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ABSTRACT Hybrid massive MIMO structures with reduced hardware complexity and power consumption
have been widely studied as a potential candidate for millimeter wave communications. Channel estimators
that require knowledge of the array response, such as those using compressive sensing (CS) methods,
may suffer from performance degradation when array-inherent impairments bring unknown phase errors
and gain errors to the antenna elements. In this paper, we design matrix completion (MC)-based channel
estimation schemes which are robust against the array-inherent impairments. We first design an open-loop
training scheme that can sample entries from the effective channel matrix randomly and is compatible
with the phase shifter-based hybrid system. Leveraging the low-rank property of the effective channel
matrix, we then design a channel estimator based on the generalized conditional gradient framework and
the alternating minimization approach. The resulting estimator is immune to array-inherent impairments and
can be implemented to systems with any array shapes for its independence of the array response. In addition,
we extend our design to sample a transformed channel matrix following the concept of inductive matrix
completion (IMC), which can be solved efficiently using our proposed channel estimator and can achieve
similar performance with a lower requirement of the dynamic range of the transmission power per antenna.
Numerical results demonstrate the advantages of our proposed MC-based channel estimator in terms of
estimation performance, computational complexity, and robustness against array-inherent impairments over
the orthogonal matching pursuit-based CS channel estimator.

INDEX TERMS Channel estimation, mmWave communication, hybrid system, matrix completion, array-
inherent impairments.

I. INTRODUCTION
The millimeter wave (mmWave) communication has been
an attractive candidate for the 5G cellular network as it is
possible to realize a gigabit-per-second data transmission rate
and the mmWave device manufacturing technologies have
been greatly developed during the past years [1]. Large-
scale multiple-input multiple-output (MIMO) transmission is
suggested for mmWave systems to compensate for the signif-
icant signal attenuation in mmWave bands. However, a fully
digital transceiver structure incurs significant power con-
sumption by a large number of radio frequency (RF) chains.
Phase shifter- or switch-based hybrid systems that employ
only a few RF chains have generated considerable interests
recently [2], [3].

To achieve high data transmission rates, precoders and
combiners should be carefully designed. They are typically

designed based on the channel state information (CSI) [2],
which is obtained by using training and channel estimation
techniques. However, employing large-scaleMIMO leads to a
large channel matrix. Conventional channel estimators, such
as the least square (LS) estimator, demand a large number
of training resources, which can be impractical for hybrid
systems. In the meantime, adopting large-scale antenna array
usually needs online calibration because of the array-inherent
impairments due to mutual coupling, manufacture flaws,
etc [10]–[12]. Such impairments are typically time-varying,
e.g., due to temperature changes or hardware aging [12].
The actual antenna element’s position may deviate from its
designed position and the gains of different antenna ele-
ments may be unequal. Therefore, the array response may
be severely impacted. Though online calibration methods
can help compensate for the imperfections, some of them
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require special hardware design [13], [14], yielding limited
implementations. Therefore, suitable mmWave channel esti-
mators should be able to reduce the training overhead and
alleviate the burden of online calibration.

Fortunately, due to the poor scattering nature at mmWave
frequencies, there are only a few dominant spatial paths in the
mmWave channel [1], [4], which indicates that the channel
can be reconstructed by using the information of those paths.
Obtaining the paths’ information may require less training
resources, and thus the training overhead could be reduced.
As such, the channel estimation problem can be solved by
finding theAoDs (angle of departure), AoAs (angle of arrival)
and path gains of the dominant paths in the channel. Compres-
sive sensing (CS)-based channel estimators have been pro-
posed in [2], [5], and [6] to find the paths’ information. One
main idea of these estimators is to search for the angle pairs
in a predefined dictionary based on the training information.
Therefore, their performances are highly dependent on the
quality of the dictionary which is usually designed based on
the array response. Also, the CS-based estimators may suffer
from a heavy computational load when a high-resolution dic-
tionary is applied to achieve better performance. Channel esti-
mators that achieve high-resolution estimation of AoDs and
AoAs are proposed in [17]–[19]. Specifically, [17] designs
structured training beam pairs to achieve high-resolution esti-
mation; in [18] and [19], the AoAs/AoDs finding problem
is formulated as an atomic norm minimization problem and
solved by using semidefinite programming (SDP). These
methods still rely on the knowledge of the array response
to solve the problem. There are also two-stage estimators
which first use methods, e.g., matrix completion [15] and
PARAFACdecomposition [16], to construct amatrix contain-
ing the AoA/AoD information, and then use CS methods to
find the AoA/AoD pairs. The methods at the first stage can
be independent of the array response, but the CS methods at
the second stage may still rely on the knowledge of the array
response. However, as mentioned above, due to the presence
of the array-inherent impairments, the array response of the
uncalibrated arrays may not be accurately known, which
would introduce errors for the estimators relying on such
knowledge. Therefore, such estimators can be vulnerable to
array-inherent impairments. For example, for the CS-based
estimators, it is challenging to construct a proper basis that
the mmWave channel is aligned on without knowing the array
response, and thus the basis mismatch issue will arise [7], [8],
which could degrade the estimation performance. Apart
from tackling the channel estimation problem as finding the
AoA/AoD pairs, [20] estimates the subspace of the mmWave
channel by adopting the Arnoldi iteration technique. This
method is independent of the array response but heavily relies
on channel reciprocity since it treats the downlink channel as
the transpose of the uplink channel and requires closed-loop
training. The channel estimation problem is solved in [21] by
utilizing the channel covariance matrix. Though this method
is irrelevant to basis, it requires knowledge of the channel
covariance matrix, which is difficult to obtain in practice.

In this paper, we propose an alternative channel estima-
tion scheme leveraging the tool of matrix completion (MC).
We target narrow-band mmWave channels [4]. We focus
on single-user, phase shifter-based, fully connected hybrid
systems, and consider array-inherent impairments. We for-
mulate the channel estimation problem as an MC problem
by exploiting the low-rankness of typical mmWave chan-
nels. We then provide a training design that is compatible
with the hybrid system, which involves the design of the
hybrid transceivers such that the entries of the channel matrix
can be properly sampled. A generalized conditional gradient
(GCG) framework [22] is applied to implement theMC-based
channel estimator and an alternating minimization (AltMin)
approach is introduced to accelerate the convergence of the
estimation algorithm. Since our proposed channel estimator
is independent of the array response, it can be effective even
when the array is not perfectly calibrated, e.g., when there
are phase errors and gain errors in the array. We further gen-
eralize our scheme to an inductive matrix completion (IMC)
design. The resulting channel recovery problem can be solved
directly by using our proposed channel estimator.We evaluate
the performance of our proposed estimator in terms of nor-
malized mean square error (NMSE) and spectral efficiency
(SE). The simulation results show that the MC schemes are
immune to the phase and gain errors of the array and have
better performance in terms of SE with lower computational
complexity than the OMP-based CS estimator in [5].

The paper is organized as follows. We first introduce
the mmWave channel model and the fully connected hybrid
structure and then discuss the channel estimation problem in
Section II. In Section III, we introduce the training process
of our proposed channel estimation scheme and discuss the
MC-based channel estimation algorithm. We also generalize
the design to an IMC formulation in Section III. Simulation
results are given in Section IV. Section V concludes the paper.

II. THE Mmwave CHANNEL ESTIMATION PROBLEM
In this section, we first introduce the mmWave channel model
as well as the hybrid system and then discuss the mmWave
channel estimation problem and a typical CS-based scheme.

A. MmWave CHANNEL MODEL
In this paper, we consider the downlink mmWave transmis-
sion system and assume the following small-scale fading
model for the mmWave channel [4]:

H =
1
√
L

K∑
k=1

L∑
l=1

gklar (φrkl, θ
r
kl)a

H
t (φ

t
kl, θ

t
kl), (1)

where K ∼ max{Poisson(λ), 1} is the number of clusters
with λ as the mean of the Poisson distribution and L is the
number of rays within each cluster. The complex small-scale
fading gain gkl on the l-th ray of the k-th cluster follows a
complex Gaussian distribution, i.e., gkl ∼ CN (0, γk ), where
γk is the fraction power of the k-th cluster and can bemodeled
using [4, eq. (7)].
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In this paper, we assume the uniform linear array (ULA)
and the uniform square planar array (USPA). ar (φrkl, θ

r
kl)

and at (φtkl, θ
t
kl) represent the receiving and transmitting array

response vectors, respectively, where φrkl , φ
t
kl , θ

r
kl and θ

t
kl are

the azimuth AoA, the azimuth AoD, the elevation AoA and
the elevation AoD on the l-th ray of the k-th cluster, respec-
tively. Moreover, these angles are characterized by cluster
center angles and ray angle shifts. Take azimuth AoA as an
example: φrkl = φrk − ϕ

r
kl , where φ

r
k is the center angle of

the k-th cluster and ϕrkl is the angle shift of the l-th ray away
from the center angle of the cluster. Similarly, θ rkl = θ

r
k −ϑ

r
kl ,

φtkl = φtk − ϕ
t
kl and θ

t
kl = θ tk − ϑ

t
kl . This representation

indicates that each cluster covers a range of angles, and the
angular spread characterizes the span of each cluster. In [4],
channel measurements in the urban area of New York city are
presented and the angular spread is shown in terms of the root-
mean-square (rms) of all the measurements. At the carrier
frequency fc = 28 GHz, angular spreads of 15.5◦, 6◦, 10.2◦

and 0◦ are reported for the azimuth AoA, the elevation AoA,
the azimuth AoD and the elevation AoD, respectively.

For an Na-element ULA placed along the y axis with
distance d between adjacent antennas, the array response is
given by [36]

a(φkl) =
1
√
Na

[1, ej
2π
λc
d sin(φkl ), · · · , ej(Na−1)

2π
λc
d sin(φkl )]T ,

(2)

where λc is the carrier wavelength and Na = Nt or Nr
is the number of antennas at the transmitter (BS) or the
receiver (MS).

For a
√
Na ×

√
Na USPA placed on the yz plane

with distance dc between adjacent antennas, the array
response [24] is

a(φkl, θkl) = ay(φkl, θkl)⊗ az(θkl), (3)

where ⊗ denotes the Kronecker product,

ay(φkl, θkl) =
1

N
1
4
a

[1, ej
2π
λc
dc sin(φkl ) sin(θkl ),

· · · , ej(
√
Na−1) 2πλc dc sin(φkl ) sin(θkl )]T

is the array response along the y axis, and

az(θkl) =
1

N
1
4
a

[1, ej
2π
λc
dc cos(θkl ), · · · , ej(

√
Na−1) 2πλc dc cos(θkl )]T

is the array response along the z axis.
The resulting channelH is an Nr ×Nt matrix. The number

of clusters K is usually small, e.g., K = 1, 2, or 3, but
the number of rays L in each cluster can be large, e.g.,
L = 20 [4], which yields a large number of KL paths. This
suggests that H may have a high rank rch. Let σ1 > σ2 >

· · · > σrch be the singular values of H. We may use

pe
1
=

∑rsub
j=1 σ

2
j∑rch

i=1 σ
2
i

(4)

FIGURE 1. The fully connected hybrid system.

to measure the energy captured by a rank-rsub approximation
of H. It has been shown that for capturing a majority of the
total energy, e.g., with pe = 0.9, 0.95, the required rank rsub
is generally much smaller than rch according to the mea-
surements and simulations in [4]. Therefore, the mmWave
channel can be considered as low-rank.

B. HYBRID TRANSCEIVERS
The phase shifter-based fully connected hybrid MIMO sys-
tem has proven able to approximate the fully digital system
in terms of SE [2]. A point-to-point hybrid structure is shown
in Fig. 1. The Nt (Nr ) antennas and analog phase shifters
at the BS (MS) are fully connected. There are KtNt phase
shifters at the BS and KrNr phase shifters at the MS, where
Kt � Nt and Kr � Nr are the numbers of the BS and MS
RF chains, respectively. For single-stream transmissions with
one symbol s transmitted, the received signal can be written
as

y =WHHfs+WHn, (5)

where W and f are the MS receiving processing matrix and
BS transmitting processing vector, respectively, and n is the
noise vector. In this hybrid system, up to Kr digital symbols
can be received by theMS at each channel use. The traditional
LS estimator, which requires at least NtNr samples, needs at
least NtNr/Kr time slots and can be time-consuming when
Kr � Nr . New methods with low sample supports may be
explored to reduce the training overhead.

C. ARRAY-INHERENT IMPAIRMENTS
Array-inherent impairments can cause the antenna elements’
positions to deviate from their assumed ones and the gains
of different antenna elements to be unequal, bringing uncer-
tainties to the array response. To characterize these impair-
ments, we use phase error κi = 2π1i/λc to represent the
phase difference caused by the antenna element’s position
deviation 1i, and use ρi to denote the gain of each antenna
element.With the existence of the phase error and the unequal
gain effect, the array response differs from (2).
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We define the gain and phase error vector at the BS or
the MS as

e = [ρ1ejκ1 , ρ2ejκ2 , · · · , ρNae
jκNa ]T , (6)

where Na = Nt or Nr . We use et and er to denote the gain and
phase error vectors at the BS andMS, respectively. Let us take
the MS as an example. For ULA, the actual array response is

ãr (φrkl) = ar (φrkl)� er ,

where � denotes the Hadamard product. Clearly,

ãr (φrkl) =
1
√
N
[ρ1ejκ1 , ρ2ej(

2π
λ
d sin(φrkl )+κ2),

· · · , ρNr e
j( 2π
λ
(Nr−1)d sin(φrkl )+κNr )]T . (7)

For USPA,

ãr (φrkl, θ
r
kl) =

(
ar,y(φrkl, θ

r
kl)⊗ ar,z(θ rkl)

)
� er . (8)

With phase and gain errors presenting in the array,
the received signal y in (5) is changed to

ỹ =WHErHEHt fs+WHErn, (9)

where Er is a diagonal matrix with er as the diagonal ele-
ments, and Et is defined similarly. The effective channel
matrix Heff is

Heff = ErHEHt . (10)

Note that Er and Et are unknown in practice.

D. A TYPICAL CS-BASED SCHEME
Channel estimation aims to recover the unknown H (or Heff
when phase and gain errors exist) through training. This can
be formulated as a CS problem and the OMP can be applied to
solve it [2], [5], especially for channels with a small number
of paths, i.e., Lp � min(Nr ,Nt ). Ignoring the angle quanti-
zation error and using the virtual channel representation,H is
modeled as [3], [25], and [26],

H = ArHvAH
t , (11)

where Ar ∈ CNr×Gr and At ∈ CNt×Gt are two dictionary
matrices, and Hv ∈ CGr×Gt is a sparse matrix that contains
the path gains of the quantized directions. The two dictionary
matrices Ar and At are commonly constructed using array
response vectors [3]. Vectorizing (11) leads to

vec(H) = 9x, (12)

where

9 = A∗t ⊗ Ar (13)

is the basis matrix, (·)∗ denotes the conjugate, and

x , vec(Hv)

is an Lp-sparse vector. Noisy observations of linear combi-
nations of the entries of vec(H) may be obtained by training,
yielding

y = 8vec(H)+ z = 89x+ z, (14)

where 8 is the sensing matrix specified by the training
scheme and z is the noise. The OMP method finds Lp out
of GrGt candidate direction pairs in the dictionary, where
Gr and Gt are the numbers of grid points for the AoA and
AoD, respectively. The two dictionary matrices Ar and At
can be designed to be unitary matrices when Gt = Nt and
Gr = Nr , and are redundant when Gt > Nt and Gr > Nr .
The computational complexity of the OMP method is about
O(NLpGtGr ), where N is the number of observations. In gen-
eral, the larger the number of grid points the better the perfor-
mance, yet the heavier the computational burden and storage
space.

The above CS scheme assumes the array response vector
is known so that the channel can be modeled as (11), which
is sparse on the basis built as (13). However, when phase
errors and gain errors exist, it is the effective channel Heff
rather than H to be estimated. The basis for Heff is hard to
construct due to the unknownEr andEt , and thus leading to a
basis mismatch issue [8], which may cause significant perfor-
mance degradation of the CS estimators that rely on the basis.
In the following, we propose an MC-based channel estima-
tion scheme compatible with the hybrid system and does not
rely on the basis; thus, it is effective for systems having arrays
with phase errors and gain errors.

III. MC-BASED CHANNEL ESTIMATION
In this section, we first introduce the MC formulation of the
channel estimation problem and design a training scheme that
is compatible with the hybrid system. A GCG-Alt estimator
is then proposed to solve the channel estimation problem.
We finally generalize our approach to an IMC scheme.

A. MC FORMULATION
We propose to formulate the channel estimation problem as
an MC problem including estimating a subset of the entries
ofH and recovering the full channel matrix by exploiting the
low-rank nature of the channel and MC techniques. Define a
sampling operator P�(·) as

[P�(H)]i,j =

{
[H]i,j, (i, j) ∈ �
0, otherwise

, (15)

where [H]i,j denotes the (i, j)-th entry of H and � rep-
resents the sampling domain. Let p be the sampling den-
sity, then the number of sampled entries of H in the
operator P�(·) is N = pNtNr . As suggested in [27],
p ≥ Cñ1.2rchlog(̃n)/(NrNt ) to guarantee recovery, where
ñ = max(Nt ,Nr ), C is a positive constant independent of
(̃n, rch, p) and can be different for different types of matrices.
For the mmWave channel, examples of p = 0.14 and p = 0.5
are seen [15], [34]. In the noisy scenario, we obtain P�(HN ),
where HN = H+ E and E is the noise matrix. Then the full
channel matrix is recovered by solving the low-rank recovery
problem [33]

min
Ĥ

rank(Ĥ), s.t. ‖P�(Ĥ−HN )‖2F ≤ δ
2. (16)
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If E is white Gaussian noise with standard deviation σ , then
‖P�(E)‖2F ≤ (N +

√
8N )σ 2 with high probability [33] and

N = pNrNt is the total number of observations. In the
formulation of (16), the objective is to find an Ĥ with the
minimum rank based on the noisy observations. There are no
assumptions on the array responses. This is different from the
CS-formulation in which the channel is represented as (11)
that relies on the array response for constructing Ar and At .
The above MC problem is NP-hard and usually solved by

using approximate algorithms. The singular value threshold-
ing (SVT) algorithm in [28] and the fixed point continuation
(FPC) algorithm in [29] tackle this problem by using matrix
shrinkage. They require full singular value decomposition
(SVD) calculation at each iteration, which can yield high
computational complexity when the size of H is large. The
singular value projection (SVP) algorithm [30], [31] solves
the MC problem based on the classical projected gradient
algorithm; the alternating minimization algorithm [32] con-
verts the target matrix into its bi-linear form, i.e., H = UVH ,
and solves U and V alternatively. They both have lower com-
putational complexity compared to SVT and FPC, but need
to know the channel rank rch, which is unknown in practice.
Note that knowing rch can also help reduce the computational
complexity of SVT and FPC as the rank-rch SVD can be
used instead. In this paper, we adopt a generalized conditional
gradient (GCG) framework [22] to reconstruct H, which
does not require rch and has lower computational complexity
compared to SVT and FPC.

B. TRAINING PROCESS
The sampling pattern specified by the sampling opera-
tor P�(·) has a crucial influence on the performance of
MC algorithms. From [33], at least one entrymust be sampled
from each row and each column to recover the originalmatrix.
In this paper, we adopt the uniform spatial sampling (USS)
scheme [35], which is proposed for array signal processing
and outperforms alternative sampling schemes such as the
Bernoulli scheme [33, Sec. IV]. Following the USS sampling
scheme, we take N/Nt distinct noisy samples from the Nr
entries of each column of the channel matrix. During training,
suppose one symbol is transmitted at each training stage and
employ M training stages with S training steps at each train-
ing stage. At the BS, a unique processing vector f of (5) is used
at them-th training stage, which will be denoted by fm. At the
m-th stage, fm remains unchanged and the MS changes the
receiving processing matrix W by S times. In the following,
we useWm,s to represent the MS receiving processing matrix
at the s-th step of the m-th stage.
The total number of training steps is MS. At the s-th step

of the m-th training stage, the BS sends out one symbol sm,s
with power P through fm and the MS receives Nm,s ≤ Kr 1

signals through Wm,s. In this way, the observation at the

1The MS with only Kr RF chains can only produce up to Kr estimates
simultaneously.

s-th step of the m-th stage is

ym,s =WH
m,sHfmsm,s +WH

m,snm,s, (17)

where nm,s ∈ CNr is the noise vector. Assume all
transmitted symbols during the training are identical and
sm,s =

√
P. By setting ‖fm‖2F = 1, the total transmit-

ting power is ‖fmsm,s‖2F = P. We define the pilot-to-noise
ratio (PNR) as

PNR =
‖fmsm,s‖2F

σ 2 , (18)

where the noise is assumed to be an additive white Gaussian
noise (AWGN) with variance σ 2.

Collect all the S received vectors of the m-th training stage
into vector

ym =
√
PWH

mHfm + nm, (19)

where

ym = [yTm,1, y
T
m,2, . . . , y

T
m,S ]

T ,

Wm = [Wm,1,Wm,2, . . . ,Wm,S ],

nm = [nTm,1W
∗

m,1,n
T
m,2W

∗

m,2, . . . ,n
T
m,SW

∗
m,S ]

T ,

and (·)T represents the transpose. Stacking all the received
vectors from the M training stages into matrix Y yields

Y =
√
PWHHF+ N, (20)

where Y = [y1, y2, . . . , yM ], N = [n1,n2, . . . ,nM ], W =
[W1,W2, . . . ,WM ] and F = [f1, f2, . . . , fM ]. In the hybrid
system, W and F of (20) are composed of RF beamformers
and digital processors. At the m-th stage, fm = Gmbm, where
Gm ∈ CNt×Kt and bm ∈ CKt are the RF beamformer and
digital processor at the BS, respectively; for the MS,

Wm = [Qm,1Dm,1, . . . ,Qm,SDm,S ],

whereQm,s ∈ CNr×Kr andDm,s ∈ CKr×Nm,s are the RF beam-
former and digital processor, respectively. The constraint of
analog phase shifters requires [Qm,s]i,j ∈WRF and [Gm]i,j ∈
FRF , where WRF and FRF are two sets that contain all the
possible phase shifts ej2πk/2

I
, k = 0, 1, . . . , 2I −1 of the MS

and BS phase shifters, respectively, where I is the number of
bits of the phase shifter.

We design fm to sample one column ofH at each stage and
choose Wm to sample N/Nt distinct entries of that column.
We set M ≥ Nt to guarantee that every column in H is
sampled at least once. Let jm = mod(m,Nt )+1, wheremod(·)
denotes the modulus operation. At the m-th stage,

fm , [0, . . . , 1, . . . , 0]T (21)

is set with 1 at its jm-th entry, such that the jm-th column ofH
is extracted. Since fm = Gmbm, the design task is as follows:

Find Gm,bm,

s.t. Gmbm = fm,

Gm ∈ FNt×Kt
RF . (22)
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In order to satisfy the constraint of fm, the inner product of
the jm-th row of Gm and bm must be 1 and the other Nt − 1
rows in Gm must be orthogonal to bm.
We first present the design of Gm and bm with

fm = [1, 0, . . . , 0]T . Write Gm as

Gm =

[
G1,m
G2,m

]
, (23)

where G1,m ∈ F2×Kt
RF ,G2,m ∈ F (Nt−2)×Kt

RF , and then
Gmbm = fm in (22) splits into

G1,mbm = e1, (24)

G2,mbm = 0(Nt−2)×1, (25)

where e1 = [1, 0]T . Since the entries in G1,m cannot be 0,
we need Kt ≥ 2 to guarantee that problem (24) is solvable.
This is because if Kt = 1, the vector bm becomes a scalar bm.
Then problem (24) becomes

G1,mbm =
[
1
0

]
, (26)

which has no solution unless the entries in G1,m can be 0.
If G1,m is known, the least square solution of (24) is

bm = GH
1,m(G1,mGH

1,m)
−1e1. (27)

We can see that G1,mGH
1,m should be invertible, which

requires G1,m having full row rank. Considering [G1,m]i,j ∈
F2×Kt
RF , the Vandermonde matrix is a natural choice forG1,m.

Therefore, we construct G1,m as

[G1,m]1,l =
1
√
Kt
ωl−11 , [G1,m]2,l =

1
√
Kt
ωl−12 ,

l = 1, 2, . . . ,Kt ,

where

ω1 = ejn1
2π
2I , ω2 = ejn2

2π
2I ,

and n1, n2 are integers.2 Here we require n1 6= n2 so thatG1,m
has full row rank. The minimum requirement for realizing
fm is I = 1,Kt = 2. For example, when I = 1,Kt = 2,
G1,m ∈ F2×2

RF , and (27) becomes

bm = G−11,me1. (28)

With I = 1, choosing n1 = 0, n2 = 1, we have G1,m and bm
as

G1,m =

[
1 1
1 ejπ

]
, bm =

[
1/2
1/2

]
. (29)

After obtaining bm, all the rows of G2,m in (25) can be
chosen as G1,m(2, :) since G1,m(2, :)bm = 0. This produces

Gm =


G1,m

G1,m(2, :)
...

G1,m(2, :)

. (30)

2For achieving high numerical stability, we can choose proper ω1 and ω2
so that G1,mGH

1,m is well-conditioned.

For other fm with the jm-th entry being 1, we only need to
swap the first and the jm-th row of the Gm in (30) and keep
the designed bm unchanged.3

During each of the S training steps, the MS produces
the estimates of Nm,s entries of the jm-th column of H
through Wm,s ∈ CNr×Nm,s . Let im,s,q be the row index of the
q-th sampled entry and

Im,s = {im,s,1, im,s,2, . . . , im,s,Nm,s}.

In order to achieve interference-free sampling, the required
Wm,s is constructed as

[Wm,s]i,j =

{
1, i = im,s,j, j = 1, 2, . . . ,Nm,s
0, otherwise.

(31)

Then the design task is as follows:

Find Qm,s,Dm,s,

s.t. Qm,sDm,s =Wm,s

Qm,s ∈WNr×Kr
RF . (32)

We first present the design of Qm,s and Dm,s with
Im,s = {1, 2, . . . ,Nm,s}, which means

Wm,s =

[
INm,s
0

]
. (33)

Write Qm,s as

Qm,s =

[
Q1,m,s
Q2,m,s

]
, (34)

where Q1,m,s ∈ CKr×Kr and Q2,m,s ∈ C(Nr−Kr )×Kr . Then
Qm,sDm,s =Wm,s in (32) splits into

Q1,m,sDm,s = W1,m,s, (35)

Q2,m,sDm,s = 0, (36)

where Dm,s ∈ CKr×Nm,s , and

W1,m,s =

[
INm,s

0(Kr−Nm,s)×Nm,s

]
. (37)

Note that we need Nm,s ≤ Kr − 1 to guarantee only one 1 in
each column of Wm,s. If Q1,m,s is given, the solution of (35)
is

Dm,s = Q−11,m,sW1,m,s. (38)

Q1,m,s should be invertible. Similar to the design ofG1,m, we
construct Q1,m,s as

[Q1,m,s]k,l =
1
√
Kr
ωl−1k , k, l = 1, 2, . . . ,Kr , (39)

where

ωk = ejnk
2π
2I . (40)

3The approach in [23] also solves problem (22), and its solution is equiv-
alent to our solution when I = 1,Kt = 2.
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After obtaining Dm,s, all the rows of Q2,m,s in (36) can
be chosen as Q1,m,s(Kr , :) as Q1,m,s(Kr , :)Dm,s = 01×Nm,s ,
yielding

Qm,s =


Q1,m,s

Q1,m,s(Kr , :)
...

Q1,m,s(Kr , :)

. (41)

For other Im,s, we just need to permute the rows in the
Qm,s of (41) according to the elements in Im,s and keep
the designed Dm,s unchanged. For example, if Im,s =
{1,Nr , 3, 4, . . . ,Nm,s}, we swap the second and theNr -th row
ofQm,s. Note that when Kr = 2, we have Nm,s = Kr −1 = 1
andDm,s becomes a vector dm,s, so that problem (32) reduces
to problem (22). Similarly, we require I ≥ 1 and Kr ≥ 2 for
realizing Wm,s.
The processingmatrices designed above are applied to (20)

to obtain the received samples in Y. Without loss of general-
ity, let the transmitted symbol power P = 1. We can then
construct a matrix H̃ ∈ CNr×Nt using Y ∈ CN/M×M as

[H̃]l,k =


[Y]il,k ,jl,k , (l, k) ∈ �,

il,k = 1, . . . ,
N
M
, jl,k = 1, . . . ,M

0, otherwise,
(42)

where � contains the positions of all N samples stored in
the form of (l, k) with l ∈ [1,Nr ] and k ∈ [1,Nt ], and
(l, k) indicates sampling the (l, k)-th entry of H̃. In the above,
(il,k , jl,k ) represents the index of the corresponding entry inY
for the (l, k)-th entry of H̃. Note that H̃ andP�(H̃) are actually
the same. Then the channel matrix H can be estimated from
P�(H̃) by using MC algorithms.
Remark 1: The proposed training scheme can also be

applied to switch-based hybrid systems [34], as the process-
ing matrices F and W that contain only 1’s and 0’s can
be directly achieved by switching on and off the switches.
When the array-inherent impairments are present, the sam-
ples obtained by the proposed training scheme are noisy
observations of the entries of the effective channel matrix
Heff = ErHEHt . Therefore, the MC-based estimator esti-
mates Heff instead of H.

C. GCG-ALT ESTIMATOR
In this paper, we adopt the framework introduced in [22]
that consists of a relaxed GCG algorithm and a local search
algorithm to estimate H (or Heff ). We propose an alternating
minimization (AltMin) algorithm as the local search algo-
rithm and thus name the resulting estimator as the GCG-Alt
estimator. This estimator utilizes the relaxed GCG algorithm
to generate a good initial estimate, based onwhich the AltMin
algorithm converges fast to an optimized solution.

The problem is formulated as

min
Ĥ∈CNr×Nt

φ(Ĥ), (43)

where

φ(Ĥ) , f (Ĥ)+ µ‖Ĥ‖∗,

f (Ĥ) ,
1
2
‖P�(Ĥ)− P�(H̃)‖2F ,

µ > 0 is a regularization coefficient and ‖Ĥ‖∗ is the nuclear
norm (i.e., summation of the singular values) of Ĥ.

1) RELAXED GCG ALGORITHM
Following [22], problem (43) can be solved via the
GCG algorithm by successively finding the descent direction
Z of f (Ĥ) and updating Ĥ by (1−η)Ĥ+θZ, where η ∈ [0, 1]
is the step size properly chosen to avoid divergence and θ is
a parameter chosen to minimize φ(Ĥ). At the k-th iteration,
Zk is found as [22]:

Zk = min‖Z‖∗≤1〈Z,∇f (Ĥk−1)〉, (44)

where ∇ represents the gradient and

〈A,B〉 , tr(AHB)

represents the inner product of two matrices. The solution
to (44) is given [22] as

Zk = uk−1vHk−1, (45)

where (uk−1, vk−1) is the top singular vector pair of

−∇f (Ĥk−1) = −P�(Ĥk−1 − H̃). (46)

Then we have

Ĥk = (1− ηk )Ĥk−1 + θkZk . (47)

Following [22], θk can be chosen as

θ̃k = arg min
θk≥0

φ(θk ), (48)

where

φ(θk ) , f ((1− ηk )Ĥk−1 + θkZk )

+µ‖(1− ηk )Ĥk−1 + θkZk‖∗. (49)

Note that the positions of the observed entries are reflected in
the sampling operator P� and the values in the positions of
the unobserved entries will be zero.

However, solving (48) can be computational expensive
since it involves the evaluation of ‖(1 − ηk )Ĥk + θkZk‖∗.
In order to reduce the computational complexity, [22] pro-
poses to minimize an upper bound of φ(θk ), which is

h(θk ) = f ((1− ηk )Ĥk−1 + θkZk )

+µ(1− ηk )‖Ĥk−1‖∗ + µθk . (50)

This upper bound is obtained by using the convex property of
the nuclear norm that

‖(1− ηk )Ĥk−1 + θkZk‖∗ ≤ (1− ηk )‖Ĥk−1‖∗ + θk‖Zk‖∗

and the fact that

‖Zk‖∗ ≤ 1.
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Then we have

θ̃k = argmin
θ≥0

h(θk ). (51)

The solution of (51) is obtained by letting

∂h(θk )/∂θk = 0

as

θk =
2R(zHk�h̃�)− (1− ηk )zHk�ĥk� − 2µ

2zHk�zk�
, (52a)

where

zk� = vec(P�(Zk )), (52b)

h̃� = vec(P�(H̃)), ĥk� = vec(P�(Ĥk−1)), (52c)

where vec(·) denotes vectorization and R(·) denotes the real
part of a number. After obtaining θk , we can update Ĥk as
in (47). The k-th iteration of the relaxed GCG algorithm
updates Ĥ from Ĥk−1 to Ĥk by adding a rank-1 matrix θkZk ,
producing an estimate Ĥk of rank k .

2) AltMin ALGORITHM
Recall that the parameter θk is chosen based on an upper
bound of the objective function in (49). This suggests that
Ĥk in (47) may not be the optimal solution and it is possible
to obtain a solution with rank k that improves Ĥk . Therefore,
before moving to the next iteration of the relaxed GCG algo-
rithm, a local search algorithm can be applied to find such
a solution using Ĥk as the input and compute iteratively an
output ĤQ

k with rank k and

φ(ĤQ
k ) < φ(Ĥk ),

where Q is the number of iterations of the local search algo-
rithm. Following [22], the nuclear norm of Ĥ can be written
as

‖Ĥ‖∗ =
1
2
min
U,V
{‖U‖2F + ‖V‖

2
F : Ĥ = UVH

}, (53)

whereU ∈ CNr ×̂r andV ∈ CNt ×̂r with r̂ being the rank of Ĥ.
Therefore, finding an Ĥ to minimize the objective function
in (43) becomes finding a pair of (U,V) to minimize

φ̃(U,V) , f (UVH )+
1
2
µ(‖U‖2F + ‖V‖

2
F ). (54)

Given

Ĥk−1 = Uk−1VH
k−1,

the update Ĥk in (47) obtained by the relaxed GCG algorithm
is equivalent to the following:

Uk = [
√
1− ηkUk−1,

√
θkuk−1],

Vk = [
√
1− ηkVk−1,

√
θkvk−1], (55)

where

Zk = uk−1vHk−1,

Uk ∈ CNr×k and Vk ∈ CNt×k .

Let us use the k-th update of (Uk ,Vk ) obtained by the
relaxed GCG algorithm as the input of the AltMin algorithm.
We now discuss the update of Vi

k at the i-th update of the
AltMin algorithm. Define

φ̃(V|Ui−1
k ) =

1
2
‖P�(H̃− Ui−1

k VH )‖2F +
µ

2
‖V‖2F . (56)

Vectorizing V in (56) into v, we have

φ̃(v|Ui−1
k ) =

1
2
‖̃h� − P�((INt ⊗ Ui−1

k )v)‖2F +
µ

2
‖v‖2F

=
1
2
‖̃h� − U i−1

k v‖2F +
µ

2
‖v‖2F , (57)

where

U i−1
k = P�̃

(
INt ⊗ Ui−1

k

)
∈ CNtNr×Ntk , (58)

�̃ stores the positions of the N sampled entires out of the
NtNr entries of vec(H̃) and the operatorP�̃(A) keeps the rows
of A corresponding to �̃ while sets other rows of A to zero.
Given Ui−1

k ,

Vi
k = vec−1(vik )

can be updated by solving

vik = min
v
φ̃
(
v|Ui−1

k

)
. (59)

Since (57) is a quadratic smooth function, the solution of (59)
can be found by solving

∂φ̃
(
v|Ui−1

k

)
∂v

= 0.

Therefore, we update Vi
k as

Vi
k = vec−1

(
vik
)
, (60)

where

vik =
(
(U i−1

k )HU i−1
k + µINtk

)−1
(U i−1

k )H h̃�. (61)

Following similar procedures, given Vi
k , we can define

V i
k = P�̃

(
(Vi

k )
∗
⊗ INr

)
∈ CNtNr×Nr k , (62)

and update

Ui
k = vec−1(uik ), (63)

where

uik =
(
(V i

k )
HV i

k + µINr k
)−1

(V i
k )
H h̃�. (64)

The updates in (61) and (64) can be done iteratively for a
number of iterations. Note that the AltMin algorithm may
yield a local minimum.
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Algorithm 1 The GCG-Alt estimator.

1: Input: P�(H̃), µ, ε, εa
2: Initialization: U0 = ∅,V0 = ∅, k = 0, ε0 = ∞
3: while εk > ε or δ2k > (N +

√
8N )σ 2 do

4: (uk , vk )← top singular vector pair of −∇f (Ĥk )
5: k = k + 1
6: ηk ← 2/(k + 1) and determine θk using (52)
7: Uk ← [

√
1− ηkUk−1,

√
θkuk−1]

8: Vk ← [
√
1− ηkVk−1,

√
θkvk−1]

9: Initialization:i = 0, ε0k = ∞, (U
0
k ,V

0
k )← (Uk ,Vk )

10: while εik > εa do
11: i = i+ 1
12: obtain Ui

k and Vi
k via (64) and (61)

13: calculate εik in (65)
14: end while
15: (Uk ,Vk )← (Ui

k ,V
i
k )

16: calculate εk in (66) and δ2k
17: end while
18: Output: the estimated channel Ĥ = Ĥk = UkVH

k

3) STOPPING CRITERIA
Define the relative contribution of the i-th iteration of the
AltMin algorithm as

εik =
φ̃(Ui−1

k ,Vi−1
k )− φ̃(Ui

k ,V
i
k )

φ̃(Ui−1
k ,Vi−1

k )
(65)

and a threshold εa. Then we stop the AltMin algorithm
when εik ≤ εa. Suppose the AltMin algorithm stops after
Q iterations, the output of the AltMin algorithm replaces the
k-th update obtained by the relaxed GCG algorithm, i.e.,

(Uk ,Vk )← (UQ
k ,V

Q
k )

Similarly, we also set an energy threshold ε to determine
whether the GCG-Alt estimator should stop iterating. Let the
relative energy difference between the k-th and the (k− 1)-th
update of the GCG-Alt estimator be

εk =
‖Ĥk‖

2
F − ‖Ĥk−1‖

2
F

‖Ĥk−1‖
2
F

. (66)

We can stop the estimator when εk ≤ ε. In addition, by using
our proposed training scheme,P�(H̃) is equivalent toP�(H+
Nh), where Nh ∈ CNr×Nt is the white Gaussian noise matrix.
Assume the noise standard deviation is known as σ , we have
‖P�(Nh)‖2F ≤ (N +

√
8N )σ 2 with large probability [33].

Define δ2k = ‖P�(Ĥk − H̃)‖2F , we introduce an additional
stopping criterion that if

δ2k ≤ (N +
√
8N )σ 2, (67)

the estimator also stops. The GCG-Alt estimator is summa-
rized in Algorithm 1.

4) COMPUTATIONAL COMPLEXITY
Define a flop as an operation of real-valued numbers.We now
analyze the computational complexity of the GCG-Alt esti-
mator. For calculating the top singular vector pair in step 4 of
Algorithm 1, the computational cost is 8(2q+ 3)(g+ 1)NtNr
flops by using the Randomized SVD method in [37], where
the exponent parameter q = 2 and the oversampling param-
eter g = 10. Calculating step 6 of Algorithm 1 requires
(4p + 16)NtNr flops. Suppose at the k-th iteration of the
GCG algorithm, U i−1

k is a block diagonal matrix with each
block of the size Nr × k and Nt blocks in total, but there are
only pNr × k non-zero elements in each block. Therefore,

the calculation of
(
(U i−1

k )HU i−1
k + µINtk

)−1
only requires

8k2pNrNt + 4k3Nt + 8k2Nt + kNt ≈ 8k2pNrNt + 4k3Nt +
8k2Nt flops. The calculation of (U i−1

k )H h̃� requires 8kpNrNt

flops and the multiplication of
(
(U i−1

k )HU i−1
k + µINtk

)−1
and (U i−1

k )H h̃� requires 8k2Nt flops. Therefore, the total
number of flops needed for obtaining Vi

k is (8k
2pNr + 4k3+

16k2+8kpNr )Nt . Similarly, the total number of flops needed
for obtaining Ui

k is (8k
2pNt + 4k3 + 16k2 + 8kpNt )Nr . The

calculations in step 13 and 16 of Algorithm 1 require way
fewer flops than other steps in Algorithm 1 and are thus
ignored. The flop counts are summarized in Table 1.

D. INDUCTIVE MATRIX COMPLETION
In the training scheme proposed in Section III-B, we essen-
tially activate one transmitter antenna during each training
stage and the total transmitted power P is concentrated on a
single transmitting antenna. This may be feasible in scenarios
where the path loss of the transmission link is not significant,
such as in the mmWave massive MIMO-based ultra-dense
networks [45] where the path loss is even smaller than that
in the conventional cellular networks [45]. For scenarios
where the transmission distance is long and thus incurs a
higher path loss, the peak transmission power for a single
antenna can be high if a high PNR is required. In order to
address this challenge, we propose to generalize the training
scheme in Section III-B following the principle of low-rank
matrix recovery based on rank-1 measurements [38]. With
this generalization, all the transmitter antennas are activated
simultaneously and the total transmitting power are spread
out on the array, reducing the peak power transmitted from the
antennas. The channel estimation problem is then reformu-
lated as an inductive matrix completion (IMC) problem [38],
which can be solved directly by applying our proposed GCG-
Alt estimator.

In the IMC framework, instead of directly sampling and
completing H, a transformed matrix

C = XH
L HXR

is first sampled and then completed using a low-rank matrix
recovery method, where XL ∈ CNr×d1 and XR ∈ CNt×d2 are
feature matrices. Clearly, when d1 = Nr , d2 = Nt , H can
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TABLE 1. Computational complexity of the GCG-Alt estimator and the OMP estimator.

then be recovered as

H = (XH
L )
−1C(XR)−1

when C is known. Obtaining the entries of C is equivalent to
using the columns of XL and XR to sample H, i.e.,

[C]i,j = XH
L (:, i)HXR(:, j). (68)

Therefore, when the feature matrices XL and XR are known,
the sampling process can be achieved by setting the precoder
fm and combiners Wm,s of (17) as columns of XR and XL ,
respectively. As such, the numbers of antennas activated
simultaneously are given by the numbers of nonzero elements
in the columns of XL and XR. Note that the IMC formulation
here reduces to the MC approach when XL = INr ,XR = INt .
In the following, we focus on the choice of XL and XR.
Let H = USVH be the thin SVD of H with rank rch,

and let xLi (xRi ) be the i-th column of XL (XR). In order to
successfully recover C and H, the feature matrices XL and
XR have to satisfy the following two key properties [39].
1) Incoherent w.r.tH: The feature matricesXL andXR are

incoherent with respect to H, i.e.,

max
i
‖UHxLi‖2 ≤

√
µ0rch
Nr

, (69)

max
j
‖VHxRi‖2 ≤

√
µ0rch
Nt

, (70)

max
i,j
‖xHLiUV

HxRi‖2 ≤
√
µ0rch
NrNt

(71)

2) Self-incoherent: The feature matrices XL and XR are
both µ1-incoherent, i.e.,

max
i
‖xLi‖2≤

√
µ1d1
Nr

, max
j
‖xRi‖2≤

√
µ1d2
Nt

(72)

The above properties imply that matrix C should not be too
spiky so that it is possible to be recovered from a subset
of entries [33]. Moreover, if XL and XR have orthonormal
columns, i.e., XH

L XL = INr and XH
RXR = INt , the condition

number ofC and that ofH are equal. This is useful because if
the condition numbers differ, a practical matrix completion
algorithm may produce an estimate of C with a different
rank. This can in turn yield over- or underestimation of the
rank of H. However, not all the orthonormal matrices are
suitable for XL and XR. For example, consider an extreme

case where the AoAs/AoDs coincide with the normalized
spatial frequencies and XL and XR are unitary DFT matrices.
Then it can be verified that the transformedmatrixC becomes
a diagonal matrix, which is sparse and very spiky and can
hardly be recovered unless all of its entries are observed [33].

In light of the above discussion, we choose XL and XR as
follows:
• Obtaining two matrices A ∈ CNr×Nr and B ∈ CNt×Nt

whose elements are generated randomly on a unit circle.
• Calculate the SVD of A and B as A = UASAVH

A and
B = UBSBVH

B .
• Set XL = UA and XR = UB.

With XL and XR given, noisy observations of a subset of the
entries of C are obtained by choosing fm andWm,s of (17) as
the corresponding column(s) of XR and XL , respectively. For
example, in order to observe [C]1,1 and [C]2,1 at the s-th step
of the m-th training stage, we can set Wm,s = XL(:, 1 : 2)
and fm = XR(:, 1) and obtain[

[C̃]1,1
[C̃]2,1

]
=WH

m,sHfmsm,s +WH
m,snm,s, (73)

where nm,s denotes the observation noise. Note that (73)
is actually the same as (17). The corresponding PNR can
be defined in the same way as (18). We choose the sam-
pling domain � the same as in Section III-B, which takes
N/Nt distinct noisy samples from the Nr entries of each
column of C. Note that fm and Wm,s in (73) are no longer
made of only 1’s and 0’s, and thus the design discussed in
Section III-B is not suitable here. We adopt the PE-AltMin
algorithm in [24] to solve (22) and (32) for realizing fm and
Wm,s using the hybrid transceivers.

Similar to (20), after MS training steps, we obtain
the received samples in YC and then construct a matrix
C̃ ∈ CNr×Nt as

[C̃]l,k =


[YC ]il,k ,jl,k , (l, k) ∈ �,

il,k = 1, . . . ,
N
M
, jl,k=1, . . . ,M

0, otherwise,
(74)

Then matrix C can be estimated by solving the low-rank
matrix recovery problem

min
Ĉ
rank(Ĉ), s.t. ‖P�(Ĉ)− P�(C̃)‖2F ≤ δ

2
c , (75)
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where δ2c is set according to the noise variance. Our proposed
GCG-Alt estimator in Algorithm 1 can be directly applied
to solve (75) and has the same computational complexity as
analyzed in Table 1. After obtaining Ĉ, we can produce the
estimate of the original channel matrix as

Ĥ = (XH
L )
−1Ĉ(XR)−1.

This IMC formulation is still immune to the phase/gain errors
as no knowledge of the array response is needed.

Note that [15] also adopts the formulation ofC = XH
L HXR

with the entries of XL and XR randomly generated from a
unit circle, but it does not require the columns of XL and
XR to be orthonormal. Therefore, the condition number of C
may differ from that of H and the recovery accuracy may be
affected. In addition, [15] chooses d1 < Nr and d2 < Nt
so that the dimension of C is smaller than H, yielding lower
computational complexity for the MC algorithms. However,
after obtaining Ĉ, [15] needs to solve a CS problem, which
requires the knowledge of the array response, to recover H
from Ĉ. As analyzed in Section I, if the array response is
not accurately known, the performance of the CS solvers can
degrade.

IV. NUMERICAL RESULTS
We now evaluate the performance and computational com-
plexity of our proposed design for fully connected hybrid
transceivers with the ULA and USPA.

A. THE ULA SYSTEM
We assume a carrier frequency of fc = 28 GHz. The number
of clusters K ∼ max(Poisson(1.8), 1), and the cluster powers
are generated following [4, Table I]. The number of rays in
each cluster L ∼ U[1, 20]. The horizontal AoDs

φtkl ∼ U(φtk − υ
t
h/2, φ

t
k + υ

t
h/2),

where the center angles φtk are distributed uniformly
from [0, 2π ] and separated by at least one angular spread
υ th = 10.2◦. Similarly, the horizontal AoAs

φrkl ∼ U(φrk − υ
r
h/2, φ

r
k + υ

r
h/2)

with υrh = 15.5◦. The noise is assumed to be additive white
Gaussian noise (AWGN) with variance σ 2. The ULA at the
BS has Nt = 128 antennas and Kt = 16 RF chains. The ULA
at the MS has Nt = 32 antennas and Kr = 4 RF chains. The
RF beamformers employ 6-bit phase shifters. Denote by ~ t

and ~r the phase error levels for the ULAs at the BS and MS,
respectively. The phase errors of ULAs at the BS and MS are
distributed respectively as

κ ti ∼ U(−~ t , ~ t ), and κri ∼ U(−~r , ~r ).

The gains of the antennas assumed to be

ρti ∼ U(1− %t , 1+ %t ), and ρri ∼ U(1− %r , 1+ %r ),

respectively, for the BS and MS, where %t and %r are the
unequal gain levels for the ULAs at the BS and MS, respec-
tively. When the arrays of the hybrid transceiver are perfectly
calibrated, ~ t = ~r = 0 and %t = %r = 0.

In this paper, we use the OMP estimator with the train-
ing beams optimized in [5] to show the performance of the
CS-based estimator.We choose the redundant dictionary with
Gt = 2Nt = 256 and Gr = 2Nr = 64 for the OMP
estimator. A stopping threshold εOMP = 0.1σ 2 is set for
the OMP estimator in [5]. Our observations show that for
the present application, the stopping threshold is sensitive
to the noise variance. For PNR < 10 dB, εOMP = 0.1σ 2

leads to underestimation of the available paths, while for
PNR > 10 dB, εOMP = 0.1σ 2 leads to overestimation and
the OMP estimator takes too long to stop. In order to show the
potential of the OMP estimator, we set the optimized stopping
threshold εOMP = 0.025σ 2, 0.05σ 2, 0.1σ 2, 0.2σ 2, 0.4σ 2 for
PNR = 0, 5, 10, 15, 20 dB, respectively. Similar settings for
the stopping threshold can be found in [45]. For our proposed
GCG-Alt estimator, we set µ = σ 2, ε = 0.01, εa = 0.1.
We use our proposed training process and set Nm,s =
Kr − 1 = 3. Therefore, at each training step, the MS
obtains Nm,s = 3 samples. We also compare our proposed
GCG-Alt estimator with the very recently proposed Two-
Stage estimator in [15], which solves a MC problem using
the FPC algorithm [29] at the first stage and then solves a CS
problem using FISTA [46] at the second stage. We notice that
our proposed training scheme in Section III-B outperforms
the random training scheme in [15] for the Two-Stage estima-
tor for the channels considered in our simulations. We thus
adopt our proposed training scheme when testing the Two-
Stage estimator with the two design matrices Z and F of [15]
set as INr and INt , respectively. The numbers of the BS and
MS grid points for FISTA are G′t = Nt = 128 and G′r =
Nr = 32, respectively.
We first assume the arrays of the hybrid transceiver are

perfectly calibrated, i.e., ~ t = ~r = 0 and %t = %r = 0.
We compare the three estimators’ performances under differ-
ent training steps. The average of the normalizedmean square
error

NMSE =
‖Ĥ−H‖2F
‖H‖2F

is used to evaluate their performances, where Ĥ denotes the
estimate of the channel matrix. For the OMP estimator in [5],
the BS sends out M transmitting beams and the MS uses
SKr receiving beams for each transmitting beam to obtain a
total of MSKr measurements in MS training steps. For the
GCG-Alt and the Two-Stage estimators, MS training steps
yield MSNm,s measurements. We fix M = Nt = 128 for
the three estimators, and set S = 1 to 8 training steps
for each stage, yielding 128 to 1024 training steps in total.
We set PNR = 20 dB, which may be feasible for some
scenarios such as the backhaul and access links in ultra-
dense networks [45]. From Fig. 2, when the number of train-
ing steps is small, i.e., the sampling density p is low, the
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FIGURE 2. NMSE of the channel estimation in the ULA system with
Nt = 128,Nr = 32,Kt = 16,Kr = 4, different training steps, PNR = 20 dB,
and perfectly calibrated arrays, i.e., ~t = ~r = 0, %t = %r = 0.

FIGURE 3. NMSE of the channel estimation in the ULA system with
Nt = 128,Nr = 32,Kt = 16,Kr = 4, 512 training steps, different PNRs
and perfectly calibrated arrays, i.e., ~t = ~r = 0, %t = %r = 0.

Two-Stage estimator outperforms the GCG-Alt estimator and
the OMP estimator. As the number of training steps increases,
the performance for all three estimators improves and the
GCG-Alt estimator performs the best. Fig. 3 shows the chan-
nel estimation performance with MS = 512 training steps,
which corresponds to a sampling ratio of p = 0.5 for theOMP
and p = 0.375 for the GCG-Alt estimator and the Two-Stage
estimator. Different PNRs are considered. The results suggest
that the GCG-Alt estimator has better recovery performance
when PNR ≥ 5 dB.
We also consider imperfectly calibrated BS andMS arrays.

Fig. 4 and 5 compare the performance with different levels of
phase and gain errors. It is seen that the performance of the
GCG-Alt estimator remains stable while the performance of
the OMP estimator and the Two-Stage estimator degrades as
the phase or gain error level increases. The performance dete-
rioration of the Two-Stage estimator comes from its second

FIGURE 4. NMSE of the channel estimation in the ULA system with
Nt = 128,Nr = 32,Kt = 16,Kr = 4, MS = 512 training steps, different
phase error levels, PNR = 20 dB and %t = %r = 0. The BS and MS phase
error levels are assumed the same, i.e., ~t = ~r .

FIGURE 5. NMSE of the channel estimation in the ULA system with
Nt = 128,Nr = 32,Kt = 16,Kr = 4, MS = 512 training steps, different
gain error levels, PNR = 20 dB and ~t = ~r = 0. The BS and MS gain error
levels are assumed the same, i.e., %t = %r .

stagewhere a CSmethod requiring the knowledge of the array
response is applied. Thus, when the phase or gain errors are
present, channel estimators relying on the knowledge of the
array response may suffer from performance degradations.

We also examine the estimated rank of the channel using
the OMP estimator and the GCG-Alt estimator. We define
rsub as the rank of the reduced-rank approximation of the true
channel that captures 95% of the channel’s energy and denote
by r̂GCG and r̂OMP the ranks of the channel estimates pro-
duced by theGCG-Alt andOMP estimators, respectively. The
distribution of rsub, r̂GCG and r̂OMP are illustrated in Fig. 6 for
PNR = 20 dB. From Fig. 6 (a), the probability of rsub ≤ 5 is
around 80%, and the probability of rsub higher than 8 is less
than 5%. The distribution of r̂GCG is similar to rsub. By con-
trast, the distribution of r̂OMP has a longer tail, suggesting that
the OMP estimator tends to overestimate the channel paths.
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FIGURE 6. Distributions of rsub, r̂GCG and r̂OMP , with perfectly calibrated arrays (~t = ~r = 0, %t = %r = 0), MS = 512 training steps, and
PNR = 20 dB. (a) The distribution of r̂GCG. (b) The distribution of r̂OMP .

FIGURE 7. Convergence rate of the AltMin algorithm with PNR = 20 dB,
MS = 512 training steps, and perfectly calibrated arrays,
i.e., ~t = ~r = 0, %t = %r = 0.

We next compare the computational complexity between
the OMP estimator and the GCG-Alt estimator. The number
of iterations of the GCG algorithm is equal to the estimated
rank r̂GCG. The number of iterations of the AltMin algo-
rithm Q depends on the threshold εa. Recall that at the k-th
GCG iteration, the AltMin algorithm stops when εik ≤ εa.
At PNR = 20 dB, Fig. 7 illustrates an example showing how
the value of εik changes over iterations for k = 1, 2, 3, 4.
If εa = 0.1 is set, then the AltMin algorithm stops afterQ = 2
iterations. Based on the flop counts in Table 1, Fig. 8 shows
the number of flops needed by the GCG-Alt estimator and the
OMP estimator when we fix Q = 2 and vary r̂GCG or r̂OMP
from 1 to 20. Note that from Fig. 6, r̂OMP tends to be
larger than r̂GCG. Therefore, the computational complexity
of the proposed GCG-Alt estimator is much lower than the
OMP estimator.

In order to investigate the influence of channel estimation
on the achievable SE of the hybrid transceiver, we use the
PE-AltMin hybrid precoder proposed in [24]. The data trans-
mission model [24] is

y = DHQHHGBs+ DHQHn, (76)

FIGURE 8. Complexity comparison with different r̂GCG (or r̂OMP ),
Nt = 128,Nr = 32,Q = 2, MS = 512 training steps. The parameters for
the Randomized SVD method in the GCG algorithm are q = 2,g = 3, and
the numbers of grid points of the redundant dictionary for the OMP
estimator are Gt = 256 and Gr = 64.

whereD,Q,B,G are theMS digital processor, MSRF beam-
former, BS digital processor and BS RF beamformer, respec-
tively, s ∈ CNs is the symbol vector with E[ssH ] = 1

Ns
INs ,

Ns is the number of data streams, and n is the noise vector.
The reason of using the PE-AltMin precoder is that it is
immune to array-inherent impairments as it does not rely
on the antenna array response, and has lower computational
complexity compared to other hybrid precoders such as [36].
The signal-to-noise ratio (SNR) is defined as the ratio between
the total transmitting signal power ||GBs||2 and the noise
power. We set Ns = Kr = 4. The SE result for PNR = 10 dB
with perfectly calibrated BS andMS arrays is shown in Fig. 9.
All of the three estimators can obtain the CSI that leads to
near-optimal SE for SNR ≤ 0 dB, but the CSI provided by
the Two-Stage estimator and the OMP estimator incurs higher
SE loss than that provided by the GCG-Alt estimator when
SNR > 0 dB.
When the arrays are not perfectly calibrated, e.g., with the

phase error levels ~ t = ~r = 0.25π and gain error levels
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FIGURE 9. Spectral efficiency achievable with different channel
estimation schemes and the PE-AltMin precoder for the ULA system,
MS = 512 training steps, Ns = 4, PNR = 10 dB, and perfectly calibrated
arrays, i.e., ~t = ~r = 0, %t = %r = 0.

FIGURE 10. Spectral efficiency achievable with different channel
estimation schemes and the PE-AltMin precoder for the ULA system,
MS = 512 training steps, Ns = 4, PNR = 10 dB, and imperfectly calibrated
arrays with ~t = ~r = 0.25π, %t = %r = 0.2.

%t = %r = 0.2, the SE evaluation result is demonstrated
in Fig. 10. The GCG-Alt estimator still provides relatively
more accurate CSI, leading to higher SE. Moreover, since the
Two-Stage estimator is less sensitive to the phase/gain errors,
its SE loss compared to the OMP estimator is lower.

B. THE USPA SYSTEM
We next consider the system with USPA at the BS and MS.
The parameters fc,K ,L, φtkl, φ

r
kl are assumed the same as in

the ULA system. Based on the measurement results in [4],
we assume the vertical AoD angular spread υ tv = 0◦ and the
vertical AoA angular spread υrv = 6◦. The vertical AoDs and
AoAs are distributed as

θ tkl ∼ U(θ tk − υ
t
v/2, θ

t
k + υ

t
v/2),

θ rkl ∼ U(θ rk − υ
r
v /2, θ

r
k + υ

r
v /2)

FIGURE 11. Spectral efficiency achievable with different channel
estimation schemes and the PE-AltMin precoder for the USPA system,
MS = 576 training steps, Ns = 4, PNR = 10 dB, and perfectly calibrated
arrays, i.e., ~t = ~r = 0, %t = %r = 0.

FIGURE 12. Complexity comparison for the USPA system with different
r̂GCG (or r̂OMP ), Nt = 144,Nr = 36,Q = 2, MS = 512 training steps. The
parameters for the Randomized SVD method in the GCG algorithm are
q = 2,g = 3, and the numbers of grid points of the unitary dictionary for
the OMP estimator are Gt = 144 and Gr = 36.

with the vertical center angles θ tk and θ rk being generated in
the same manner as the horizontal center angles φtk and φ

r
k in

the ULA system. The USPA at the BS has Nt = 144 antennas
and Kt = 18 RF chains. The USPA at the MS has Nr = 36
antennas and Kr = 4 RF chains. The phase error and gain
error are the same as defined in the ULA system.

In the USPA system, we use the unitary dictionary with
Gt = Nt and Gr = Nr for the OMP estimator since the
redundant dictionary takes too much storage space.4 The
parameters εOMP, εa, ε and µ are the same as in the ULA
system. The number of training steps MS = 144× 4 = 576,

4For the USPA system with Nt = 12 × 12,Nr = 6 × 6, the redundant
dictionary that doubles the grids along both axes (y axis and z axis) requires
Gt = 576,Gr = 144. Therefore, the storage space needed by the redundant
dictionary will be 5184× 82944.
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FIGURE 13. Spectral efficiency achievable with different channel
estimation schemes and the PE-AltMin precoder for the USPA system,
MS = 576 training steps, Ns = 4, PNR = 10 dB, and imperfectly calibrated
arrays with ~t = ~r = 0.25π, %t = %r = 0.2.

FIGURE 14. NMSE of the channel estimation in the ULA system with
Nt = 128,Nr = 32,Kt = 16,Kr = 4, different training steps, PNR = 20 dB,
and perfectly calibrated arrays, i.e., ~t = ~r = 0, %t = %r = 0.

leading to a sampling ratio of p = 0.5 for the OMP and 0.375
for the GCG-Alt estimator and the Two-Stage estimators.

We set the number of streams Ns = 4 and PNR = 10 dB.
The SE result with %t = %r = 0 and ~ t = ~r = 0
shown in Fig. 11 suggests that using the CSI estimated by the
OMP estimator has an obvious SE loss, which is caused by
using the unitary dictionary that has lower resolution than the
redundant dictionary. The computational complexity com-
parison presented in Fig. 12 demonstrates that the proposed
GCG-Alt estimator still has lower computational complexity
than the OMP estimator with a unitary dictionary. The SE
result with ~ t = ~r = 0.25π and %t = %r = 0.2
shown in Fig. 13 indicates that the GCG-Alt estimator still
provides relatively more accurate CSI but the Two-Stage and
OMP estimators suffer from array-inherent impairments and
provide less accurate CSI, which is similar to the case of the
ULA system.

C. THE IMC FORMULATION
In Section III-D, we have generalized the training scheme
in Section III-B and the channel is estimated using an
IMC scheme. Assuming the same ULA system with per-
fectly calibrated arrays in Section IV-A, we compare the IMC
scheme with the MC scheme introduced in Section III-B.
The NMSE with different training steps is shown in Fig. 14.
We can see that these two schemes have almost the same
performance. TheMC scheme in Section III-B can be realized
with very few bits phase shifters, e.g., 1-bit phase shifters, yet
the training scheme in Section III-D requires lower instanta-
neous power for the transmitter antennas.

V. CONCLUSIONS
We have considered the impact of array-inherent impairments
on the performance of the dictionary dependent CS-based
channel estimators for hybrid transceivers in mmWave com-
munication systems. We show that array-inherent impair-
ments can affect the array response, and thus degrades the
performance of the CS-based estimators that utilize the array
response to design dictionaries. We propose an MC-based
channel estimator that is independent of the array response
to avoid the channel estimation error caused by imperfectly
calibrating the antenna elements’ phase centers and gains.
A training scheme and a channel matrix recovery algorithm
based on GCG and alternating minimization are designed.
The numerical results show that our proposed MC-based
channel estimator is robust against phase errors and gain
errors of the antenna elements and has advantages over the
CS-based estimators.

In the present work, narrowband systems are assumed.
The proposed methods may be extended to wideband
scenarios [40], [41] in different manners. For example, they
can be directly applied to the pilot subcarriers in an OFDM
setting. They may also be combined with direction-finding
methods such as the MUSIC [42] to estimate the angles of
the propagation paths. The property that different subcarriers
may share the same AoAs/AoDs [40] may then be exploited
to offer a good initial guess for the proposed GCG-Alt esti-
mator or to reduce the solution space of CS-based estimators
that aim to recover the paths’ information. In the case of
uncalibrated arrays, direction finding methods that account
for the unknown phase/gain errors, such as [43] and [44], may
be exploited to improve robustness.
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