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ABSTRACT This paper proposes a novel approach to image inpainting that optimizes the shape of masked
regions given by users. In image inpainting, which removes and restores unwanted regions in images, users
draw masks to specify the regions. However, it is widely known that the users typically need to adjust the
masked region by trial and error until they obtain the desired natural inpainting result, because inpainting
quality is significantly affected by even a slight change in the mask. This manual masking takes a great deal
of users’ working time and requires considerable input. To reduce the human labor required, we propose
a method for masked region optimization so that good inpainting results can be automatically obtained.
To this end, our approach estimates ‘‘naturalness of inpainting’’ for all super pixels in inpainted images and
reforms an original mask on a super-pixel basis, so that the naturalness of the inpainting result is improved.
The efficacy of this approach does not depend on inpainting algorithms, thus it can be applied for every
inpainting method as a plug-in. To demonstrate the effectiveness of our approach, we test our algorithm
with varied images and show that it outperforms the existing inpainting methods without masked region
reformation.

INDEX TERMS Inpainting, super pixel, learning-to-rank, segmentation.

I. INTRODUCTION
Photos sometimes include unwanted regions such as a per-
son walking in front of a filming target or a trash can on
a beautiful beach. Image inpainting has been researched to
automatically remove such unwanted regions and fill them in
as ‘‘perceptually-naturally’’ as possible. Patch-based inpaint-
ing [1]–[5] is acknowledged as a promising approach that
provides perceptually acceptable inpainting quality, and thus
has been applied in many commercially available software
packages. Recently, researchers have tried to apply con-
volutional neural networks (CNNs) to this domain, and in
doing so showed great improvement could be obtained in the
inpainting performance [6]–[10]. However, all the inpainting
algorithms reported so far share the same limitation. They
assume that a user manually draws a mask to specify an
unwanted region as an offline process; they mask either by
drawing the boundary [11]–[13] or marking points on the tar-
get region [14], [15]. The inpainting quality thus significantly
depends on the masked region.

To explain this bottleneck and achieve better inpainting,
we go back to the workflow of inpainting with the basic
patch-based approach. It consists of two parts: (1) users mask
unwanted regions in the input image and (2) users execute the

inpainting process for the masked image. Existing inpainting
methods focus only on the latter part.

To review how themasked region affects inpainting quality,
we consider an inpainting task to remove the image of a
woman standing in front of the image of another woman
with two different masked regions as shown in Figure 1.
Hereinafter, we focus on the patch-based approach, while the
discussion here does not lose the generality. In Figure 1, both
(1-a) and (1-b) and (2-a) and (2-b) represent a masked region
and its inpainted results. Interestingly, although it is typically
expected that better inpainting results should be obtained for
(1-a) because the masked region is smaller, they are actually
less natural.

The reason differences due to the masked region occur is
shown by blue patches in Figure 1. The patch-based approach
divides the original image into small patches for replacing
a patch containing masked region with a similar patch only
containing source region. Note that the source region con-
sists of pixels that do not belong to the masked region. The
similarity is computed merely by using the source region in
the patch. In the image shown in (1-a) there are no similar
patches to the blue patch since the latter includes a unique
texture, i.e., that of a part of the neighboring person’s body.
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FIGURE 1. An example that shows how masked region reformation
affects total inpainting quality. Although the inpainted result is unnatural
with the original masked region (1), the reformed masked region (2)
achieves a better inpainted result. (a)masked image. (b) Inpainted image.

Patch retrieval failure deteriorates inpainting quality as
shown in Figure 1(1-b). In contrast, with the blue patch in
(2-a), which includes only sea textures outside of the mask
textures, many similar patches exist. Thus, the inpainting
quality of (2-b) becomes better though the source region
is smaller. As shown in this example, the masked region
should be optimized to achieve perceptually natural inpaint-
ing results. Although one might think the best mask region
could be acquired by perfectly segmenting the object region,
a desired inpainting result is not always generated in the
manner discussed above.

This paper proposes a masked region optimization method.
The method reforms an initial masked region drawn by a user
towards perceptually natural inpainted results. In particular,
the method iteratively localizes unnaturally inpainted regions
and reforms the masked region so that the localized regions
do not form the contour of masked region. There are two
technical issues to achieve this: (1) localizing unnaturally
inpainted region, and (2) reforming the masked region.

For the former issue, we consider applying an image qual-
ity assessment (IQA) technique for image inpainting [16].
The original method applies a learning-to-rank approach to
judge which inpainting result is more natural given two
inpainted results. However, it does not localize unnatural
regions (in this paper we define ‘‘unnatural’’ as ‘‘unnatural
to human perception due to inpainting failure’’) in all images
and does not indicate where the masked region should be
reformed. Thus it cannot be directly applied to our method.
For the latter issue, we should consider an efficient strategy
for reforming masked regions regarding computational cost.
Since unnatural region localization should be performed for
all masked regions, a huge number of iterations (masked
region reformation, inpainting, and assessment) would be

required if we reformed the masked region on a per-pixel
basis.

Therefore, to address both the former and latter issues,
we applied the super pixel concept [17]. This is an entity that
groups similar pixels given specified criteria. It can be used as
computation units of localized unnaturalness and reformation
to reduce the computational cost. In the work we report in this
paper, we extended IQA methods for inpainting so that they
locally assess the naturalness of super pixels rather than entire
images. Then we dilated or eroded masked regions so that the
super pixels with unnaturalness do not form the contour of the
masked region.
Contributions: The main contribution of this paper is

proposing masked region optimization, a new solution to
improve image inpainting. We also propose super-pixel-
wise unnatural region localization and masked region ref-
ormation algorithms to verify the validity of the main
contribution.

The rest of this paper is organized as follows. In Section II
we briefly review related work. Section III describes the
super-pixel-based mask optimization approach we propose.
In Section IV, we verify the method’s efficacy with varied
experiments. Section V reviews and discusses experimental
results, and in Section VI, we conclude the paper with a
summary of key points and a mention of future work to be
done.

II. RELATED WORK
This section first introduces existing work for image inpaint-
ing in subsection II-A. Then, we review existing methods to
solve the two remaining issues we described in the previous
section. Subsection II-B shows IQA methods for naturalness
estimation, and then subsection II-C introduces super pixels
as the reformation unit.

A. IMAGE INPAINTING METHODS
Many effective approaches for image inpainting have
been proposed [18]. Exemplar-based inpainting methods
that fill unwanted regions by using other regions in
images or databases are acknowledged as a promising
approach. Criminisi et al. [1] first proposed exemplar-based
inpainting based on patch retrieval. This algorithm replaces
a target patch with patches similar to it from source regions
in images. However, this method fails if there are no appro-
priate patches in the source region. To overcome the limi-
tation, approaches that increase the patch availability have
been proposed. There are mainly two approaches: transform-
ing patches or retrieving patches with relaxed constraints.
Patch transforming approaches use patches unsuitable for
filling holes in their original condition by transforming the
patch geometry. Darabi et al. [3] introduce scaling and rota-
tion of patches while Huang et al. [5] allow projective trans-
formation. As an approach with relaxed constraints, it was
found that retrieving patches in different feature space makes
restoration more effective than in original spaces such as
motion field [19] and lower dimensional space [20].
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FIGURE 2. An example that shows the difficulty in evaluating inpainted
images objectively. (a) and (b) are the original image and the masked
region. (c) and (d) are inpainted images for (b) with different algorithms.
Although both results are different from the original, they are
perceptually natural. (a) Original image. (b) Original image with masked
region. (c) Inpainted image 1. (d) Inpainted image 2.

CNN-based inpainting methods have also been pro-
posed [6]–[8]. Yang et al. [10] extended CNN-based inpaint-
ing to larger masked regions. They proposed a context
encoder to learn features by inpainting based on GAN.
Iizuka et al. [9] proposed locally and globally consistent
inpainting based on GAN. To train the network, they use
global and local context discriminators to distinguish real
images from completed ones. Although many effective meth-
ods have been proposed as described above, no inpainting
algorithms have shown to be successful if the masked region
is not appropriate for the inpainting task. In addition, even
subtle changes in masked regions generate huge differences
in inpainted results as we showed in Figure 1. In our work,
we overcome this bottleneck by optimizing masked regions.

B. IQA METHODS FOR INPAINTED IMAGES
Assessing naturalness of inpainted images is acknowledged
as a task that can only be done by subjective judgment. One
primary reason is explained by using Figure 2. In the figure,
(a) and (b) respectively show an original image and one with
a masked region, while (c) and (d) are inpainted images for
(b) with different algorithms. Although both of these results
are different from the original image, these results are per-
ceptually natural. In the inpainting context, these results are
‘‘correct.’’

Existing IQAmethods have tried to find a way to represent
subjective quality of naturalness of inpainted results bymeans
of objectively measurable indicators. Venkatesh and Cheung
used observed gaze density inside and outside the masked
region in inpainted images [21]. Instead of observed gaze,
many IQA methods use a computational visual saliency map,
which simulates human gaze density [22]–[26]. However,
actual human gazes vary for individual viewers and view-
ing contexts and their correspondence with saliency maps
is quite limited. Some recent saliency models are robust to
general image degradation factors such as blurring, down-
sampling, or compression noise [27], [28]. However, they
are not dedicated for finding unnaturalness in inpainted
images.

Thus, to estimate such unnaturalness, machine learning
based IQA methods have been developed [16], [25], [26].
Oncu et al. [25] and Trung et al. [26] proposed support
vector regression (SVR)-based approaches. Boykov and
Jolly et al. [16] achieved more accurate subjective unnatural-
ness estimation for inpainted images by dividing the problem

FIGURE 3. Proposed mask optimization framework overview. The method
consists of four steps: (1) obtain an original and a masked image,
(2) inpaint with current mask, (3) localize unnaturally inpainted region,
and (4) reform current masked region. The procedure is repeated until
Step 3 does not detect any unnaturally inpainted regions.

into a set of pairwise preference order estimation tasks and
using the learning-to-rank approach, whose concept has been
widely applied (not limited to image quality) to various tasks
requiring subjective judgments [29]–[32].

The method focuses on estimating preference orders rather
than absolute scores. Here, the preference orders represent
which inpainted images are more preferred (i.e., natural)
by human perception. Preference orders allow us to select
the best one from multiple inpainting results. The important
advantage of a learning-to-rank-based approach is that it can
learn only on the basis of rank order. In our work we used this
learning-to-rank-based IQA method [16] as an optimization
indicator.

C. SUPER PIXEL
The ‘‘super pixel’’ concept, originally developed by
Vezhnevets and Konouchine et al. [17], is a perceptually
meaningful entity that groups similar pixels into smaller
regions. Such super pixels have many desired properties.
By grouping the pixels, super pixels reduce computational
complexity [33]. They also reduce processing complexity;
they carry more information than pixels and thus are percep-
tually meaningful objects, having the scale between the pixel
level and the object level [34], [35].

Currently many applications have been proposed on
the basis of such properties of super pixels [34]–[36].
Lucchi et al. [37] use super pixels for image segmentation
to reduce computational cost and enforce local consis-
tency. Super pixels have also been effectively used with
tracking tasks [38], [39]. In such cases super pixels are
used as the perspective representation of mid-level features.
Wang et al. [40] also proposed a super-pixel-based graphical
model for remote sensing. They introduced super pixels as
new basic units in conditional random field modeling.
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FIGURE 4. Overview of IQA method for inpainted image [16] that our unnatural region detection uses.

To achieve computational and processing efficacy,
we apply super pixels as a unit for unnatural region estimation
and masked region reformation. Section III explains this in
more detail.

III. PROPOSED METHOD
We propose a mask optimization method for image inpaint-
ing. The key idea is that a masked region is reformed so that
the regions that are unnaturally inpainted do not form the
contours of the masked region. The proposedmethod consists
of the following four steps (see Figure 3) and the procedure
is repeated until Step 3 does not detect any unnatural regions.

Step 1Obtaining the original image and the current
masked image (manually designated or updated
after Step 4)

Step 2 Inpainting the current masked image
Step 3Localizing the unnaturally inpainted regions
Step 4Reforming the mask depending on localized unnat-

ural regions
So far, our algorithm only supports reformation in one

direction, i.e., dilation or erosion. Neither larger nor smaller
masked regions beyond those that are necessary decrease
inpainting quality. Larger masked regions may overlap neigh-
bor objects and reduce source regions used for filling holes.
Smaller masked regions may reveal target objects that are
desired to be removed.

For proposed masked region optimization, we need to
address two issues. One is a way to localize unnaturally
inpainted regions in Step 3. The other is a way to reform
the masked region in Step 4. The following subsections first
introduce a previous IQA method for inpainted images [16]
in III-A, since it is the key method for our proposed method.
Then, III-B and III-C respectively describe localization of
unnatural regions and masked region reformation.

A. LEARNING-TO-RANK BASED IMAGE QUALITY
ASSESSMENT
Before we describe our proposed method’s details, this sub-
section introduces the learning-to-rank-based quality assess-
ment for inpainted images [16], which is used in developing
our unnatural region localization. This method premises a

ranking function f (x) that projects inpainted images to a one-
dimensional axis in accordance with unnatural inpainting.

The overview of the method’s framework is shown
in Figure 4. As training data, paired inpainted images are
obtained (see Fig. 4(b)) with several inpainted images I i with
varied parameters as shown in Fig. 4(a). Then, subjective
preference orders are manually annotated (see Fig. 4(c)) to
generate inpainted pairs with preferences (see Fig. 4(d)).
These samples are extracted into feature vectors x i as shown
in Fig. 4(e) to train ranking function f (x). Given two inpainted
images as shown in Fig. 4(f) with their extracted features
(see Fig. 4(g)), preference orders for these two inpainted
images are obtained as output values via f (x). The training
and estimation processes are explained below.

1) TRAIN THE RANKING FUNCTION
Hereafter, we use ‘‘I i � I j’’ to express that ‘‘I i is preferred
to I j’’. We define the function h(x i, x j) that denotes annotated
preferences by subjects as follows:

h(x i, x j) =


+1 (I i � I j)
0 (no preferences)
−1 (I j � I i),

(1)

f (x) is trained so that the difference in outputs f (x i)−f (x j) has
the same sign as h(x i, x j). In a word, the function f (x) should
satisfy the following formula with the training samples:

sgn(h(x i, x j)) = sgn(f (x i)− f (x j)). (2)

The method models f (x) with the linear function f (x) =
ω>x. Accordingly, Eq. 2 can be rewritten as

sgn(h(x i, x j)) = sgn(ω>(x i − x j)). (3)

Then, the weight vector ω satisfying Eq. 3 for most training
data pairs is found. This is the same problem as that of binary
classification. The method uses a pairwise learning-to-rank
algorithm called RankingSVM [41] to solve it.

2) ESTIMATE PREFERENCE ORDERS
Given pair-wise inpainted images Ia and Ib with their image
feature vectors xa and xb, output of ranking functions f (xa)
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FIGURE 5. Super pixel projection to eigenspace that represents
inpainting unnaturalness. With pre- and post- inpainted super pixels (a),
feature vector of these super pixels are computed as shown in (b). These
feature vectors are projected into an eigenspace via ranking function (c).
Outlier samples in the space are detected as unnatural super pixels.

and f (xb) are calculated for all images. The preference orders
between Ia and Ib are obtained as Ia � Ib when f (xa) >
f (xb), and Ib � Ia when f (xb) > f (xa).
In contrast to this previous IQA method for a single whole

image evaluation, we need a method to localize unnaturally
inpainted regions toward a better mask. The next subsection
describes how our proposed method accomplishes this.

B. ESTIMATING UNNATURAL REGION WITH
LEARNING-TO-RANK
Now we are ready to explain how we localize unnatural
regions in inpainted images. We have added two improve-
ments to the previous IQA method. First, the proposed
method evaluates the relative unnaturalness for the super
pixels instead of the whole images by considering a pair of
adjacent super pixels as a single image. Second, it localizes
unnatural super pixels by finding outlier ones in projected
eigenspace that represent inpainting unnaturalness.

1) APPLYING IQA METHOD TO ADJACENT SUPER PIXELS
We applied the previous IQA method [16] to adjacent super
pixel A. We denote this adjacent super pixel as Amask for
a masked image and Ainp for an inpainted image. Amask is
composed of the contours of the masked region. It consists
of two super pixels, one in the masked region and the other
at the outside of the masked region. We denote the super
pixels in the masked region as Smask . Similarly, Ainp consists
of one inpainted super pixel and the other at the outside of the
inpainted region.
By considering Amask and Ainp as pre- and post- inpainting

images as shown in Figure 5(a), feature vectors of inpainted
adjacent super pixel Ainp can be extracted as shown in Fig-
ure 5(b). Then, these features can be projected via a ranking
function into a one-dimensional axis representing inpainting
unnaturalness (see Figure 5(c)). The feature vector calcula-
tion formula is provided in Appendix VI.

2) LOCALIZING UNNATURAL REGIONS
The ranking function behavior shows that nearby coordinates
are mapped on the one-dimensional axis for similar samples.
That is, the mapping via ranking function can be used to find

Algorithm 1 Unnatural Super Pixels Localization

Input: Adjacent super pixels Ainp and corresponding
masked super pixels Smask

Output: Unnatural super pixels Sref

1: N = |Ainp|
2: for n = 1 to N do
3: xn ⇐ CalculateFeatureVector(Ainpn )
4: f (xn)⇐ OutputRankingValue(xn)
5: end for
6: F(X) = {f (x1), f (x2), ..., f (xN )}
7: if TH has not been calculated yet then
8: TH = (min(F(X))+ max(F(X)))/2
9: end if
10: for n = 1 to N do
11: if f (xn) < TH then
12: Add Smaskn to Sref

13: end if
14: end for

outliers. Under the assumption that a majority of super pixel
samples are naturally inpainted, outliers can be considered
as unnaturally inpainted samples (see Figure 5(c)). Masked
super pixels related with these outlier samples are detected as
unnatural super pixels to be reformed.

Detailed algorithms are as follows (See Algorithm 1).
Among all adjacent super pixels in inpainted image Ainp =
{Ainp1 ,Ainp2 , ...,AinpN } projected into an eigenspace via the
ranking function, we find outlier adjacent super pixels. N is
the amount of Ainp. To find such outlier samples, a threshold
value TH is experimentally determined as below.

TH =
min(F(X))+ max(F(X))

2
(4)

where F(X) = {f (x1), f (x2), ..., f (xN )} is a ranking
value vector via ranking function f for each Ainp. X =
{x1, x2, ..., xN } represents image features for Ainp. TH is cal-
culated onlywith the initial masked region in the first iteration
and it continues to be used in the subsequent loops. Note that
the output value of the ranking function does not represent the
absolute score of the inpainting quality. However, the relative
relationships of the output values reflect these quality orders.
Therefore, we can not set the threshold value TH beforehand,
and TH should be determined with relative relationships of
the samples.

With the TH , masked super pixels to be reformed Sref =
{Sref1 , Sref2 , ..., SrefM } are obtained among Smask by finding cor-
responding outlier adjacent super pixels with lower ranking
value than TH . If Sref exist, the masked region is reformed;
i.e., dilated or eroded. Super pixels with f (x) < TH indicate
more unnaturalness because we define that positive ranking
values are better as shown in Eq. 1.

C. MASKED REGION REFORMATION
This subsection describes algorithms for masked region ref-
ormation. The key idea here is that masked regions are
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dilated or eroded so that unnatural super pixels do not form
the contours of a masked region. This reforming makes it
possible to avoid generating unnatural inpainting. Reforming
towards dilation or erosion is decided before the optimiza-
tion. In subsections III-C.1 and III-C.2 we respectively show
masked region dilation and erosion algorithms.

1) MASKED REGION DILATION
The basic idea for masked region dilation is that masked
regions are iteratively expanded until there are no unnatu-
ral adjacent super pixels included in Ainp. For expansion,
a neighbor super pixel of a super pixel to be reformed Sref is
added into a masked region. Algorithm 2 and Figure 6 show
the pseudo code and figures of this processing.

Algorithm 2Masked Region Dilation

Input: Masked image Im, super pixels to be reformed Sref

Output: Dilated masked image Im
1: for n = 1 to |Sref | do
2: Snei⇐ neighbor super pixels of Srefn
3: for l = 1 to |Snei| do
4: for Each pixels p consists of Snei do
5: Retrieve the nearest masked super pixel Smaskn′

6: if Smaskn′ == Srefn then
7: Add p to masked region in Im
8: end if
9: end for
10: end for
11: end for

Let Snein = {Snei(n,1), S
nei
(n,2), ..., S

nei
(n,l)} be neighbor super

pixels of Srefn . Srefn represents the n − th super pixel to be
reformed (See Figure 6(a)). Here, including all the pixels
in Snei in the masked region expands the region more than
necessary. To avoid this over masking, the method selects
pixels to be added into the masked region. This is because
in general, smaller masked regions are better unless they
do not generate unnatural inpainted regions. For each pixel
p consists of Snei, the closest masked super pixel is found
from Smask. Let the center of each Smaskn be On as shown
in Figure 6(b). For all pixels p, the index of the closest masked
super pixel Smaskn′ , i.e., n′ is calculated as below.

n′ = argmin
n

(distance(p,On)), (5)

where the function distance calculates euclidian distance
between two points.

If obtained super pixel Smaskn′ is equal to Srefn , p is added to
the masked region as shown in the blue region of Figure 6(b).
After this processing for each Sref , the updatedmasked region
is obtained as shown in Figure 6(c).

2) MASKED REGION EROSION
The basic idea of masked region erosion is iterative removal
of masked pixels, until there are no unnatural adjacent super

FIGURE 6. Masked region dilation processes. (a) Unnatural masked super
pixel to be reformed Sref and its neighbor non-masked super pixels Snei

are obtained. (b) To avoid over masking, not Snei as a whole but only the
pixels whose nearest masked super pixel is Sref (shown in blue) are
added to the mask. (c) Dilated masked region.

FIGURE 7. Masked region erosion processes. (a) Unnatural masked super
pixel to be reformed Sref , and super pixels with original image (shown
with blue dotted line) that are locationally overlapped with both Sref and
non-masked region obtained as Sorig. (b) To avoid unnecessary exclusion
of masks, not Sref as a whole but only pixels overlapped with Sorig

shown in blue are excluded from masks. (c) Eroded masked region.

pixels found from Ainp. For the removal, super pixels to be
reformed Sref are excluded while unwanted objects are not
revealed. Algorithm 3 and Figure 7 show the pseudo code
and figure of this processing.

Unlike the masked dilation algorithm, super pixels con-
sisting of an original image are also considered. Let Sorig =
{Sorig(n,1), S

orig
(n,2), ..., S

orig
(n,l)} be super pixels generated with orig-

inal image Io overlapped with Srefn . In Figure 7(a), Sorig are
overlapped onto super pixels in masked images shown in blue
dotted lines.
Sorig is used for deciding whether pixels are excluded

from a masked region. Excluding Sref as a whole may reveal
unwanted objects behind the masked region. Since Sorig is
considered to be suitable for objects in an original image,
using Sorig can avoid unnecessary exclusion. Each pixel p
of Sref is excluded only when Sorig where p overlaps the
outermost side face (See the region masked with blue in Fig-
ure 7(b)). After this erosion for each Sref , the updated masked
region is obtained as shown in Figure 7(c).

IV. EXPERIMENTS
This section investigates the effectiveness of our proposed
method. We will start with the experimental setups to
obtain ranking function f in subsection IV-A. Then sub-
section IV-B investigates the proposed method’s effective-
ness for finding unnatural inpainted images, compared with
other metrics. Subsection IV-C shows the effectiveness of
our masked region reformation framework with various
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Algorithm 3Masked Region Erosion
Input: Masked and original images Im, Io and super pixels

to be reformed Sref

Output: reformed masked image Im
1: Sorig⇐ SuperPixelSegmentation(Io)
2: for k = 1 to |Sref | do
3: for l = 1 to |Sorig| do
4: if Srefk and Sorigl are overlapped then
5: Add Sorigl to Sorig

6: end if
7: end for
8: for pixels p = (p.x, p.y) consists of Sorig do
9: if p is included in Srefk then
10: Im(p.x, p.y)⇐ Io(p.x, p.y)
11: end if
12: end for
13: end for

images and IV-D subjectively evaluates the inpainted
results.

A. EXPERIMENTAL SETUP
To generate a training set for ranking function f , 111 images
with manually masked unwanted regions were prepared. The
111 images were inpaintedwith two existing inpaintingmeth-
ods [4], [5]. Six parameter sets (= 3 patch sizes× 2 levels of
multi-scale parameters) were used for both methods. We ran-
domly displayed a pair of inpainted images side-by-side as
shown in Figure 8. Subjects were asked to choose one of three
options: r: right image is more natural, l: left image is more
natural, and n: no preference order (i.e., it is hard to decide
which one is more natural). Excluding inpainted images with
an extremely low level of naturalness and images that did
not get a consistent response from all subjects, we prepared
2,466 image pairs.

We implemented RankingSVM with SVM Rank [44] with
Radial Basis Function (RBF) as the kernel function (γ =
2−7), and the regularization parameter (C = 2−5). We used a
desktop PC (Intel Core i7, 3.4GHz CPU, 32GB memory) for
training f . Eight subjects (four males and four females) with
normal vision evaluated which images were more natural.
Ranking function f was trained depending on this annotation.
The trained f is used for unnatural region detection in next
subsection.

B. COMPARISON WITH EXISTING METRICS FOR
ESTIMATING UNNATURALNESS
This subsection investigates the effectiveness of our pro-
posed unnatural region estimation for inpainted images
using the trained ranking function. We compare our tech-
nique with existing IQA methods using computational
saliency maps by Zhang et al. [42] and Herbrich et al. [43]
that were used in the IQA methods of Trung et al. [26] and
Venkatesh and Cheung et al. [23].

FIGURE 8. Annotation interface for obtaining training data. Two different
inpainted results are displayed side by side. Subjects annotate their
preferences among three options: r: right image is better, l: left image is
better, and n: no preference order.

FIGURE 9. Stimulus images for subjective mask annotation. Top and
middle rows show inpainted images. Not inpainted images are shown in
the bottom row.

FIGURE 10. User interface for pointing out unnatural region in inpainted
image.

To prepare ground-truth data, we asked 12 sub-
jects(11 males, one female) with normal vision to draw
unnatural regions in 10 images consisting of seven inpainted
and three not inpainted images as shown in Figure 9. The
latter are original images to which no image processing was
applied.

A drawing interface is shown in Figure 10. Subjects were
asked to point unnatural regions out in images without any
time limitation. They used a mouse as a drawing device and
could change the pen size for drawing as they liked. Depend-
ing on how hard the subjects pressed the pen, the opacity
(brush depth) of the line was changed. Then a heat map was
generated from a drawn mask and overlaid on an image as
shown in Figure 10. Subjects were informed that the observed
images included both inpainted and unpainted images, but
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FIGURE 11. Comparison between proposed unnatural region detection and existing metrics for finding unnaturalness with subjectively annotated
unnatural region as ground truth. (a) original image with damaged region masked in red, (b) and (c) inpainted image and their close-up views of
unnatural regions, (d) subjectively annotated unnatural region. (e)-(g) Obtained unnatural regions with heat maps overlaid on (b) (red gathers more
unnaturalness). (e) with proposed method by super pixel basis, (f) with saliency maps by Hou et al’s method [42] used in Voronin et al’s metric [26],
(g) Walther et al.’s [43] used in Oncu et al.’s metric [23].

were not informed how many images were inpainted in order
to prevent them from being affected by prior knowledge. The
LCD monitor used for stimulus presentation was 21 inches
(1280× 1080 pixels). The distance between the monitor and
the observers was 60 cm.

The inpainted image results are shown in Figure 11. Orig-
inal images with a region masked in red are shown in (a), (b)
and (c) show inpainted images and close-up views of their
unnatural regions, (d) shows subjectively annotated unnatural
regions as ground-truth, and (e)-(g) show computed unnatural
regions as a heat map overlaid on (b) (red gathers more
unnaturalness). (e) shows results obtained with the proposed
method on a super pixel basis and (f) shows those obtained
with the saliencymap described by Zhang et al. [42] and used
in Voronin et al.’s IQA metric [26]. (g) shows those obtained
with the map described by Herbrich et al. [43] and used in
Oncu et al.’s IQA metric [23].
As shown in the fourth row of Figure 11, for a region that is

obviously unnatural such as a part of the wing of the airplane

left in the uniform sky texture, all methods correctly simulate
human attention. However, as shown in (f) and (g), existing
saliency maps failed to simulate human attention in other
rows. One of the reasons for this is that there are gaps between
human gaze patterns and computational saliency maps as
Boykov and Jolly et al. [16] revealed. For example, in the
first and third rows, the red cloth worn by the woman or the
red flowers gather more attention with existing metrics as
shown in (f) and (g) because saliency maps are typically
designed by assuming that warmer colors gather more gazes.
In addition, in the second, fifth, and sixth rows, regions
with more edges gather more attention, unlike subjectively
annotated attention. The reason for this also comes from
typical saliency map designs, which estimate more gazes on
stronger edges. At the bottom row, existing metrics could
not find unnatural inpainting because of the subtle changes
in texture or color, while our metric could do so as shown
in (f) and (g). As shown in (e), our method successfully
estimates subjects’ attention for all image stimuli, indicating
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FIGURE 12. Masked region dilation result. (a) original image, (b) initial masked region (shown in red) for (a), (c) final masked image obtained for the
reformed masked region, and (d) final inpainted images with (c). Rows (e) and (f) show the output results in each iterative step, and (e) shows the
masked image and its close-up view with colored super pixels and their ranking value plots. Colored super pixels excluding red ones are super pixels
on the contours of the masked region, which are candidates for dilation. Ranking values for all colored super pixels are also plotted at the bottom right
of (e). All plotted samples and super pixels correspond to each other in color. Samples plotted lower than TH are outliers that indicate super pixels to
be reformed.

that the proposed unnatural region estimation method works
effectively.

C. MASKED REGION REFORMATION EXPERIMENTS
This subsection investigates the efficacy of the proposed
masked region optimization method. Figures 12 and 13
respectively show masked region dilation or erosion obtained
with the proposed method. In both figures, (a) shows an
original image, (b) shows an initial masked region (shown in
red) for the original image, (c) shows the final masked image
obtained for the reformed masked region with the proposed
method, and (d) shows the final inpainted images obtained
with (c). Rows (e) and (f) show the output results obtained
in each iterative step, and (e) shows the masked image and
its close-up view with colored super pixels and their ranking

value plots. Colored super pixels excluding red ones are
super pixels on the contours of the masked region, which
are candidates for dilation or erosion. Ranking values via
ranking function f for all colored super pixels are also plotted
at the bottom right of (e) in each step. All plotted samples
and super pixels correspond to each other in color. Samples
plotted lower than TH are outliers that indicate super pixels to
be reformed. The iterations of unnatural region detection and
masked region reformation empirically converge about three
to five times.

In Figure 12, the initial masked region shown in (b) hides
an unwanted lantern, but is also overlapped with the flowers
and branches of a cherry blossom tree. This provides a failed
inpainted result that has discontinuities in both color and
structure around the flowers or branches (See Step 1 in (f)).
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FIGURE 13. Masked region erosion result. (a) original image, (b) initial masked region (shown in red) for (a), (c) final masked
image obtained for the reformed masked region, and (d) final inpainted images with (c). Rows (e) and (f) show the output results in
each iterative step, and (e) shows the masked image and its close-up view with colored super pixels and their ranking value plots.
Colored super pixels excluding red ones are super pixels on the contours of the masked region, which are candidates for erosion.
Ranking values for all colored super pixels are also plotted at the bottom right of (e). All plotted samples and super pixels
correspond to each other in color. Samples plotted lower than TH are outliers that indicate super pixels to be reformed.

To avoid such failures, masked region dilation is performed.
All colored super pixels other than those in red in (c) are ref-
ormation candidates. In the first iteration step, the threshold
to find outlier super pixels was obtained as TH = −0.37.
In the close-up view in (e), outlier super pixels are annotated
with the arrows and masked regions are dilated depending on
such super pixels as shown in (e) in the next step. Finally,
in step 5, there are no outlier super pixels and good inpainted
results are obtained (See step 5 in (f)).

On the other hand, in Figure 13, the initial masked region
in (b) masks the yachts seen above the woman. However,
the region also masks the woman’s head. This provides
undesired inpainted results as shown in (f) at step 1, where
the woman’s head becomes unnaturally larger. In this case,
masked region erosion works effectively. In the first iteration
step, the threshold to find outlier super pixels was obtained as
TH = −0.28. Also, in the close-up view in (e), outlier super
pixels are annotated with the arrows and masked regions are
eroded depending on the super pixels shown in (e) in the next

FIGURE 14. Test procedure for providing 5-point scores.

step. In the final step, the masked region excludes the head
region of the woman. With this masked region, an inpainted
image without any unnatural super pixels is provided.
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FIGURE 15. Image stimuli for subjective evaluation. (a-1) Original image with initial mask. (b-1) Inpainted image with initial mask. (a-2) Original image
with optimized mask. (b-2) Inpainted image with optimized mask.

D. SUBJECTIVE EVALUATION FOR INPAINTED IMAGE
QUALITY
This subsection subjectively compares the naturalness of
resultant inpainted images depending on initial masked
regions and those optimized with the proposed method.
Figure 14 shows the test procedure, in which subjects
repeated four tasks: (1) observe the first image for 10 seconds,
(2) observe the second image for 10 seconds, (3) provide a
score for the first image, and (4) provide a score for the sec-
ond image. We asked 6 subjects (5 males and 1 females)
with normal vision to report 5 point scores for each image
(1: very unnatural, 2: fairly unnatural, 3: somewhat unnat-
ural, 4: fairly natural, and 5: very natural). Subjects in this
experiment did not duplicate those mentioned in IV-B. For
the first and second images, inpainted images with initial and
optimized masked regions are randomly shown. In order to
avoid differences between two images being noticed, uniform
black images are shown between tasks (1) and (2).

The image stimuli are shown in Figure 15. In the figure,
(a-1) and (b-1) show original images with damaged regions
masked in red and their inpainted images with close-up views
for initial masked regions, while (a-2) and (b-2) show those
for masked regions optimized by the proposed method. The
top three rows are formasked region dilationwhile the bottom
three rows are for erosion.

The averaged scores are shown in Figure 16. As shown in
the figure, subjective scores for inpainted images with opti-
mized masked regions are improved for all samples except

FIGURE 16. Average subjective scores for each images Figure 15.

for ‘‘snow.’’ In the first and second rows, the initial masked
region overlaps the pink flower and the branch, or the wing
of the airplane. These overlaps generate texture disconti-
nuities in the inpainted region. However, because our opti-
mized mask includes such objects, these discontinuities are
removed. In the fourth, fifth, and sixth rows, the original
masked region overlaps the woman’s head, the elephant’s
body, and the sheet on the table. These masked regions cause
unnatural inpainted results due to the difficulty in finding
appropriate source regions to fill in the holes. However, our
optimized masked regions achieve better results by exclud-
ing such object regions from masks. In ‘‘snow’’, the initial
masked region overlaps a red leaf and the inpainted image
has discontinuity around the leaf. In this case masked region
dilation was converged before the mask covers the entire leaf.
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This is because the edge of the texture in the inpainted region
is changed gradually and generates less unnaturalness. In fact,
some subjects answered that the leaves in (b-2) seemed to be
buried under the snow and thus it was a natural scene.

V. DISCUSSION
This section briefly reviews the experiments covered in the
previous section. Unlike existing IQA methods, our method
can appropriately find regions including unnatural areas in
inpainted regions. This was shown through a comparison
between unnatural regions that our method found and those
that subjects drew. As a result of this unnatural region detec-
tion, our method effectively reformed masked regions and
achieved better inpainted results. Even when inpainted results
include unnatural areas, our method excludes them by dilat-
ing or eroding initial masked regions.

Here we will also mention our method’s limitation. Our
learning-to-rank-based unnatural super pixel detection tech-
nique depends on color and texture discontinues inside
and outside damaged regions. Thus, as shown in ‘‘snow’’
in Figure 15, our natural region detection does not work
well for images that are inpainted with blurred colors or tex-
tures. One possible improvement to the method is enabling
it to take semantic information of unwanted objects into
account.

Currently our framework outputs both dilated and eroded
masked regions. This is because we cannot determine which
generates better results. We believe an acceptable proce-
dure is for users to choose one of them as a last step of
the framework. However, we think the procedure in which
users choose one of them as a last step of the framework is
acceptable.

VI. CONCLUSION
This paper proposed a masked region optimization frame-
work for image inpainting. This is the first method that trials
showed automatically erodes or dilates masked regions to
be inpainted to achieve good inpainted results. The method
also significantly reduces users’ working time and the inputs
they must provide because it only requires a first input of
a masked region. By focusing on a learning-to-rank-based
approach to estimate where unnatural inpainted results are
generated in masked regions, the proposed method reforms
masked regions to ease inpainting tasks. Experimental results
showed that this framework effectively works.

Since our framework outputs both dilated and eroded
masked regions, an interesting subject for future work will be
to introduce another indicator to determine which to choose
before the iterative reformation process.

APPENDIX
IMAGE FEATURES FOR LEARNING TO RANK
As image features x dedicated for evaluating inpainted
images, we used the 10-dimensional vector x = (Xd ,Xs),
where Xd and Xs represent unnaturalness produced by
color or structural discontinuity in an image. All of Xd and

Xs have 5-dimensional values. Xd and Xs are computed as
below;

Xd = ||S(Pin)− S(Pout )||22 (6)

Xs =

∑
p∈δ� S(Pout (p))∑

p∈δ� 1
(7)

where � and δ� respectively denote a masked region and
its contour. Eq. 6 represents a squared 2-norm. Pin(p) and
Pout (p) showmasked and source regions in patch P(p), which
is centered at point p. In addition, S(Pin(p)) and S(Pout (p))
represent average features of Pin(p) and Pout (p) as shown
below.

S(Pin(p)) =

∑
q∈P(p)∩� s(q)∑
q∈P(p)∩� 1

(8)

S(Pout (p)) =

∑
q∈P(p)∩�̄ s(q)∑
q∈P(p)∩�̄ 1

(9)

In the work we report in this paper, we used s(p) =
(u(p), v(p)), where u(p) = (uR(p), uG(p), uB(p)) and v(p) =
vx(p), vy(p), each denoting RGB pixel values and two-
dimensional edge texture features.
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