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ABSTRACT Chronic low back pain (CLBP) is a common musculoskeletal disorder and a major source of
disability in adults. The assessment of lumbar muscle functioning has proven as an appropriate approach for
early identification of CLBP when significant pathological signs and symptoms are absent. Thus, earlier
therapy or rehabilitation can be administered to prevent further deterioration, such as spinal stenosis or
disk herniation. In this paper, surface electromyography (SEMG) signal analysis was explored for the
recognition of low back pain in subjects with non-specific symptoms; 88 CLBP subjects and a control
group of 83 subjects were recruited for SEMG data acquisition. Subjects were asked to perform four specific
movements, namely forward bending, backward bending, right lateral flexion, and left lateral flexion. While
performing each movement, SEMG signals from three pairs of lumbar muscles were captured, and 31 features
from both the time and frequency domains were extracted from the signal. Finally, the main feature group and
four subsets, derived from it, were explored. The suggested method allowed to achieve CLBP recognition
accuracy of 98.04% based on subset C for forward bending, followed by 96.15% based on subset E for right
lateral flexion, 93.33% based on subset E for left lateral flexion, and 91.30% based on subset B for backward
bending. A combination of support vector machine classifiers and optimal feature selection allowed for
improved classification performance. The main aim of this paper is to recognize CLBP in subjects with
non-specific pathology during the four types of movement. The major steps carried out to achieve this are
pre-processing, feature selection, and classification of the SEMG signals acquired from 171 subjects. Results
suggest CLBP recognition based on sSEMG as a promising alternative to the conventional methods. Therefore,
this paper could inspire the design of appropriate programs that can ensure effective rehabilitation of CLBP
patients.

INDEX TERMS Chronic low back pain, lumbar muscle function, surface electromyography, recognition

accuracy.

I. INTRODUCTION

Nowadays, low back pain (LBP) is a common phenomenon
in human beings, and most of its occurrence comes as a result
of overuse or strain of the spine. However, chronic low back
pain (CLBP) is a serious mental condition in which people
with LBP persists for more than three months in people
with mild or acute symptoms. Recently, this mental condi-
tion features a high prevalence in developed and business-
oriented countries with approximately, 3 out of 10 people

been affected in the US [1]—[3]. Previous studies have shown
that CLBP is one of the most common causes of increased dis-
ability rates, which, as a consequence, leads to a high leave of
absence from work in some countries [4]-[6]. The increased
prevalence of people with LBP would seem to depend on
two reasons: the high treatment cost and the lack of adequate
early screening procedure. Nonetheless, the gradual devel-
opment of biomedical technology, physiological signal pro-
cessing is becoming a way to better treatment approaches [7].
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The degree of LBP differs amongst people. Usually, it ranges
from mild status, which is common in many people, to very
severe levels in which the affected persons might be unable
to make some spine movements. Nonetheless, most early
back pain disorders can get better with simple rehabilitation
programs administered with advice from health providers,
such as a physiotherapist. These include exercises such as
bending and stretching to strengthening muscles, counseling
affected persons to understand some ways to manage their
pains [8], [9]. However, lack of strict adherence to the guide-
lines can hasten translation of the mild status to numbness,
weakness, or loss of movements.

In the case of severe back pain, medicine, epidural injec-
tion, or spinal surgery is needed to improve the health
disorder, but these also have some side effects. For exam-
ple, medications used for treating CLBP comes with side
effects such as gastrointestinal disorders, ulcers, and kidney
damage; especially when taken at higher doses for a long
time [10]. Also, epidural injection and surgery can increase
physical injury and pain experienced by patients during
and after the procedure. These methods require treatment
costs which can be very high in some cases [11], [12].
Moreover, previous studies also showed that delaying referral
to medicine, epidural injection, or spinal surgery is associated
with increased overall health care costs and higher risk for
receiving advanced imaging or invasive procedures for CLBP
[13], [14]. Thus, these methods come with economic bur-
dens, one of the factors considered in treatment selection of
CLBP [15]. According to Gore et al. [16], CLBP patients are
characterized by greater comorbidity and economic burdens
which can be attributed to prescription of more pain-related
medications and increased utilization of health resources,
compared with those without CLBP.

In previous literature, clinical diagnoses have shown that
the typical signs of LBP include muscle weakness, dull
aching pain, sharp pain, tingling or burning sensation [17].
Yet, 85% of CLBP disorders have no specific pathology
and are, therefore, regarded as ‘‘non-specific” [1]. To ver-
ify the cause of back pain, techniques involving X-ray,
Computed Tomography (CT) or magnetic resonance imag-
ing (MRI) scans can be used to pinpoint the location of
spinal damages such as stenosis, extra wear, and tear, or her-
niated disks. Further analysis can then be performed to
figure out how the damage affects the person’s movements.
However, radiation from X-ray and CT methods can affect
people’s health while MRI scanning is very expensive.
In addition, causes of pains cannot be found by the imag-
ing methods if there are no apparent lesions. In current
clinical evaluation methods, the latter has been addressed
by pain scoring which is done by evaluating subjective
opinions from the patient [18]. However, this method is
limited because pain scores are generally completed by sub-
jects [19] who might be anxious or depressed [20], [21]. Thus,
the assessment can be highly biased and would not seem
to reveal dysfunction location from pathophysiology of pain
perception.
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Some prospective studies revealed that understanding the
pathophysiology of pain perception can be evaluated well
by combining biomedical signals and psychological fac-
tors [22]-[24]. With this, a quantitative and objective method
that can evaluate LBP and monitor rehabilitation of affected
patients can be achieved. Besides, this can help physicians
in diagnosing CLBP and acquiring comprehensive patho-
physiological information to enhance regular treatments of
LBP such that affected persons can recover sooner. Recently,
there is growing interest in the use of real-time surface
electromyography (SEMG) as a valid reference for treatment
and rehabilitation of CLBP and as well, to assess lumbar
stability muscle activities and functions [24], [25]. Some
studies showed higher reliability and validity of real-time
SEMG in assessing muscle activities during LBP evaluation,
compared to other clinical methods [26]—[28]. In other studies
[29], [30], changes in recruitment pattern of lumbar muscles,
fiber distribution of paraspinal muscles, and cross-sectional
area of lumbar multifidus muscles have been highlighted as
contributory factors toward recurrent or chronic symptoms
in people with LBP. In a related study [31], sEMG signals
were quantified for clinical evaluation and characterization
of LBP leading to disability in developing nations. Simi-
larly, Du et al. [32] used SEMG signals to quantify the co-
contraction performance of lumbar muscles between healthy
subjects and patients with lumber disc herniation, which is
a common CLBP. Signals acquired for both groups were
explored to check if significant differences exist between
subjects in the groups. According to Willigenburg et al. [33],
these have impacts on movement trajectory of the lumbar
spine such that lumbar dysfunction muscles provide relatively
less protection for the lumbar spine. Thus, in this study, a
recognition model is proposed for screening CLBP subjects
with non-specific lumbar muscle pathology. The screening
is based on analysis of thirty-one features obtained from
SEMG signals that were acquired from three-pair muscles
during execution of four specific types of lumbar movement.
This is an important step towards earlier detection of CLBP
in people without significant pathological symptoms. Thus,
appropriate therapeutic or rehabilitation strategies can be
implemented to prevent back pain deterioration.

Il. METHODS

A. PARTICIPANTS

In this study, a total of 171 subjects were recruited from the
department of local rehabilitation, Longgang Center Hospital
(Shenzhen, China). From the subjects, 88 were CLBP patients
who have suffered LBP for at least 3 months and not more
than 12 months; before acquiring their sSEMG data. Diagnoses
of the 88 subjects confirmed no apparent pathological abnor-
mality using CT or MRI scans. Furthermore, the subjects had
no history of spinal surgery, lumbar spine, hip contractures,
chronic pain pathology, respiratory disease, neurological dis-
ease or cardiac disease. Finally, the subjects have only used
physical therapy to relieve their pain symptoms. At other side
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FIGURE 1. (a) Experimental setup, (b) the four types of movement.

of the spectrum, the remaining eighty-three subjects were
healthy controls who had no history of LBP. The subjects
in the control group were carefully chosen such that their
gender, age, weight, height, and body mass index (BMI)
matched those of the CLBP group. Details about subjects of
both groups are presented in Tablel.

TABLE 1. Details about subjects of both groups (means+SD).

CLBP (n=388) Control (n=83)
(female n = 70, female (n =62,  p-value
malen = 18) malen =21)
Age (years ) 35.56 +£7.28 34.27+5.87 0.202
Age range (years ) 21~50 24 ~49 /
Body weight (kg) 59.25+9.18 59.30 +£8.16 0.969
Body height (cm) 161.26 + 6.90 163.00 +7.41 0.114
BMI (kg/m?) 17.21 ~36.39 17.85 ~34.22 /
BMI range (kg/m?) 22.72 +£2.78 22.32+2.79 0.345
Pain VAS (0-10cm) 3.01 +1.31 / /

SD - standard deviation, BMI- body mass index, VAS -visual analogue scale.

The experimental procedure was approved by the Insti-
tutional Review Board of Shenzhen Institutes of Advanced
Technology (Reference No. SIAT-IRB-140215-H0037), and
all the subjects signed informed consent forms before acquir-
ing their signals and experiments. Sequel to signal acquisi-
tion, we carried out one-way analysis of variance (ANOVA)
to determine whether there are significant differences
(p < 0.05) between the mean for age and BMI of subjects in
both groups. The statistical results obtained for the particular
subjects are as presented in Table 1. Also, pain intensities of
subjects in the CLBP group were evaluated using a Visual
Analogue Scale (VAS) of 10 cm length, where 0 and 10 indi-
cate no pain unbearable (but imaginable) pain.

B. EXPERIMENTAL DESIGN AND sEMG SIGNAL
ACQUISITION

To acquire the desired signals, all participants were
requested to perform four different types of movement which
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are: forward bending, backward bending, left lateral flexion
and right lateral flexion. Each of the movements was per-
formed five times repeatedly before continuing with the next
movement. For each movement sequence, a separate SEMG
recording was captured. Thus, a total of twenty SEMG record-
ings were acquired for each subject. All the subjects were
ensured to have performed the required actions appropriately
under the guidance of an examiner and an automated system.
The latter produces a prerecorded rhythmic audio signal to
ensure consistency in movement pace of the subjects. For
readers’ clarity, an illustration of the experimental setup is
shown in Figure 1a. Each subject was asked to stand straight
on a horizontal ground for one second with the hands kept
down. The subjects were asked to follow a pre-recorded audio
rhythm while making the movement sequence. This was done
in order to ensure that the required movements are perfected.
Each movement consisted of four sub-parts, namely: standing
upright, bending forward, going back to standing position,
and standing upright again. Each sub-part took approximately
1 second to execute. Thus, each subject performed the cor-
responding motions for about 4 seconds, after which he/she
takes a rest for 30 seconds before proceeding to the next
movement. [llustration of the movements and their subparts
are as shown in Figure 1b.

According to clinical observations, subjects with CLBP
have weaker lumbar muscles than healthy subjects, and as
a result, they cannot perform large-degree flexion. Hence,
subjects in the CLBP group were asked to try their best in
completing the left and right lateral flexion movements until
their pain gets high. Six pairs of surface electrodes (dispos-
able Ag/AgCl, 10 mm diameter, LT-301, China), were placed
on the subject’s waist covering the muscles of interest: left
and right external oblique (EO), lumbar multifidus (LM), and
internal oblique/transversus abdominis (IO/TrA) muscles.
As shown in Figure 1a, only one electrode pair was required
to cover each pair IO/TrA muscles since the muscles pass
through a common region around the human waist. In each
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FIGURE 2. The proposed process model for CLBP recognition.

session of the experiment, sites of subject’s skin where elec-
trodes were attached was cleaned with alcohol to guarantee
that the electrode-skin contact does not get contaminated.
To reduce the ECG artifact in EMG signal, the center-to-
center distance between the electrodes of each channel was
made 20mm, which is the shortest possible distance. Finally,
data were acquired at a sampling rate of 1000 Hz using a con-
figurable electromyography (EMG) system (BioNomadix,
BIOPAC Systems, Inc., USA).

C. PROCESS MODEL FOR CLBP RECOGNITION

SEMG signal acquired from the subjects are explored with
the systemic process model shown in Figure 2. The model is
designed to identify patients with CLBP from a given pool of
LBP dataset. Raw sEMG signals received at the input node
of the process model goes through pre-processing, feature
extraction, optimal feature selection, and classification mod-
ules; all for the purpose of identifying subjects with CLBP.
Details of each stage steps are presented in the following
subsections.

1) SIGNAL PRE-PROCESSING

First, the signals acquired from each subject were passed to
a 10-500 Hz band-pass filter to ensure that all components
of the signals do not have frequencies outside the band-
width of a typical range for SEMG signals. Subsequently,
a 50 Hz-notch filter was applied to eliminate power frequency
disturbances that could be present in the signal. Both filters
were applied offline using the signal processing toolbox in
MATLAB 2014a.

After filtering noise components in the signal, sSEMG nor-
malization was observed for a fair comparison between the
acquired signals. Maximum voluntary contraction (MVC) is
a commonly used method for SEMG normalization [32], [34].
The method involves rating the energy level of each subject
based on the maximum contraction possible for a reference
muscle. However, it might not be suitable for LBP sub-
jects as the lumbar vertebra can be seriously hunted when
trying to evaluate the maximum possible contraction [32].
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Thus, an alternative approach, maximum value [35], was
adopted in this study. This involves determining the maxi-
mum value (MV) of an sSEMG signal for a distinct movement
recorded from a subject and normalizing it to a unique range
in which remaining parts of the signal are expressed as a
percentage of the MV (%MV). This normalization method
is used to ensure that a common ground is established when
comparing the signal from all subjects irrespective of their
LBP status. Thus, the respective data for each movement
made by each subject were normalized based on the individ-
ual MV. Each data sample had a length of 16000 ms; however,
data [20] with a length of 14000 ms was selected from each
sample and processed further, as explained in the subsequent
sections.

2) FEATURE EXTRACTION

Sequel to the filtering of unwanted components in the
acquired signals and normalization, the features essential for
LBP classification were extracted. To quantify the subjects’
muscular activities, time and frequency domains parameters
were obtained from normalized EMG signal of each sub-
ject. Six classes of features namely, average electromyogram,
co-contraction ratio, root mean square, sample entropy mean
power frequency and median frequency, were observed from
the EMG signals obtained from the subjects. The first four
classes are time domain feature, while mean power frequency
and median frequency are features observed in frequency
domain of the signal. The procedures taken to extract each
feature class are explained below.

a: AVERAGE ELECTROMYOGRAM OF THE sEMG

Average electromyogram (AEMG) value reflects the inner-
vation input from the SEMG signals acquired for all muscles
that were activated during a certain movement. In this study,
it is calculated as mean of amplitudes of SEMG signals that
were acquired from the five trials for a given subject. The
AEMG is a single-valued parameter that is not associated
with time series of the SEMG signal. The value is derived
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from the normalized SEMG signal, as given in Eq. 1.

>V | IDatali]|
N

AEMG = 1)
b: CO-CONTRACTION RATIO OF MUSCLE

Muscle co-contraction is another important variable which
can be used to assess the functions of lumbar muscles. In this
study, co-contraction ratio is calculated as a normalized inte-
gration of the antagonistic SEMG activities divided by that of
the total muscle activities. This is expressed with Eq.2.

AEMGania

CCR = 2
AEMG, + AEMGpa

Where: CCR is the co-contraction ratio of the muscle
activities; AEMG y, is the normalized integration of antag-
onistic muscle activities, and AEMG, is the normalized inte-
gration of agonistic muscle activities.

¢: ROOT MEAN SQUARE OF THE sEMG

Root mean square (RMS) is used to evaluate the muscle force.
This is defined as square root of the average SEMG signal that
is acquired over a certain time period T . RMS of an acquired
signal can be expressed with Eq. 3.

ST SEMGIiT?
T

RMS = 3

d: SAMPLE ENTROPY (SamEn)
Change in the complexity of sSEMG signals captured during
muscular activities can be observed and used for further
processes. In this study, we explored the change in complexity
of lumbar muscle activities by using the sample entropy
(SamEn) of SEMG signals captured during the four different
movements. Algorithmically, sample entropy (SamEn) of a
recorded signal can be calculated as follows:

Given a time sequence data {(i) V=12, x}, where K is
the total length of data, it is necessary to construct vectors
of length m, defined as:

Xi = [xi, Xig 1, - Xigm—1], Vi=12,... k—m+1 (4)

Then, the probability that two vectors have similar number
of data segments is calculated as:

num(d(X;, Xj) < r)

Num; (m, r) = K —m+1

&)

Where num (d [X,-,Xj] < r) the number of similar data
is segments between the two vectors X; and X; when the
constraint modeled, as Eq. 6, is used. If the distance between
the two vectors is less than parameter r, a pre-set constant
value, a counter signifying the similarity weight between X;
and Xj is increased by one.

d[X,X]= max |xG+h—xG+hl<r (6)
/ hzo‘;r_n—l
i#
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Where d[X;, X;] is the maximal absolute difference
between vectors X; and X; in their respective scalar compo-
nents; r specifies the filter level (tolerance). Then, the average
probability over all the vectors in the data is calculated as:

K—m+1

! Z Num; (m, r) 7)
i=1

Ay = —
= w1

Similarly, the process sequence was repeated for subseries
of the signal at a fixed length of m + 1 to calculate A”*! (r).
As a final step, SamEn of the signal can be given as:

Bm+l r)
A™(r)

To calculate the sample entropy, the parameters 2 and r are
taken as constant values. Usually, the optimal value of m is
1 or 2; however, r has a range of values from 0.1SD to 0.25SD
(SD is standard deviation of the time series) [36]. In this study,
we selected values m = 2 and r = (.15 for experiments.

SamEn (m, r, K)= —1In (8)

e: MEAN POWER FREQUENCY (MPF) AND MEDIAN
FREQUENCY (MDF) OF SURFACE ELECTROMYOGRAPHY
Aside the 4 time domain features explained above, we also
used 2 frequency domain features to assess the strength of
muscles. In the frequency domain, conduction velocity, Mean
Power Frequency (MPF) and Median Frequency (MDF) are
essential parameters for assessing the strength of muscles
from recorded SEMG signals [31]; however, only the last two
were used in this study. MPF is defined as the frequency
location of average power in a spectrum. The MDF of a
signal is a useful frequency that shows a power spectrum as
two individual parts with the same dimension. For a given
spectrum, the mean power frequency can be calculated as:

B I~ fi - PSD(fdf
1o° PSD(f)df

Where f; is the frequency of any arbitrary part in the
power spectrum; and PSD is density of the power spectrum.
Hung et al. [31] assumed a linear proportionality of the
conduction velocity and applied it to determine the median
frequency of a power spectrum, as related to muscle fatigue.
Coefficient of the conduction velocity (v) is first evaluated
with Eq. 10, then the MDF can be obtained with respect to
other variables in the model.

= (fMﬂ

me
Where f;,0 is the initial MDF with v = vg. The condition
with conduction velocity at its initial reflects fatigue of the
muscle, and this can be utilize describe presence of CLBP.

Hence, MDF can be used for fatigue compensation and spec-
tral analysis for CLPB evaluation. This is described as:

MPF 9

) (10)

MDF 00 1 7
/ PSD(f)df = / PSD (f) df = ~ / PSD(f)df
0 MDF 2 ,
(11)
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The co-contraction ratio (CCR) is a single value evaluated
as the normalized integration of antagonistic SEMG activities
to that of total muscle activities, over the six different mus-
cles. The other five features, described in previous section,
were evaluated by each of the muscles. Thus, each subject can
be characterized by thirty-one features which were applied
for subsequent processing.

3) OPTIMAL FEATURE SELECTION

Sequel to calculating the thirty-one features, a selection
method is needed to select the important features (inputs)
from the original feature set for constructing a reliable CLBP
classifier with better performance. Procedure for feature
selection had two fundamental aspects namely, a criterion
of selection and a procedure of search [37], [38]. Of the
feature selection methods in signal processing, sequential fea-
ture selection (SFS) is mostly used for their speed [39]. SFS
algorithm is a bottom-up search procedure that starts with
an empty set and features are gradually added upon passing
some evaluation functions [40]. In this study, it is used to
estimate the accuracy of a support vector machine (SVM)
classifier defined on three criteria (J1, J2, J3). Selection is
based on differences between two particular features in dif-
ferent subjects, and the classification error from the four types
of movements considered in this study. At each iteration,
an individual feature is selected from the pool of available
features and added to a feature-set being put together for
classification. So, the newly extended set, which is a subset
of the original feature-set, is compared with another that is
subset made-up of dissimilar features. Finally, the subset of
features that produces best classification with minimum error
is selected. This algorithm takes the whole d-dimensional
feature-set M = {m, mo, ...... ,mg} as input. The optimal
feature-set starts as an empty set X, = ¥, and n = 0.
Each feature (m;) is tested added into the set. Thus, at each
i iteration, the optimal feature-set is as follow:

X ={xlj=1,23,....,mx €M} (12)

Where n = 1,2,3,...,d and n < d. The next
best feature x, is sequentially selected with Eq. 13, with
n:=n+1.

xT = argmax J (x, + x)
Xpy1 = Xn +x7 (13)

Where x € M — X,,. This procedure is repeated until a
termination criterion is satisfied. The three criteria proposed
for this purpose: J1, J2, and J3; are defined based on the
distance formulae given in Eq. 14-16.

Ji (X) = 1r(S;,'Sp) (14)
_1r(Sp)
JHrX) = S (15)
Sy + S,
I3 (X) = 'SL”' (16)

Where tr is the trace of a matrix; while S,, and S, is the
within-class and between-class scatter matrix, respectively.
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4) CLBP CLASSIFICATION METHOD

Upon successful selection of the optimal features, the CLBP
entities in the dataset are identified with based on support
vector machine (SVM). SVM is a supervised learning method
that uses machine learning algorithm for solving classifi-
cation and prediction problems. Classifiers built based on
SVM create maximum-margin hyperplane(s) that lies in a
transformed input space and splits entities in the space into
different classes. Compared with artificial neural network
models, SVM generally has better performance in handling
small datasets [41], [42]; thus, SVM classification method is
developed for CLBP recognition, in this study. We assume
a data sample of the format: (X1, y1), (X2,y2), 0, Xy, ¥n) ,
X € RY andy; € {—1, 1} as separable by a hyper-plane with
chosen functions of the form:

(W-X)+b = 0WeR?, beR (17)
S X) = sgn(W-X) +b) (13)

Where W is weight; X is input vector; and b is the bias.
Thus, a corresponding decision function can be modeled as
Eq. 18. To solve this, we need an optimal hyperplane that
divides all samples into two classes with minimal distance
to margin. This problem of optimal classification-plane can
be transformed into an optimization problem, expressed in
Eq. 19. To solve the optimization problem under a certain
constraint, the Lagrangian function in Eq. 20 are introduced
with multipliers ¢; > 0 to achieve a solution vector.

. 1 n n

minQ (@) = 5 3 cieyiK (X, X)) = 3 e
i,j=1 i=1

st.a; >0 (i=1,2,...,n) (19)

n
ZYiai =0
i=1

1 n
L(W.b,) = 2 IWI? = 3 ity - (W Xi) +b) = 1)
i=1
(20)
Thereby, the equation of optimal classification-plane can
be represented with Eq. 21, with the dataset satisfying
|g(X)| = 1. This indicates the distance to margin is minimal,
and thus, the dataset is a support vector are the patterns that
correspond with the nonzero multipliers ¢; called the support
values. g (X) = (W - X) + b is the general form of the linear
discriminant function in d dimensional space.

n

f () =yi =sgn (Z afyi (Xi, X;) + b) @1)
i=1

The hyperplane decision function presented in Eq. 18 can

now be solved from the a set of support vectors with values

a; # 0. Choice of the support vector are then used to calculate

b* in Eq. 21, as Eq. 22, thus we have the classification output.

.on
1

n
=1 Vi — Z‘){;kyj (Xi, X)) (22)
i—1

J=1 iel

VOLUME 6, 2018



W. Du et al.: Recognition of CLBP During Lumbar Spine Movements Based on sEMG Signals

IEEE Access

I y Output

7\
yia, Yoz N\ YNay Weight
Non-linear transformation based on
K.Y KOGY) [ eeeeeneeeeees K(vY) support vector——Kernel function
TV
N\ \\\ _— = R\
AN *—>§)<\ \
— ~
— >\/ — \\\
_— _— .\
5 - 5 A
nput vector X = (x', x°, x7, ..., x°)
‘(I X X e x4

FIGURE 3. The structure diagram of SVM classification on data sets.

Model of an SVM classifier is illustrated in Figure 3.
Despite the fact that most of the subjects with CLPB have
almost similar features, a few of them were found to be some-
what different. This is called uneven distribution, an inherent
feature in data processing which has been said to lower
accuracy when using supervised classification methods [43].
To minimize this effect, equalization of samples amongst the
classes of a training dataset is necessary. To achieve this,
we applied a category homogenizing method better classifi-
cation. Entities (subjects) in the small classes are combined to
form a bigger class and ordered based on feature similarities.
The resulting bigger is, of course, different from the other
category having a high magnitude in the original data. This
process yields a new training data with two distinct classes
with even entity distribution, and it was used to build clas-
sifiers. Therefore, this involves building two different SVM
classifiers namely, SVM1 and SVM2 on the new training
data. Then, the recognition accuracy of the CLBP classifi-
cation scheme is evaluated on the testing data. As an initial
and default step, a sample is first recognized with SVMI to
check if he/she is has CLBP, and the classification result is
compared with the actual status, as in the health record. This
is regarded as primary classification, and most of the samples
are classified correctly with it; thus, SVMI is tagged as

Input

Test setl

Primary Classifier

Is the category
of the original
training set?

Y Output

Results of the category

FIGURE 4. Flow chart of the category homogenizing method.

primary classifier. Nevertheless, there are a few cases where
the classification result from SVM1 is wrong. Such sample
instance is sent for retry in SVM2 to check if he/she can
be recognized as having CLBP or if truly he/she does not
have the lower back pain condition. Thus, SVM1 is tagged as
secondary classifier, and the classification process ends with
it. Figure 4 is a flow chart of the classification process based
on the category homogenizing method, discussed above.

Ill. RESULTS

Eighty-eight patients with CLBP aged 21-50 (mean 35.56,
SD = 7.28) and eighty-three healthy subjects aged 24-49
(mean 34.27, SD = 5.87), were recruited. The population
has a gender percentage of 77.19% female and 22.81% male,
in the subject pool. From each subject, we collected SEMG
data from six muscles of interest and extracted the thirty-one
time and frequency domain features each for four different
movements. Thus, the dataset has a dimension of 171x31x4,
which is a total of 21204 tuples to be explored. For proper
analysis, each of the thirty-one feature was numbered as given
in Table 2. In this study, the statistical method was applied

TABLE 2. Number and name of thirty-one feature set (The number of each feature is applied to four types of movement).

Feature number 1 2 3 4 5 6 7
Name AEMG of left AEMG of right AEMG of left AEMG of right AEMG of left ~ AEMG of right CCR
LM LM EO EO 10/TrA 10/TrA
Feature number 8 9 10 11 12 13 14
N RMS of left RMS of right RMS of left RMS of right RMS of left RMS of right ~ SamEn of left
ame LM LM EO EO 10/TrA 10/TrA LM
Feature number 15 16 17 18 19 20 21
Name SamEn of right SamEn of left SamEn of right SamEn of left SamEn of right MPF of left MPF of right
LM EO EO 10/TrA 10/TrA LM LM
Feature number 22 23 24 25 26 27 28
Name MPF of left MPF of right MPF of left MPF of right MDF of left MDF of right MDF of left
EO EO 10/TrA 10/TrA LM LM EO
Feature number 29 30 31
Name MDF of right MDF of left MDF of right
EO 10/TrA 10/TrA
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to obtain features with significant differences, and feature
selection methods were applied to find the optimal feature
subset from the 31 features. These were done to improve
accuracy of the SVM classifiers for the purpose of CLPB
recognition.

A. ANALYSIS OF SUBJECT GROUP FOR THE FOUR
MOVEMENT TYPES
To demonstrate differences in the subject groups for each of
the movement, statistical analysis were performed by com-
paring the CLBP subjects and healthy controls based one
feature, at a time. The analysis involves carrying out Wilcoxon
test for each of the thirty-one features, listed in Table 2.
The Wilcoxon test is a non-parametric statistical hypothesis
test used to compare two samples that their means are not
the same. It is an alternative to the t-test thus, it is used for
dependent samples when population cannot be assumed to
be normally distributed [44]. In the analysis, subjects groups
were examined based on the AEMG and RMS values, CCR
measurements, sample entropy, MPF and MDF as obtained
for their muscular activities. The results obtained, upon ana-
lyzing each of the four movements, are shown in Figure 5.
As presented in Figure 5(a), analysis of the features
obtained when subjects in both the CLBP group and the
healthy control carried out forward bending movements.
It can be seen that fifteen of the features, those with num-
bers #(5, 16-21, 23, 24, 26-31), shows significant difference
(p < 0.05) between two groups for the forward bending
movement. Specifically, the CLBP group shows more fea-
tures with lower values than those in the healthy controls
when for the specific movement. Similarly, analysis of the
features obtained from the two groups for backward bending
movement is shown as Figure 5b. Unlike in the forward
bending movement, only nine features indicate significant
differences between the CLBP subjects and healthy controls.
The specific features are #(4, 14, 17, 18, 25, 28-31), and
the features have higher values for the CLBP subjects when
compared to the healthy controls. Also, an analysis of the

features obtained from the two groups for left lateral flex-
ion is shown as in Figure 5c. Six specific features namely,
#(18, 20, 24, 26, 30, 31) show significant differences with
the of the CLBP group having higher values that the healthy
controls. Lastly, for the right lateral flexion, the CLBP group
shows significant differences with nine features having lower
values than controls, as shown in Figure 5(d). The particular
parameters are #(5, 12, 18, 20,21, 23, 24, 26, 30). Analyses of
Figure 5 show that some features are more useful for CLBP
recognition. Thus, CLBP recognition in different subjects
cannot always be handled with a specific feature set during
different movements.

B. ANALYSIS OF OPTIMAL FEATURE SELECTION
Greater dynamics is involved when it comes to deciding
the best features that can yield higher accuracy in CLBP
recognition. Thus, the SFS method was used to select the
best discriminative features in the feature selection stage
of the proposed process model in Figure 1. As explained
in Section 2, three criteria J1, J2 and J3 were defined for
selecting optimal feature subsets that can be uniquely utilized
for the four movements. Some specific feature subsets con-
sidered for classification purpose in this study, are presented
in Table 3. Evolutions of the classification accuracy and mean
squared error analyzed for the different feature subsets, based
on the criteria J1, J2, and J3, are shown in Figure 6.
Evolution of the classification accuracy and error based
on selection criterion J1, J2 and J3 for forward bending
movement are shown in Figure 6a and 6a’. We found that
7 of the 31 features namely #(30, 29, 26, 31, 27, 24, 20), were
optimal by using the criterion J1 for SFS in the forward move-
ment, while criterion J2 and J3 return 28 features, namely
#(30,2,1,5,8,9,3,4,12,6, 10, 11,13,7, 18, 16, 17, 15, 14,
19,29, 21, 20, 31, 28, 23,27, 26), and 6 features namely #(30,
29, 20, 24, 27, 31) as the optimal subset of the 31 features.
A careful analysis of the figures that shows the optimal
feature subset yielded the highest classification accuracies
and minimum classification errors, respectively. Similarly,

TABLE 3. Obtained feature subset after applying criteria J1, J2, J3 of the SFS method.

— T Opiml sube

J1 7 31 #(30,29,26,31,27,24,20)

Forward bending 12 28 31 #(30,2,1,5,8,9,3,4,12,6,10,11,13,7,18,16,17,15,14,19,29,21,20,31,28,23,27,26)
13 6 31 #(30,29,20,24,27,31)
i1 23 31 #(30,7,9,1,3,6,4,5,2,23,19,26,31,16,10,11,29,15,17,27,20,24,28)

Backward bending Ayl 25 31 #(30,4,1,5,7,3,6,11,2,8,12,13,10,9,18,14,15, 16,17,19,31,28,23,25,29)
13 14 31 #(30,7,9,1,3,4,6,5,2,31,23,27,29,21)
i1 29 31 #(23,7,10,12,8,6,4,2,18,14,21,16,31,28,29,11,17,9,3,19,30,24,5,15,27,1,13,26,22)

Left lateral flexion 12 31 31 #(23,2,7,5,1,9,4,6,12,13,8,11,3,10,14,18,15,17,19,16,22,30,25,21,20,24,31,26,29,27,28)
13 26 31 #(23,7,10,12,30,8,21,6,4,2,18,14,31,16,26,24, 29,11,17,9,27,1,28,22,3,5)
i1 12 31 #(30,24,20,26,8,12,22,21,27,2,7,13)

Right lateral flexion 2 31 31 #(30,3,1,5,2,4,10,8,12,11,9,6,13,7,18,15,14,16,17,19,20,22,21,26,28,23,29,31,24,25,27)
13 12 31 #(30,24,20,26,8,12,22,21,27,9,7,13)
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FIGURE 5. Boxplot of thirty-one characteristic from CLBP group and healthy control group for each type of movement considered in this study.
(* significant difference (p < 0.05) between CLBP and control groups. ** significant at 0.01 level). (a) Forward bending movement, (b) backward

bending movement, (c) left lateral flexion, and (d) right lateral flexion.
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FIGURE 6. The accuracy and mean squared error of SVM classification of the optimum feature combination based on three separability criteria J1,
J2 and J3. (a) forward bending movement, (b) backward bending movement, (c) left lateral flexion movement, and (d) right lateral flexion movement.
The right column shows the mean squared error corresponding to criteria J1, J2, and J3 during (a’)-(d") four type of movement.
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classification results for backward bending movement based
on the three criteria are shown in Figure 6b and 6b’.
Evaluation of the backward bending movement shows that
optimal subset of the 31 features were #(30, 7,9, 1, 3,6, 4, 5,
2,23, 19, 26, 31, 16, 10, 11, 29, 15, 17, 27, 20, 24, 28), that
is 23 features, when criterion J1 was used, while criterion J2
returned 25 features namely #(30, 4, 1, 5, 7, 3, 6, 11, 2, 8§,
12, 13, 10, 9, 18, 14, 15, 16, 17, 19, 31, 28, 23, 25, 29), and
criterion J3 of the SFS showed that 14 features, which are
#(30,7,9,1,3,4,6,5, 2,31, 23, 27, 29, 21), as the optimal
feature subset.

Correspondingly for left lateral flexion movement,
the highest classification accuracy were achieved with 29 fea-
tures namely, #(23, 7, 10, 12, 8, 6,4, 2, 18, 14, 21, 16, 31, 28,
29,11,17,9,3,19,30, 24,5, 15,27, 1, 13,26, 22), 31 features
namely # (23, 2,7,5, 1,9, 4,6, 12, 13, 8, 11, 3, 10, 14, 18,
15,17, 19, 16, 22, 30, 25, 21, 20, 24, 31, 26, 29, 27, 28), and
26 features namely #(23, 7, 10, 12, 30, 8, 21, 6, 4, 2, 18, 14,
31,16,26,24,29,11,17,9,27, 1,28, 22, 3, 5), as the optimal
subsets based on selection criteria J1, J2, and J3, respectively.
Classification performance for the three criteria are shown in
plots of Figure 6¢ and 6¢’. Lastly, for right lateral flexion
movement data set, 12, 31, and 12 features namely #(30, 24,
20, 26, 8, 12, 22, 21, 27, 2, 7, 13), #(30, 3, 1, 5, 2, 4, 10,
8,12, 11,9, 6, 13,7, 18, 15, 14, 16, 17, 19, 20, 22, 21, 26,
28, 23, 29, 31, 24, 25, 27), and #(30, 24, 20, 26, 8, 12, 22,
21,27,9,7, 13), respectively, gave the highest classification
performance accuracy based on selection criteria J1, J2, J3,
respectively. These are as illustrated in plots d and d’ of
Figure 6.

C. CLBP RECOGNITION BASED ON THE ORIGINAL
FEATURE SET AND ITS SUBSETS

Finally, the proposed process model is evaluated by explor-
ing data with different feature sets for CLBP recognition.
This involves analyzing the classification performance of a
model based on datasets generated during the four types of
movement with five different feature sets. The feature sets
are described as:

a) Feature-set A: the normalized dataset characterized
with all the thirty-one features;

b) Feature subset B:the normalized dataset character-
ized by only the features with a significant difference
between the CLBP subjects and healthy controls. This
was obtained by performing the Wilcoxon-test on the
dataset;

¢) Feature subset C: the normalized dataset characterized
with features obtained based on criterion J1 of SFS
method;

d) Feature subset D: the normalized dataset characterized
with features obtained based on criterion J2 of SFS
method;

e) Feature subset E:the normalized dataset characterized
with features obtained based on criterion J3 of SFS
method.
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The specific classification results based on each feature set
are presented for both the primary and secondary classifiers in
Figure 7. Plot (a) shows that feature subset C achieved high-
est accuracy (at 98.04%) for CLBP recognition during for-
ward bending movement while with feature set A, subset B,
subset D, and subset E, slightly lower accuracies of 96.08%,
94.12%, 94.12% and 96.08 %, respectively, were obtained for
the CLBP recognition during the same movement. However,
for backward bending movement, the feature subset B gave
a recognition rate of 91.30% for CLBP using the dataset.
Nonetheless, other feature set A, subset C, subset D, subset E
achieved accuracies of 89.13%, 84.78%, 84.78% and 89.13%,
respectively, for CLBP recognition; these are slightly lower
when compared with that of feature subset B for the same
movement.

In the same way, feature subset D and subset E returned
a similar accuracy of 93.33% for CLBP recognition, which
is the highest recognition accuracy obtained from the five
feature sets during left lateral flexion movement. Slightly
lower accuracies of 88.89%, 88.89% and 91.11%, respec-
tively, were recorded with other feature sets, that is set A,
subset B, and subset C when used for the same movement.
Lastly, for right lateral flexion movement, feature subset E
recorded a slightly higher accuracy of 96.15% for CLBP
recognition when compared with feature set A, subset B,
subset C, and subset D which achieved accuracies of 90.38%,
92.31%, 88.46% and 94.23%, respectively, for the CLBP
recognition.

For each plot in Figure 7, the results of both primary (blue)
and secondary (red) classifiers are displayed. It is clear that
for the four types of movement, the classification accuracy of
the secondary classifier is more stable and better compared
to that of the primary classifier. Thus, it is essential to clarify
that the highest accuracy observed to describe the recogni-
tion performance, in the last paragraph, are values of the
secondary classifier; and having a hybrid of SVM classifiers
adds to the accuracy of the CLBP classification for each of
the movement.

For a better understanding of the readers, the values plotted
for both classifiers in Figure 7 are tabulated as Table 4.
In addition, the relationship between the feature subset with
significant difference and the optimal subsets obtained based
on criteria J1, J2, J3 of SFS method are analyzed and plotted
as shown in Figure 8. The plots show that all features in
subset B are always contained in feature subset D for the
four types of movements except for feature # 24: MPF of left
IO/TrA which is an additional feature in subset B for forward
bending movement. However, the corresponding feature sub-
set C and E only included part feature subset B for the four
types of movements, respectively.

IV. DISCUSSION

CLBP recognition based on sSEMG signal could be a promis-
ing alternative to diagnoses of patients with non-specific back
pain disorders or pathology rather than using conventional
approaches, such as medicine, epidural injection, or even
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FIGURE 7. The accuracy of CLBP recognition was calculated based on different feature set A, subset B, C, D, and E during four
types of movement. (a) forward bending movement, (b) backward bending movement, (c) left lateral flexion movement, and

(d) right lateral flexion movement.

TABLE 4. Result of CLBP recognition based on different feature set and subset during four types of movement.

Movements SVM Set A (%) Subset B (%) Subset C (%) Subset D (%)  Subset E (%)
Forward bending movement Primary classifier 0.7843 0.8235 0.9412 0.8431 0.9216
& Secondary classifier 0.9608 0.9412 0.9804 0.9412 0.9608
Backward bending movement  Primary classifier 0.7174 0.7826 0.7174 0.7174 0.8043
ackward bending moveme Secondary classifier 0.8913 0.9130 0.8478 0.8478 0.8913
Left lateral flexion movemene  Primary classifier 0.6889 0.7111 0.8000 0.6889 0.7778
Secondary classifier 0.8889 0.8889 09111 0.9333 0.9333
Risht lateral flexion movemen | PTimary classifier 0.7692 0.7692 0.7115 0.7692 0.7692
ght fateral tiexion moveme Secondary classifier 0.9038 0.9231 0.8846 0.9423 0.9615

spinal surgery. In this study, we have carried out experiments
to explore several features of lumbar muscles during four
different types of movement namely, forward bending, back-
ward bending, left lateral flexion, and right lateral flexion. For
CLBP recognition, thirty-one representative features were
explored from SEMG signals acquired from each subject. The
features include nineteen time domain features of AEMG,
RMS, CCR, SamEn parameters and twelve frequency domain
features of MPF, MDF parameters. In the experimental study,
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SFES selection method was applied to identify optimal feature
subsets for each of the four movements, and the results
obtained shows that the highest accuracy of CLBP recogni-
tion during each of the four movements. For instance, in for-
ward bending movement, 98.04% accuracy was obtained with
the secondary classifier when feature subset C was used,
while feature subset B gave the highest CLBP recognition
accuracy (91.30%) in the case of backward bending move-
ment. Similarly, the highest accuracy of CLBP recognition
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O Feature set A includes all thirty-one features
(O Feature subset B with significant difference
(O Optimal feature subset C based on criterion J1 of SFS method
(© Optimal feature subset D based on criterion J2 of SFS method

Optimal feature subset E based on criterion J3 of SFS method

FIGURE 8. The relationship between different features set A, subset B, C, D, and E during four types of movement.

for left lateral flexion was 93.33%, and this was obtained by
both feature subset D and subset E, which is a unique case in
the four movements. Correspondingly, feature subset E gave
the highest accuracy of CLBP recognition for right lateral
flexion was 96.15%.

SFES selection is an essential process for good CLBP recog-
nition system. The process could help reduce an overload of
using many features which at times are not necessary and
could incur extra computation resources. An instance is the
high number of features that overlap between feature subset B
and subset D for the four types of movements explored in this
study. That is, except for feature #24: MPF of left IO/TrA
which is the only difference between the two feature subsets
and just in the case of forward bending movement, all other
features in the two subsets are the same after feature selection.
Specifically, in forward bending movement, the CLBP recog-
nition accuracy of the secondary classifier base on subset B
and subset D are both 94.12%. Thus, this indicates that the
complement feature of the subset B found in the subset D are
not vital for CLBP recognition during the forward bending
movement. However, for backward bending, the accuracies
of CLBP recognition based on subset B and subset D are
91.30% and 84.78%, respectively. Thus, it shows that features
in subset D that are not present in subset B reduces the
recognition accuracy of CLBP in the subjects.

Similarly, for both lateral flexion, the accuracy of CLBP
recognition based on subset B is greater than that of subset D.
This indicates that the extra features in subset D are quite
important for optimal CLBP recognition in the subjects.
Therefore, the statistical analysis shows that the feature
subset B can reveal significant information (p < 0.05) of
dysfunction signs and symptoms suffered by patients with
CLBP, while the feature subset D would seem to include a
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lot of information which might not be revealed out by the
signs and symptoms used for diagnosis of the chronic pain.
Moreover, subsets C and E only included a few parts of
subset B for the four movements explored in this study. This
indicates that features of subset B with statistical significance
seems not to play significant roles for subsets C and E in
CLBP recognition. Hence, studies on the disease recognition
can analyze as many as possible features but should only
carefully consider only those features with clinical and sta-
tistical significance as they will enhance the classification
performance, better.

It is important to emphasize that activities of the lumbar
muscles depend on different types of spinal tractions actuated
to ensure balanced postures that are required for coordinating
human body procedures between muscles and bones for daily
physical activities [45]. The present study provides clear evi-
dence that the AEMG, RMS, SamEn, MPF and MDF values
of left IO/TrA muscle are lower for forward bending and
right lateral flexion movement, and are higher for backward
bending and left lateral flexion movement in CLBP partici-
pants compared to those of the healthy controls (at a statis-
tical significance level p < 0.05). In fact, trends in AEMG
and RMS values of muscles presented in this study explains
insufficient activation or over-activation of muscles necessary
for lumbar spine stabilization. Differences in muscle contrac-
tion could cause Sample entropy to be reduced or increased.
Lower contraction tends to be maintained in slight oscillatory
mode due to smaller values of Sample entropy, while higher
muscle activities tend to produce greater sample entropy
values which can lead to complex oscillatory spine mode [46].
Similarly, MPF and MDF are the most useful and popu-
lar frequency-domain features for the assessment of muscle
strength [47]; thus, MPF and MDF of I0/TrA muscle in
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CLBP participants are characterized during the movements.
MPF and MDF were lower in CLBP participants because of
reduced muscular forces as a result of pains from secretion
from inflammations in the lumbar spine, patient’s psycholog-
ical disorders or motor control dysfunction [26], [48]. Thus,
under the condition of insufficient muscular strength, stress-
dependent muscular activities, maladaptive cognitions and
suppressive thoughts may lead to a long-lasting overloading
of muscles and joints; thus, causing LBP [49], [50].

Specifically, the AEMG value of patients with CLBP
reduced in forward bending movement because the activation
of IO/TrA muscle is insufficient while the lower sample
entropy of the muscle in the subject group can be explained
with weak oscillatory modes in the muscle recruitment com-
pared to that of the healthy controls. Also, lower values of
MPF and MDF in the CLBP subjects reflect the weak I0/TrA
muscle strength during the forward bending movement. Fur-
thermore, AEMG value of the CLBP subjects increased for
backward bending movement because EO muscle was over-
activated to maintain the lumbar spine stability demand, while
the increased sample entropy of EO muscle found in the group
may be as a result of complex oscillatory modes. Similarly,
higher sample entropy and increased MPF and MDF of
IO/TrA muscle are found in CLBP participants also during
left lateral flexion movement. Thus, increased MDF value of
EO muscle could be as a high muscle strength needed. Con-
versely, AEMG and RMS value of IO/TrA muscle reduced in
the CLBP subjects for right lateral flexion movement. This
could be due to the fact that IO/TrA muscle was not suffi-
ciently activated causing slightly oscillatory modes which,
in turn, leads to lower sample entropy of IO/TrA muscle
and reduced MPF and MDF value of 10/TrA, compared to
those of healthy controls. Hence, these indicate that, muscle
contraction and oscillatory strength are different for each of
the four movements. As a result, feature subset is said to be
influenced by selective movement while recognition accuracy
depends greatly on the selected feature (sub) set.

To analyze the functions of individual muscles, the present
study also shows that the left IO/TrA muscle is more critical
during three of the four movements namely, forward bending,
left and right lateral flexion, when with the other five muscles.
However, the right EO_R muscle is quite vital than the other
five muscles for backward bending movement due to the
statistical difference between the subject groups. As a result,
left IO/TrA muscle of CLBP subjects is more susceptible to
damage than the other muscles when performing the three
movements while the right EO muscle is more susceptible
to such dysfunction during the backward movement [29].
The analysis confirms that many altered activation pattern
in the deep (TrA) muscle of CLBP patients indicates motor
control dysfunction [51]. Similarly, improved side specific
control of IO/TrA muscle could highlight improve motor con-
trol following exercise in people with CLBP [52]. Abdominal
muscles such as internal oblique/transverse abdominis play
an essential role in maintaining lumbar spine stability against
the effects of gravity during delicate movements [53]. The
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present study provides clear evidence that activation pattern
of IO/TrA changes in CLBP subjects compared to healthy
controls; and that dysfunction of IO/TrA muscle activities
could occur when performing forward bending, left and right
lateral flexion movements, while dysfunction of EO muscle
activities is only inherent with backward bending move-
ment. Hence, these indicate that IO/TrA and EO muscles
performed insufficient or over-activation to satisfy spine sta-
bility demands. Thus, as part of therapy for CLBP subjects,
rehabilitation program with protected and strengthened func-
tion of IO/TrA and EO muscle should be considered. This
will minimize the risk of augmenting LBP problems. It is
paramount to advise CLBP subjects to strengthen the function
of IO/TrA and EO muscles and not to perform complicated
exercises to improve dysfunction of the lumbar spine.

As discussed above, evaluation of AEMG, sample entropy,
MPEF, and MDF in the CLBP and healthy control groups
appeared to reveal the difference of muscle activation and
oscillatory mode between CLBP and healthy controls. Hence,
feature subset B based on statistical analysis and optimal
feature subset C, D, E based on criteria J1, J2, J3 of SFS
method would seem to recognize some mechanical causes
of lumbar spinal dysfunction effectively. We implemented
the process model as a computerized system for diagnosis
of CLBP in patients with non-specific pathology using SVM
classifiers. This could be useful in detecting the risk factors
of CLBP based on different muscle activation and oscillatory
patterns. Furthermore, the approach may be considered for
improved cognitive, behavioral, emotional management of
subjects with CLBP in order to avoid deadlier pathological
conditions such as spinal stenosis or herniated disks.

V. CONCLUSION AND FUTURE WORK

The main objective of this study is to recognize CLBP based
on feature set A, subset B, C, D, and E during four types of
movement namely: forward bending, backward bending, left
lateral flexion and right lateral flexion. For each movement
made by each subject, 31 features, consisting of nineteen
time domain and twelve frequency domain features, were
calculated and used as feature set for CLBP recognition.
Statistical differences and feature selection methods were
applied to categorize the 31 features into five different sets,
including the original feature set. To avoid the influence
of uneven sample distribution, as a result of little dataset,
on recognition accuracy, two SVM classifiers, tagged as pri-
mary and secondary, were used for the CLBP recognition.
This study shows that having a secondary SVM classifier
improved the CLBP recognition accuracy compared to using
only the primary classifier, and the highest accuracy of CLBP
recognition was 98.04% based on feature subset.

It is important to note that this study is limited in terms of
the number of subjects recruited. A total of only 171subjects,
out of which 88 were CLBP patients, were available for
the study. Also, patients with complicated CLBP condition
were not considered to avoid the possibility of damaging
their lumbar spine while performing the movements designed
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for this study. Also, all subjects were asked to ensure stable
amplitude during the four types of movements. However,
there were still some variations in the amplitude achieved by
each subject. In the future, a larger dataset will be acquired for
multi-level CLBP classification based on machine learning
tools such as deep learning, to control CLBP. Thus, subjects
with complicated CLBP condition could be considered.
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