrate-
integrated-waveguide (SIW) is proposed in the 60-GHz band. By introducing four symmetrical tapered
curved air slots in three stacked open-ended SIW layers, the antenna can obtain an operating bandwidth
from 57.2 to 63.4 GHz for both AR < 3 dB and |S11| < −21 dB. Besides, the half-power-beam-width and
3-dB axial-ratio (AR) beam-width are all wider than 79◦, and a stable gain of 7.57 dBic with a variation of
0.15 dBic can be achieved in the working band. A 4× 4 SIW Butler matrix based on SIW with three same
substrates is then designed. The modified two-layer phase shifters realized by the different path distance
are employed in the folded Butler matrix. By combining the antenna element and the Butler matrix together,
a four-beam antenna array with circular polarization wave is realized. The proposed array has been fabricated
and measured. The measurement results show that the antenna gain up to 11.01 dBic, −10 dB impedance
and isolation bandwidth from 57.8 to 62.5 GHz (except at around 58.3 GHz), stable radiation pattern and a
wide angular range of±37◦ can be obtained. The measured AR values of the main lobe range of four beams
are all less than 5 dB from 58 to 60 GHz.

INDEX TERMS Butler matrix, circularly polarized, end-fire, millimeter wave, multi-beam, substrate
integrated waveguide.

I. INTRODUCTION
Millimeter-wave (MMW) technology has been attracting
much attention to realize the upcoming 5th-generationmobile
networks [1]. It is widely known that the electromagnetic
wave suffers from higher space loss and blockage effects at
MMW band than microwave band, which substantially dete-
riorates the coverage and the signal-to-noise ratio (SNR) [2].
The high gain antenna array with narrow beam width is a rea-
sonable solution to address this shortcoming [3]. To enlarge
the spatial coverage without increasing the interference,
multi-beam antenna arrays with passive beam-forming net-
works (BFNs), which have ability to cover a predetermined
angular range with independent high gain beams and avoid
the inter-connection/cell interference due to the narrow beam-
width, receive extensive attention [5], [6]. As one of the most

popular BFNs, the Butler matrix based on SIW is a strong
candidate for MMW multi-beam antenna due to its rela-
tively low transmission loss and low processing cost [7]–[9].
Recently, themulti-foldedButlermatrixes based on SIWhave
been proposed in [10] and [11], which can achieve a more
compact size than the traditional one.

The circularly polarized (CP) antenna has advantages
of providing a flexible orientation angle between transmit-
ting and receiving antennas, and it can reduce the mul-
tipath effects in contrast to the linearly polarized (LP)
antennas [12], [13]. However, there are only a few research
working on the MMW CP multi-beam array. A broadside
multi-beam array with multiple polarizations was proposed
in [14], but the axial-ratio (AR) value of the radiation pat-
tern would deteriorate significantly in the outside direction
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beam due to the narrow 3-dB AR beam width of the radi-
ation element. A stacked curl element with wide AR beam
width and operating bandwidth based on SIW was proposed
in [15], which is suitable for broadside multi-beam array
applications.

For the purpose of enriching the radiation direction of the
multi-beam antenna array, the array with end-fire radiation
pattern would be more promising in the portable devices
due to its ability to save the space occupied by antenna
element and to avoid the undesirable interference from
user’s hand on antenna radiation characteristic as much as
possible [16] and [17]. It plays a vital role to select an antenna
element in building a CP end-fire multi-beam array due to
its decisive effects on the performance of the array. Antenna
element should meet three conditions: symmetrically wide
half power beam width (HPBW), wide 3-dB AR beam width
and narrow structure width. However, there are not many
studies on end-fire CP antenna. The CP tapered slot antennas
based on waveguide with wide operating bandwidth were
proposed in [18] and [19]. However, the aperture width of this
type CP antenna is too large to be employed as a multi-beam
antenna element, even in the compact version based on ridge
waveguide [20]. The CP septum antenna with wide 3-dB AR
beam width operating at 60 GHz based on waveguide was
proposed in [21], but the aperture width of this antenna is also
too large which is equal to the width of WR-15. In addition,
its HPBW is narrow, 62◦ at 60 GHz, which will enlarge the
gain variation between different beams in multi-beam array
applications. Recently, a dual circularly polarizedmulti-beam
end-fire array using dielectric loaded stepped slot antennas
was proposed in [22], which can achieves wide operating
bandwidth of 22.5%.

In this paper, to reduce the aperture width and broaden the
HPBW of the end-fire CP septum antenna based on waveg-
uide, a septum antenna element designed on three layer SIWs
is proposed. Considering various PCB processing constraints
such as usable substrate thickness and minimum distance
between metal holes and slots, the exponential curve slot
is employed to obtain the CP characteristic. The properties
difference between the septum antenna based on air-filled
waveguide and SIW is explained. Compared with the element
in [22], the proposed element can achieve more compact
structure in width and length. The width of element can be
reduced from 0.75λ to 0.58λ with almost same dielectric
constant substrate. Therefore, the lower side lobe level can
be achieved. A folded 4× 4 SIW Butler matrix with simpler
two-layered phase shifters is then designed in same three
substrates. By employing the antenna elements and Butler
matrix, a four-beam CP antenna array is simulated and mea-
sured.

The remaining parts of this paper are organized as follows.
The configuration and the operating principle of the antenna
element are presented in Section II; the details of the 4 × 4
Butler matrix is described in section III; Section IV discuss
the simulation and measurement of the CP multi-beam array.
And in Section V, the conclusion is summarized.

FIGURE 1. Configuration of the proposed septum antenna element based
on SIW.

II. SEPTUM ANTENNA ELEMENT
A. CONFIGURATION
The geometry of the proposed CP septum antenna element
based on SIW is illustrated in Fig. 1, wherein the whole struc-
ture is realized in three stacked printed circuit board (PCB)
substrates. As shown in Fig. 1, the metallic holes of SIW in
different substrate layers are distinguished by different colors.
The positions of the holes are given in the x-z plane in Fig. 1.
The symmetrical air slots in the copper coating of the PCB
substrates are covered by blue and red lines. The blue slots
are located in the bottom and top layers in the Substrate I
and Substrate II, respectively. And the red ones are in the
bottom and top layers in the Substrate II and Substrate III,
respectively. The slot employs one exponential curve and a
linear line as a combination. Since the Slot I and Slot II
are symmetric, we describe the slot II only. As origin of
coordinate are specified in Fig. 1, the curve can be determined
by the following function,

x (z) =
eQz − 1

k
−W (1)

where the argument z varies from 0 to L. According to Eq.(1),
the values of Q and k decide the curvature of the curve,
and the value of W controls the starting point of the curve.
The linear line extending from point (−W1, 0) are parallel
to z axis. In this design, all substrates are NPC-H220A (pro-
cessed by Nippon Pillar Packing Co., Ltd.) with thickness of
1.2 mm, dielectric constant of 2.18 and dielectric loss tangent
of 5 × 10−4. The thickness and conductivity of copper clad
are set to 0.035 mm and 5.8×107 in simulation, respectively.
The accurate dimensions of the antenna are given in Table 1.
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TABLE 1. Dimension of CP antenna element (units: mm).

B. OPERATING PRINCIPLE
The operating mechanism of the septum antenna based on
waveguide has been explained in [21]. The SIW transmission
line has similar working mechanism with air-filled waveg-
uide. Therefore, the CP wave generation principle of the
proposed antenna based on SIW will not be explained again
in this paper. However, by replacing the air with the high
dielectric substrate, the radiation performance of the septum
antenna will be changed obviously.

FIGURE 2. Simulated CP radiation patterns and AR plots in x-z and
y-z plane of the septum antenna based on air-filled waveguide [21]
and SIW (this work). (a) x-z plane. (b) y-z plane.

The HPBW of the reference antenna based on air-filled
waveguide is too narrow to be employed in the multi-beam
array element design. Filling with high dielectric constant
in waveguide can be used to reduce the aperture size of
the antenna, which can reduce the directivity and broaden
the HPBW. Fig. 2 compares the CP radiation patterns of the

FIGURE 3. Proposed antenna element with different slot curve
parameters.

structure based on waveguide [21] and this design. It should
be noted that the structure parameters of the reference antenna
are kept the same as given in [21]. Fig. 2 shows that the
HPBW can increase from 62◦ to 80◦ in x-z plane at 60 GHz.
The AR beam width is also enlarged from 76◦ to 177◦.
Besides, in y-z plane, the AR beam width increases from 94◦

to 172◦, while the HPBW maintains at 68◦. As explained
in [21], the width of the y-direction antenna aperture will
have influence on phase and amplitude differences of
x- and y-direction electric field in the far field (Ex and Ey).
Therefore, this width is an important optimization parameter
for the septum antenna to obtain CP radiation characteristics.
However, it is difficult to realize in SIW structure due to
limited available substrate thickness. In order to overcome
the issue, the exponential curve slot is developed. As shown
in Fig. 3, two sets of curve parameters ((Q = 0.84, k = 8)
and (Q = 0.2, k = 0.548)) determine two slots with
curve and approximate linear line, respectively. The phase
and amplitude differences of Ex and Ey of these two sets
of parameters are illustrated in Fig. 4. The amplitudes of
Ex and Ey obviously increase and decrease with increase in
the curvature of the slot, respectively, which can be used to
optimize the amplitude difference required for CP character-
istics. The curvature of curve also determines the position
of coupling strength, which affects the phase difference as
shown in Fig. 4. Therefore, employing the exponential curve
slot can increase optimization space for the septum antenna
to achieve CP characteristic.

The simulated AR, |S11| and left hand circular polar-
ization (LHCP) gain of the proposed antenna element at
+z-direction are illustrated in Fig. 5. Simulation results show
that the element can achieve an operating bandwidth from
57.2 to 63.4 GHz for both AR < 3 dB and |S11| < −21dB.
A stable gain of 7.57 ± 0.15 dBic is achieved in the overall
bandwidth. It should be noted that the AR bandwidth of
the proposed antenna is obviously narrower than the work
in [21]. As shown in Fig. 6, when the electromagnetic wave
radiates from antenna aperture to the air, a part of power
of the incident wave will be reflected on the substrate-air
interface due to the abrupt changes of dielectric constant. The
reflected wave will be radiated again by the antenna and be
added to the incident wave. The phase of the reflected wave
will be changed with the frequency. Therefore, the amplitude
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FIGURE 4. Simulated amplitude and phase of Ex and Ey in the far field of
the proposed antenna element with different slot curve parameters.
(a) Amplitude. (b) Phase difference.

FIGURE 5. Simulated |S11|, LHCP Gain, and AR plots at +z direction of the
proposed antenna element.

and phase differences of Ex and Ey cannot maintain stable
within the verywide frequency band. TheAR beamwidth and
HPBW with frequency from 57.2 to 63.4 GHz in x-z plane
are presented in Fig. 7, from which it can be seen that the
wide HPBWs with 79.45◦ ± 1.15◦ and the wider 3-dB AR

FIGURE 6. Radiation mechanism of the proposed antenna element.

FIGURE 7. Simulated HPBW and AR beam-width in x-z plane of the
proposed antenna element.

beam widths are achieved, and this prepared the ground for
multi-beam array with good polarization purity.

FIGURE 8. Block diagram of the 4× 4 folded Butler matrix.

III. 4 × 4 BUTLER MATRIX
The folded Butler matrix based on SIW is an effective and
economic choice for realizing the passive MMWmulti-beam
antenna array with a compact size, and has been studied
in [10] and [11]. Because the CP antenna element is based on
three laminates, a folded 4 × 4 Butler matrix with the same
three substrates is employed to feed the antenna. The block
diagram of the proposed folded Butler matrix is illustrated in
Fig. 8, which consists of four 90◦ couplers, two crossovers
and four phase shifters. The final structure of the Butler
matrix connected with the proposed CP antenna element is
shown in Fig. 9. It should be noted that the color definition of
the holes in Fig. 9 is kept the same as defined in Fig. 1, and
will be used in all multilayer structure figures in this paper
unless otherwise stated.
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FIGURE 9. Structure of the proposed Butler matrix connected with the
element.

FIGURE 10. Configuration of layer-to-layer transitions.

The 90◦ coupler and crossover reported in [17] are
employed in this design. Because the Butler matrix is folded,
0◦ and 180◦ layer-to-layer transition named slot coupling I
and II are needed. As shown in Fig. 10, the slots with length
of Sx and width of Sy are placed between the two laminate.
Two short-ended SIW sections with offset of offy are placed in
the adjacent substrate. It should be noted that the colors of the
holes in Fig. 10 are only used to distinguish different layers.
The detail values of the dimension are presented in Table 2,
from which it can be seen that the |S11| of the two bends are
all less than −18 dB from 57 to 64 GHz as shown in Fig. 11.

TABLE 2. Dimension of layer-to-layer transitions (Units: mm).

As we know, the SIW transmission lines are composed of
metallic holes. Because the metalized holes process need to
keep some distance between two adjacent holes, designing

FIGURE 11. Simulated S-parameter of layer-to-layer transitions.

FIGURE 12. Configuration of 45◦ and 0◦ phase shifters with crossover.

the phase shifter reported in [11] and [17] has more opti-
mized parameters thanmetal waveguide. In this design, a sim-
pler phase shifter structure is proposed as shown in Fig. 11.
The phase shift is realized by the different path distance
of Path 1 and Path 2 as marked in Fig. 12. It is rapid and
precise to optimize the 0◦ and 45◦ phase shifter. Considering
the slot coupling I as a whole, therefore there is only one
parameter (off1 or off2) to be optimized to obtain the 45◦ or
0◦ phase shift needed for Butler matrix. The simulated phase
responses of the phase shifters (characterized by 6 S63-6 S84)
as defined in Fig.12) are given in Fig. 13. The phase error of
the 0◦ and 45◦ phase shifter are less than ±2.7◦ and ±8.1◦

from 57 to 64 GHz, respectively.
By arranging the components mentioned above accord-

ing to the law shown in Fig. 8, a 4 × 4 Butler matrix
can be obtained. For the sake of integration with the pro-
posed antenna element, the slot coupling II is employed to
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FIGURE 13. Simulated S-parameters and phase difference of the
45◦ and 0◦ phase shifter.

FIGURE 14. Simulated S-parameters of the proposed Butler matrix.

transfer the electromagnetic wave from top layer to middle
layer as defined in Fig. 9. Due to the symmetry of the
Butler matrix, the |S11| and |S22| are the same with the
|S33| and |S44|, respectively. The simulated S-parameters and
phase responses of the folded Butler matrix are presented in
Fig. 14 and Fig. 15, respectively. The simulated reflection
coefficient and isolation of the Butler matrix are all less than
−10 dB. The magnitude and phase errors which are less than
±1.5 dB and±19◦ for all ports can be achieved from 57 GHz
to 64 GHz, respectively.

IV. FOUR-BEAM END-FIRE ARRAY
The photograph of the three-layered 1 × 4 CP multi-beam
antenna array fabricated by PCB facilities is given in Fig. 16.
The adhesive (provided by Nippon Pillar Packing Co., Ltd.)
with thickness of 0.038mm, dielectric constant of 2.35 and

FIGURE 15. Simulated phase difference of the proposed Butler matrix.
(ports defined in Fig. 8).

FIGURE 16. Photographs of the fabricated multi-beam antenna array.

FIGURE 17. Simulated and measured S-parameters of the proposed
multi-beam antenna array. (a) isolation. (b) reflection coefficient.

dielectric loss tangent of 2.5 × 10−3 is used for bonding the
layers. The element spacing of the antenna array is set as
2.9 mm (0.58 λ at 60 GHz). To measure the performance
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FIGURE 18. Simulated and measured normalized radiation patterns and AR plots in x-z plane of the proposed multi-beam antenna array.
(a) 58 GHz. (b) 60 GHz. (c) 63 GHz.

of the array, the SIW to WR-15 transition is designed for
each input port. Comparisons between the simulation and
the measurement results are given in the following. All the
simulations are done with full-wave electro-magnetic solver
Ansoft HFSS. In measurement, the ports that were not under
test were connected with WR-15 waveguide loads.

Due to the symmetry of the array configuration, the
S-parameter of port3 and port4 should be the same with
port1 and port2. Fig. 17 shows the simulated and mea-
sured impedance and isolation performances of the proposed
array. The simulated overlapped bandwidth of input ports is
from 57 to 63.8 GHz for S-parameter less than −10 dB, and
the measured one is covered from 57.8 GHz to 62.5 GHz
(except at around 58.3 GHz). The higher value in measure-
ment is mainly caused by the fabrication tolerance, such as
increasing surface roughness caused by the various possible
unwanted scratches occur on the cladding, position offset
of each stacked substrate, and cutting error of the radiating
aperture of array as shown in the enlarged section diagram of
radiation part in Fig. 16.

The simulated and measured four beams generated by
the proposed CP array at 58, 60, and 63 GHz in x-z plane
are given in Fig. 18 with solid and dash line, respectively.
In the far field measurement setup to test the LHCP radiation
pattern, the transmitting antenna is set as a horn antenna
for horizontal and vertical polarization. The radiation pat-
terns are calculated by the superposition of these two mea-
surement results. The AR value is calculated by comparing
the maximum received power with the minimum one of a
rotated linearly polarized horn. With reference to Fig. 18,
the main beams in simulations and measurements agree well
with each other. The unsmooth measured result is caused
by the air gap between the adjacent substrates introduced
by the surface roughness of the copper clad. The measured
results are incomplete due to the limit of the rotation range

FIGURE 19. Simulated LHCP gains and directivities and measured LHCP
gain of the proposed multi-beam antenna array.

of revolving stage. The four beams can cover an azimuthal
range of±37◦. The little difference of side lobe level between
simulations and measurements are also mainly caused by
the fabrication tolerance. The simulated and measured AR
values of the main lobe range of four beams at 60 GHz are
all less than 4 dB and are all less than 5 dB from 58 GHz
to 60 GHz. The AR value is obviously larger than 3 dB
at 63 GHz which is caused by the phase error introduced
by the Butler matrix. Fig. 19 presents the simulated gain
and directivity and measured directivity of the array when
port 1 and 2 are excited, respectively. The simulated direc-
tivities of the proposed antenna for feeding from port1 and
port2 are around 13 and 10.5 dBic. The simulated gains are
around 11.5 and 9.5 dBic for port1 and port2, respectively.
The attenuation around 1.5 dBic in measured gain results are
mainly caused by the randomly distributed air gap introduced
by the increasing surface roughness of cladding of stacked
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substrates in fabricated prototype [23]. By comparing the
results of simulated directivity and measured gain, the mea-
sured radiation efficiency of the array is approximately 50%.
The simulated and measured gains variation of each beam are
all less than 2.7 dBic from 58 to 63 GHz.

V. CONCLUSION
A CP septum antenna based on three-layer SIW with end-
fire radiation, AR and impedance bandwidth from 57.2 to
63.4 GHz, wide AR beam-width larger than 85◦ in horizontal
plane and gain of 7.57± 0.15 dBic has been proposed. Then
a folded 4 × 4 Butler matrix designed on same three sub-
strates has also been employed to feed the antenna element.
By combining the elements and the beam-forming network, a
1×4 array that can generate four CP end-fire radiation beams
with beam-switching in horizontal plane has been designed,
fabricated, and measured. The impedance and isolation band-
width from 57.8 to 62.5 GHz, stable LHCP radiation beams,
and gain up to 11.01 dBic were achieved. The simulated
and measured results agree with each other, and show that
the proposed CP multi-beam array would be an attractive
candidate to the future short-range millimeter-wave wireless
communication.
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