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ABSTRACT In this paper, a low-profile dual-band stacked microstrip monopolar patch antenna is proposed.
By utilizing a stacked-patch configuration, a dual-band property is achieved. A coupled annular ring and a set
of conductive vias are loaded into the antenna structure to widen the impedance bandwidth. In order to verify
the performance of the proposed antenna, a fully functional prototype was fabricated and measured. The
measured results demonstrate that the antenna can achieve impedance bandwidths from 2.24 to 2.53 GHz
in the low band and from 5.42 to 5.98 GHz in the high band, separately. Within the operating frequency,
omnidirectional radiation patterns are also observed. Besides, the proposed antenna possesses a low-profile
structure with a height of 4.175 mm or 0.057λ0 (where λ0 is the free-space wavelength of 4.1 GHz), which
can be easily hidden on the top of a vehicle. With these merits, the proposed design is very appropriate
for wireless local area network (2.4–2.48 GHz and 5.75–5.825 GHz) and car-to-car (5.85–5.925 GHz)
communications.

INDEX TERMS Low profile, dual-band antenna, monopolar patch antenna, wireless local area
network (WLAN), car-to-car (C2C).

I. INTRODUCTION
In wireless communication systems, monopole antennas are
widely used to provide a wide signal coverage. However,
the height of monopole antennas is 1/4 wavelength, which is
too high for space-limited applications. In 1997, Economou
et al. proposed a low-profile circular patch antenna [1].
By directly feeding the antenna at its center, omnidirectional
radiation patterns can be obtained. However, the impedance
bandwidth of this design is only 1.5%. Therefore, how to
widen the bandwidth of this type of antenna is of great
concern. In [2], a coupled annular ring is concentrically
placed around a center-fed circular patch, and the antenna
bandwidth is increased to 12.8%. In [3]–[8], by inserting a
set of conductive vias into the antenna configuration to short
the radiating patch with the ground plane, the bandwidth of
the antenna can be broadened remarkably and a low-profile
structure is also achieved.

In the past few years, with the fast development of wire-
less technologies, wireless local area network (WLAN) and

car-to-car (C2C) communications have been widely used in
vehicular communications for internet access and safe driving
control. For a moving car on the road, vehicles and base
stations are distributed around the car in different directions.
In order to communicate with these devices all the time,
antennas with omnidirectional radiation patterns are desired
to be installed on the car to provide wide signal cover-
age. In addition, because 2.4/5.8 GHz bands are needed for
WLAN and C2C communications are allocated from 5.85 to
5.925 GHz, a single-band antenna [1]–[8] cannot satisfy the
above demands. As a result, a dual-band antenna with omni-
directional radiation patterns is required to be installed on the
car for WLAN and C2C communications. Recently, different
methods are utilized to design this type of antennas[9]–[12].
For instance, by etching eight curved slots on a circular
patch [9], a dual-band circularly-polarizedmicrostrip antenna
was proposed. However, the bandwidth of this design is only
0.48% in the low band and 0.73% in the high band, which
is too narrow to satisfy the requirements of modern wireless
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communication systems. Based on dielectric resonator anten-
nas [10], [11], dual-band omnidirectional antennas could
also be developed. In [12], an omnidirectional dual-band
stacked annular slot/patch antenna was presented. Although
these designs could achieve a wider bandwidth [10]–[12], the
height of the antennas is not low enough higher than 0.13 free-
space wavelength, which limits their applications.

Stacked-patch structure is extensively used in microstrip
patch antennas to widen the antenna bandwidth [13]–[15].
However, to the best of the authors’ knowledge, dual-band
stacked monopolar patch antennas can hardly be found in
open literatures. In [16], a dual-frequency stacked monopolar
patch antenna was proposed. By utilizing TM01 and TM02
modes of a via-loaded ring, a wide impedance bandwidth is
generated in the low band. By utilizing TM03 mode of the via-
loaded ring and TM02 mode of a circular patch, the antenna
can achieve a wide bandwidth in the high band. Although this
work can realize a dual-band property, the high band is tightly
related to the low band because the design utilizes TM03
mode of the via-loaded ring in the bottom layer to widen the
antenna bandwidth in the high band. Therefore, the design
can only obtain a fixed frequency ratio of two bands which
limits its applications.

In this paper, a low-profile dual-band stacked microstrip
monopolar patch antenna is proposed. By utilizing a stacked-
patch structure, the antenna is able to operate at two bands and
the frequency ratio can be varied according to design require-
ments. The antenna bandwidth is enhanced dramatically by
adding a coupled annular ring and a set of conductive vias into
the antenna configuration. To demonstrate the functionality,
the proposed antenna was fabricated and measured. Both
simulated and measured results reveal that omnidirectional
radiation patterns are obtained over two bands. This paper
is organized as follows. In Section II, the antenna geometry
and operating principle are given, followed with the antenna
analysis in Section III. Section IV introduces the results and
comparisons with other designs. At last, the conclusion is
described in Section V.

II. ANTENNA DESIGN
A. ANTENNA GEOMETRY
The geometry of the proposed antenna is shown in Fig. 1 and
the detailed dimensions are given in Table 1. The antenna
primarily comprises of Substrate 1, Substrate 2, an upper
circular patch, an annular ring, a lower circular patch, a set
of conductive vias, a ground plane and a coaxial probe. The
upper circular patch whose radius is Rp0 is printed on the top
of Substrate 1 and the lower circular patch with a radius of
Rp1 is printed on the top of Substrate 2. The ground plane has
a radius of RG and it is printed on the bottom of Substrate 2.
Substrate 1 is made of Taconic RF-30 with a relative permit-
tivity of 3.0 and Substrate 2 is made of Rogers 5870 with a
relative permittivity of 2.33. The thickness of two substrates
isH1 andH2, respectively. In order to fix these two substrates
together, eight plastic screws are located surrounding the

FIGURE 1. Geometry of the proposed antenna. (a) Top view; (b) Side view.

TABLE 1. Dimensions of the proposed antenna.

patches. The antenna is simply fed by a coaxial probe with
a characteristic impedance of 50 ohm. The inner conductor
passes through a clearance hole in the center of the lower
circular patch and then directly connects to the upper circular
patch center. The diameter of the clearance hole is 3 mm for
impedance matching.

In order to widen the antenna bandwidth in the high band,
a coupled annular ring is concentrically planed around the
upper circular patch. The annular ring has an inner radius of b
and an outer radius of c. In order to achieve a wide bandwidth
in the low band, a set of conductive vias are inserted into
the antenna structure to short the lower circular patch with
the ground plane. To be specific, the lower circular patch
is shorted by 19 conductive vias which are symmetrically
loaded around the z-axis. Each via has a radius of r0 and
each via center is a away from the center of the lower circular
patch.

B. OPERATING PRINCIPLE
In this stacked-patch structure, the inner conductor of the
coaxial probe directly connects to the center of the upper
circular patch, while the lower circular patch is fed by the
coupling between the inner probe and the lower circular
patch with the clearance hole. This approach leads to a weak
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coupling between the resonances of the two circular patches,
therefore, a dual-band performance can be achieved.

By adding a coupled annular ring around the upper circular
patch, the antenna bandwidth in the high band is broad-
ened dramatically. This is because when the circular patch
is excited, the annular ring can be excited at the same time
by energy coupling. Due to the size differences between the
circular patch and the annular ring, their resonant frequencies
are different. By tuning the dimensions of the circular patch,
the size of the annular ring and the distance between them,
their resonant frequencies can be moved in proximity to each
other, then a wide bandwidth can be obtained.

As illustrated in [3], if the substrate thickness is very small
compared with the free-space wavelength λ0, a circular patch
antenna can be considered as a cylindrical cavity. Then a
cavity model can be used to analyze the TMnm mode inside
the antenna. In terms of [17], the effective radius Reff of the
circular patch and the resonant frequency f of the antenna can
be calculated as follows.

Reff = R

√
1+

2h
πRεr

(
ln
πR
2h
+ 1.7726

)
(1)

χnm = kReff (2)

f =
χnmc

2πReff
√
εr

(3)

Where R is the radius of the circular patch, χnm is themth zero
of J ′n(χnm) = 0, k and c are the wavenumber and velocity in
the free space, separately.

It is well known that χ01 equals to zero, so the resonant fre-
quency of TM01 mode is zero according to (3). Consequently,
if a monopolar patch antenna is directly fed at its center,
the bandwidth is very narrow since the antenna only works in
TM02 mode. In order to widen the antenna bandwidth, a set
of conductive vias can be loaded into the antenna structure to
generate a non-zero resonant frequency for TM01 mode [3].
Together with original TM02 mode generated by the circular
patch, the antenna bandwidth can be broadened dramatically.

III. ANTENNA ANALYSIS
A. ANNULAR RING
As illustrated in Section II, the antenna bandwidth in the
high band is broadened significantly by adding a coupled
annular ring around the upper circular patch. Fig. 2 gives the
simulated reflection coefficients with and without the annular
ring in the high band. From the figure, it can be observed
that the antenna bandwidth is 10.9% from 5.4 to 6.02 GHz in
the high band if an annular ring is added. But in other cases,
when the annular ring is removed from the antenna structure,
the antenna cannot be matched and the reflection coefficients
shift upwards above −10 dB.

To further demonstrate the working mechanism of the
annular ring, simulated surface current distributions on the
upper circular patch and the annular ring at 5.5 and 6 GHz are
shown in Fig. 3. Compared with that at 5.5 GHz, the currents
on the annular ring are stronger at 6 GHz, demonstrating the

FIGURE 2. Simulated reflection coefficients with and without the annular
ring.

FIGURE 3. Simulated surface current distributions on the upper circular
patch and the annular ring: (a) 5.5 GHz; (b) 6 GHz.

annular ring works as a radiator at this frequency. In conse-
quence, a wide bandwidth can be obtained in the high band
by adding the annular ring around the circular patch.

B. CONDUCTIVE VIAS
As previously stated, the antenna bandwidth in the low band
can be enhanced a lot by adding conductive vias to short
the circular patch with the ground plane. Simulated reflec-
tion coefficients with and without the conductive vias in the
low band are depicted in Fig. 4. It can be seen that when
conductive vias are added into the antenna configuration,
an impedance bandwidth of 14.2% is realized. However, if the
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FIGURE 4. Simulated reflection coefficients with and without the
conductive vias.

FIGURE 5. Simulated input impedances: (a) without conductive vias; (b)
with conductive vias.

conductive vias are removed, the antenna bandwidth becomes
deteriorated.

In order to further understand the functionality of the con-
ductive vias, simulated input impedances with and without
the conductive vias are given in Fig. 5. From the figure,
it can be observed that only a single resonance appears within

FIGURE 6. Photograph of the proposed antenna. (a) top view; (b) bottom
view.

FIGURE 7. Simulated and measured reflection coefficients of the
proposed antenna.

the observed frequency band. When the conductive vias are
added into the antenna structure, two resonances can be
observed within the band. Hence, a wider bandwidth can be
achieved when the conductive vias are added.

C. FEEDING METHOD
As depicted in Section II, in this design, the inner conductor
of the coaxial probe directly connects to the center of the
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FIGURE 8. Simulated and measured peak gains of the proposed antenna:
(a) low band; (b) high band.

FIGURE 9. Measured total efficiency of the proposed antenna.

upper circular patch, whereas the lower circular patch is
fed by the coupling between the inner probe and the lower
circular patch with the clearance hole. This feeding method
results in a weak coupling between the resonances of the two
patches, and then the antenna can operate at two separated
bands. In addition, this feeding method allows designers to
match the antenna at both bands simultaneously, which facil-
itates the design procedure.

IV. SIMULATED AND MEASURED RESULTS
A. RESULTS
A fully functional prototype of the antenna was constructed
and tested as depicted in Fig. 6 to verify its performance.
The simulations were completed by Ansys HFSS. The
reflection coefficients (S11), the antenna gains, the radiation

FIGURE 10. Simulation and measurement: radiation patterns: (a) 2.3 GHz;
(b) 2.5 GHz; (c) 5.5 GHz; (d) 5.95 GHz.

efficiencies and the radiation patterns were measured by an
Agilent E5080A and a near-field measurement system.

The simulated and measured reflection coefficients are
shown in Fig. 7. The measurements are in well accordance
with the simulations. An impedance bandwidth of 12.2%
from 2.24 to 2.53 GHz in the low band and 9.8% from 5.42 to
5.98 GHz in the high band for S11 ≤ −10 dB is measured.
Fig. 8 depicts the simulated and measured peak gains of

the proposed antenna. Measured gains agree well with the
simulated ones. Ameasured peak gain of approximately 6 and
7.5 dBi in the low and high band is obtained, respectively.
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TABLE 2. Comparison between proposed and reported dual-band
omnidirectional antenna.

The total efficiency was also measured by the near-field
measurement system, which is shown in Fig. 9. From the
figure, it can be observed that the measured total efficiency
is more than 80% over the operating frequency. Because
the impedance matching is better in the low band and the
losses caused by metal and dielectric are low, therefore, the
measured total efficiency in the low band is higher than that
in the high band. Besides, it should be noted that the antenna
measurement system can hardly be very accurate and stable
over the high and low frequency bands, which also leads to the
difference of the measured efficiency between the two bands.

The simulated and measured radiation patterns of the pro-
posed antenna at 2.3, 2.5, 5.5 and 5.95 GHz are presented
in Fig. 10. In the elevation plane, it can be seen that the radia-
tion patterns have a null in 0◦ and 180◦ over two bands. Fur-
thermore, the measured cross-polarization levels are below
−18 dB in the low band and below −28 dB in the high band.
In the azimuth plane, the radiation intensities are nearly the
same at every angle and the measured cross-polarization lev-
els are lower than−18 dB at both bands. Hence, the radiation
patterns generated by the proposed antenna are similar to
ones generated by monopole antennas, which demonstrates
the superiority of the design.

B. COMPARISON
The properties of several reported dual-band omnidirec-
tional antennas and the presented design are summarized
in Table 2 for comparison. The antenna proposed in [9] has
a low-profile structure and the radiation patterns are stable.
However, the impedance bandwidths in the low and high band
are both less than 1%. The antennas presented in [10]–[12]
can obtain a wider bandwidth compared with [9], whereas
their heights are more than 0.1λ0 and the gains are low. The
design based on a monopolar patch antenna [16] owns a

low-profile property and a relatively wide bandwidth can also
be achieved, but the gain is not high enough and the antenna
height is approximately 0.08λ0. Besides, the high band is
tightly related to the low band and only a fixed frequency
ratio of two bands can be obtained. In this work, although
the design has a larger footprint compared with other types
of antennas, a low-profile structure, a fairly wide bandwidth,
a relatively high gain and stable omnidirectional radiation
patterns can be achieved simultaneously. Besides, it should
be mentioned that the ground plane of the proposed antenna
can be decreased to further reduce the antenna footprint.

V. CONCLUSION
A novel low-profile dual-band stacked monopolar patch
antenna has been presented in this paper. A fully functional
prototype was designed, fabricated and measured. Both sim-
ulations and measurements prove that omnidirectional radi-
ation patterns can be obtained over two bands. In addition,
the antenna also has a low-profile structure. Combined with
these advantages, the proposed design is very suitable to be
used for WLAN and C2C communications.
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